Neuroligin-1在癫痫发作中的作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分Neuroligin-1和neurexin-1β在难治性颞叶癫痫患者及动物模型中的表达
     目的:脑神经元异常突触传递的同步化能导致癫痫的产生。Neuroligin-1(NL1)是位于兴奋性突触后膜的一种突触粘附分子,它能调节突触传递并能决定中枢神经网络的性质。本研究首先检测了NL1及其突触前膜受体neurexin-1β(NRX1β)在难治性颞叶癫痫(TLE)患者及氯化锂-匹罗卡品(LiCl-PILO)癫痫大鼠模型中的表达,以探讨其在TLE发生及发展中的可能作用。
     方法:
     1.从课题组所建脑组织标本库中随机抽取22例难治性TLE患者的颞叶皮质和10例对照组颞叶皮质。
     2.80只成年雄性SD大鼠随机分为对照组(n=10)和癫痫组(n=70),癫痫组又分为7个亚组(每组n=10),即1d组、2d组、3d组、7d组、14d组、30d组和60d组。癫痫组给予LiCl-PILO进行造模。
     3.用免疫组化,免疫荧光和免疫印迹三种方法分别检测NL1和NRX1β在颞叶癫痫患者脑组织和癫痫大鼠脑组织中的表达。
     结果:
     1.免疫染色显示,NL1蛋白主要在难治性TLE患者及对照颞叶皮质神经元的细胞膜和细胞中表达。NL1在难治性TLE患者脑组织中的免疫组化平均光密度值显著高于对照组(p<0.05)。荧光双标染色结果显示NL1主要在颞叶皮质神经元,且和NMDAR1共表达。免疫印迹结果显示NL1及其受体NRX1β在难治性TLE组中为强阳性,而在对照组中则为弱阳性。难治性TLE患者颞叶皮质的NL1和NRX1β的表达水平显著高于对照组(p<0.05)。
     2.在LiCl-PILO癫痫大鼠皮质和海马各区,均可见NL1免疫组化阳性染色,其中在海马齿状回、CA1区、CA3区阳性染色最强。在海马组织中,NL1的免疫组化平均OD值在造模后各个时间点呈动态增高趋势。荧光双标染色结果显示NL1在颞叶皮质和海马神经元表达,并且和NMDAR1共表达。免疫印迹结果显示,与对照组相比,NL1和NRX1β在急性期和慢性期均升高,且表达趋势基本一致。与对照组相比,NL1在海马的表达除了在7d和14d组没有差异(p>0.05)外,在其它各组均有差异(p<0.05)。与对照组相比,NRX1β在海马的表达除了在7d组没有差异(p>0.05)外,在其余各组均有差异(p<0.05)。
     结论:NL1及其受体NRX1β在难治性TLE患者和LiCl-PILO癫痫大鼠颞叶组织中表达均增高,提示其可能参与了TLE的发生与形成过程。
     第二部分Neuroligin1的knockdown对大鼠癫痫发作的影响
     目的:为进一步探讨NL1的knockdown是否会对癫痫发作产生影响,我们用沉默NL1基因的短发卡RNA(shRNA)慢病毒减少大鼠海马内源性NL1表达,并在造模后观察由此产生的对癫痫大鼠行为学的影响。
     方法:
     1.成年雄性SD大鼠造模前分为三组进行海马立体定位注射:即海马立体定位注射生理盐水假手术组(EP),海马立体定位注射慢病毒空载体组(EP+sh-con.),以及海马立体定位注射NL1shRNA慢病毒组(EP+sh-NL1)。
     2.成年雄性SD大鼠海马立体定位注射NL1shRNA慢病毒,并用免疫印迹实验和免疫荧光实验检测其干扰效率.
     3. LiCl-PILO造模之后60min之内对大鼠进行行为学观察,分别记录每20min时间间隔内的Racine评分,60min之内最大Racine评分,各组在60min之内达到Ⅳ级以上发作的大鼠所占比例,以及大鼠从PILO注射到首次出现Ⅳ级以上发作的时间(癫痫发作潜伏期)。
     结果:
     1. NL1shRNA慢病毒海马立体定位注射后,内源性NL1表达逐渐下降。与相应时间点对照组相比,NL1的平均OD比值在慢病毒注射后3d组和7d组中显著下降(p<0.05)。3d组和7d组之间没有显著差异(p>0.05)。在慢病毒注射后的第3d和7d,NL1的总量分别降低了36.3±4.3%和44.2±5.3%。荧光结果显示EGFP阳性表达位于海马,尤其是CA1区。
     2.在PILO注射后,大鼠癫痫发作的平均Racine评分随着时间的延长逐渐增高。在各20min间隔内,EP+sh-NL1组的癫痫发作评分均比其它组低(p<0.05),组间有差异(p<0.05)而时间与组间交互作用无差异(p>0.05)。EP+sh-NL1组的最大Racine评分比其它组低(p<0.05),而另外两组对照无差异(p>0.05)。在EP+sh-NL1组中只有33.3%的大鼠出现了Ⅳ级以上的发作,而在其它两组对照组均有83.3%的大鼠出现了Ⅳ级以上的发作。NL1的knockdown能显著降低Ⅳ级以上癫痫的发生率(p<0.05)。与两组对照组相比,EP+sh-NL1组癫痫发作潜伏期显著延长,而两组对照之间无显著差异(p>0.05)。
     结论:
     1.对NL1进行的体内shRNA慢病毒干扰能有效抑制内源性NL1的表达,其干扰效率在干扰后第7d达到稳定水平。
     2.海马内NL1shRNA慢病毒干扰能减轻癫痫发作程度,降低癫痫发作的易感性。
     第三部分Neuroligin1在大鼠癫痫发作中的作用机制
     目的:为了研究NL1在自发性癫痫发作(SRS)中的可能作用机制,我们在癫痫大鼠造模后第30d检测NL1shRNA慢病毒干扰效率并进行电生理研究,同时检测与NL1关系密切的NMDAR1在NL1knockdown之后的表达变化。
     方法:
     1.癫痫大鼠按海马内立体定位注射试剂不同分为三组:生理盐水组(EP)、空载体组(EP+sh-con.)、NL1shRNA组(EP+sh-NL1);正常大鼠海马内注射生理盐水作为正常对照组(control)。
     2.用免疫印迹和免疫荧光实验检测造模后30d大鼠海马NL1shRNA慢病毒干扰效率。
     3.用全细胞膜片钳技术记录造模后30d各组大鼠脑片海马CA1区细胞的动作电位(AP)、微小兴奋性突触后电流(mEPSC)、诱发兴奋性突触后电流(evoked EPSC)。
     4.用免疫印迹实验检测造模后30d大鼠海马NMDAR1的总蛋白和膜蛋白。
     结果:
     1.免疫印迹实验结果表明,大鼠造模后30d,NL1在海马的表达在EP+sh-NL1组与EP+sh-con.组或EP组之间有显著差异(p<0.05),而在EP+sh-con.组与EP组之间以及EP+sh-NL1组与control组之间没有显著差异(p>0.05)。 EGFP免疫荧光结果提示慢病毒已成功转染至海马CA1区神经元。
     2.自发性AP的频率在EP+sh-NL1组显著低于EP+sh-con.组(p<0.05);与control组相比,AP频率在EP+sh-con.组以及EP+sh-NL1组均显著增高(p<0.05)。mEPSC的幅度在EP+sh-con.组与EP+sh-NL1组之间无差别(p>0.05);与control组相比,mEPSC的幅度在EP+sh-con.组以及EP+sh-NL1组均显著增高(p<0.05)。mEPSC的频率在EP+sh-NL1组比EP+sh-con.组.显著降低(p<0.05);与control组相比,mEPSC的频率在EP+sh-con.组以及EP+sh-NL1组均显著增高(p<0.05);mEPSC的频率在control组和EP+sh-NL1组有显著差异(p>0.05)。
     3.与control组和EP+sh-con.组相比,EP+sh-NL1组的NMDAR/AMPAR比值显著降低(p<0.05)。与EP+sh-con.组相比,EP+sh-NL1组的NMDAR依赖性EPSCs幅度的显著降低(p<0.05)而AMPAR依赖性EPSCs幅度没有改变(p>0.05)。
     4.与control组比,EP组和EP+sh-con.组的总蛋白、表面蛋白/总蛋白比值均显著降低(p<0.05)。而EP+sh-NL1组的总蛋白、表面蛋白/总蛋白比值明显低于EP组和EP+sh-con.组(p<0.05)。
     结论:
     1.对NL1进行的体内shRNA慢病毒干扰在30d后仍然能有效抑制内源性NL1的表达。
     2.癫痫大鼠海马NL1的knockdown能抑制海马CA1区神经元的过度兴奋。
     3.癫痫大鼠海马NL1的knockdown能通过突触后NMDAR1的作用选择性抑制海马脑片NMDAR依赖性突触电流。
Part one: The expression of neuroligin-1and neurexin-1β in temporallobe epileptic foci in patients and experimental animals
     Objective: Abnormally synchronized synaptic transmission in the brainleads to epilepsy. Neuroligin-1(NL1) is an synaptic cell adhesion moleculelocated at excitatory synapse, which modulates synaptic transmission anddetermines the properties of neuronal networks in the mammalian centralnervous system. Here we investigated the expression of NL1and its bindingpartner neurexin-1β (NRX1β) in temporal lobe epileptic foci in patients andexperimental animals in order to explore the probable relationship betweentheir expression and temporal lobe epilepsy (TLE).
     Method:
     1. The NL1and NRX1β expression were assessed in twenty two humanbrain tissues derived from patients undergoing operation for intractable TLEand was also detected in ten temporal lobes from controls.
     2. Adult male Sprague–Dawley (SD) rats were used in this study,including lithium–pilocarpine-treated rats (n=70) on days1,2,3,7,14,30,and60post-seizure, and control rats (n=10).
     3. Expression of NL1and NRX1β were assessed byimmunohistochemistry, immunofluorescence, and Western blot analysis.
     Result:
     1. NL1protein was mainly expressed in the membrane and cytoplasmof neurons in the temporal neocortex from both the control and intractableTLE groups by immumohistochemical staining. the mean optical density(OD) value of NL1was significantly higher in the temporal neocortex of theTLE group compared with the control group (p<0.05) Double-labelimmunofluorescent staining showed that NL1and GFAP were seldomcoexpressed in astrocytes, but NL1-positive cells coexpressed withNMDAR1. Western blot analysis showed the expression of NL1and NRX1βwas strong in the subjects with intractable TLE, whereas it was relativelyweak in the control subjects.
     2. The NL1immumohistochemical staining was extensively observedin neocortex and all regions of the hippocampus, and the intense staining inhippocampus was in the dentate gyrus, CA1and CA3regions. Comparedwith the controls, the mean OD values of NL1expression were elevateddynamically. Double-labeling immunofluoresence showed NL1-positivecells did not co-express with GFAP in astrocytes but co-expressed withNMDAR1in neurons. Western blot analysis showed compared with thecontrols, both NL1and NRX1β expression elevated in the acute period andthe chronic period, and their expression profile presented nearly the same. The difference of the mean OD ratio in the NL1expression level inhippocampus between the control and every treated group was significant(p<0.05), except the7-d and14-d groups (p>0.05). There was a significantdifference of the mean OD ratio in the NRX1β expression between thecontrol and every treated group (p<0.05), except the7-d group (p>0.05).
     Conclusion: The expression of NL1and its binding partner NRX1βwere increased in temporal lobe epileptic foci in patients andlithium–pilocarpine-treated epileptic rats. Our results suggest that NL1andNRX1β may play an important role in the development of TLE.Part two: The effect of knockdown of neuroligin1on epileptic seizures
     Objective: To further study whether supression of NL1could preventseizures, we investigated the behavioral changes of epileptic rats performedby lentivirally mediated knockdown of NL1in the hippocampus.
     Method:
     1. The following three groups with hippocampal injection wereincluded, namely sham operation group with hippocampal injection of saline(EP), group with hippocampal injection of vehicle virus (EP+sh-con.), andgroup with hippocampal injection of NL1shRNA (EP+sh-NL1).
     2. Western blot analysis of NL1expression in hippocampus was used toverify that in vivo RNA interference for NL1was effective and selective. Onthe other hand, EGFP antibody was used to identify and amplify the virus-infected neurons in the hippocampus by immunofluoresence.
     3. We perform rats behavioral investigation7days after virus infusion.We observed the behavioral changes of the rats within60-min afterpilocarpine injection. Scoring in rats for each20-min interval, the maximumRacine score during the60-min trial,the percentage of the rats reached above5score, and the seizure latency in the three groups were recorded.
     Result:
     1. Western blot analysis showed that the mean OD ratio of NL1significantly decreased in the epileptic group at days3,7respectively afterinfusion (p<0.05). There was no significantly difference between the3-d and7-d groups (p>0.05). The results revealed that at days3and7after infusion,the amount of NL1was respectively decreased by36.3±4.3%, and44.2±5.3%of control levels. The immunfluresene showed that EGFP waslocalized in the hippocampus, especially in CA1area.
     2. With time, all the rats developed more severe seizures. The seizuresin sh-NL1group are less severe than that in the other groups in each20-minintervals (P<0.05). There was a significant main effect of time (P<0.05) butno significant of time×group interaction (P>0.05). The maximum racinescore in sh-NL1group was less severe than that in the other groups (P<0.05), but there was no significant difference between the two control groups(P>0.05). Finally, only33.3%rats in sh-NL1group showed generalizedclonic or tonic seizures (seizure score4or5) compared with83.3%rats in both other control groups. NL1knockdown significantly reduced theincidence of generalized clonic or tonic seizures (P<0.05). NL1knockdownsignificantly delayed seizure latency compared with the control goups (P<0.05), but there was no significant difference between the two control groups(P>0.05).
     Conclusion:
     1. The expression of endogenous NL1in the hippocampus wassuccessfully suppressed in vivo by sh-NL1, and the efficiency of RNAinterference in vivo for NL1got to a stable level at day7.
     2. Knockdown of NL1in epileptic rats could reduce seizure severityand prolonged seizure latency.Part three: The protential mechanism of neuroligin1involved inepileptigenesis
     Objective: To further explore the probable underlying mechanisms ofof NL1involved in spontaneous recurrent seizure(SRS), we investigated theelectrophysiological changes of epileptic rats performed by lentivirallymediated knockdown of NL1in the hippocampus.
     Method:
     1. Three epileptic groups with hippocampal injection of saline (EP),vehicle virus (EP+sh-con.), and NL1shRNA (EP+sh-NL1) respectivly, aswell as one normal control group with hippocampal injection of saline (control) were included.
     2. Western blot analysis and immunfluresene were used for analysis ofthe efficiency of RNA interference in the epileptic rats at day30.
     3. Whole-cell recordings of CA1pyramidal neurons in brain slices wereperformed, and the action potential (AP), miniature excitatory postsynapticcurrents (mEPSCs) and evoked excitatory postsynaptic currents (mEPSCs)were recorded.
     4. Western blot analysis was used for analysis of the total or the surface/total ratio of NMDAR1expression in the epileptic rats at day30.
     Result:
     1. Western blot analysis showed the difference in the NL1expressionlevel in hippocampus between the sh-NL1epileptic group and sh-con.epileptic group or epileptic group was significant (p<0.05), but there was nosignificant difference between the sh-con. epileptic group and epilepticgroup as well as the the sh-NL1epileptic group and normal control group(p>0.05). The immunfluresene of EGFP indicated that the lentivirus wassuccessfully transfected into hippocampal neurons.
     2. the frequency of spontaneous AP in sh-NL1epileptic group waslower than that in the sh-con. epileptic group (P <0.05). Compared with thenormal control group, the spontaneous AP was increased in both sh-con.epileptic and sh-NL1epileptic groups (P <0.05). There was no significantlydifference of the mean mEPSC amplitude between the sh-NL1epileptic group and the sh-con. epileptic group (P>0.05). The mean mEPSCamplitude averaged from the sh-con. epileptic group and the sh-NL1epileptic group were significantly increased respectively compared with thenormal control group (P <0.05). the mEPSC frequency averaged from thesh-NL1epileptic group was lower than that in the sh-con. epileptic group(P <0.05). Compared with the normal control group, the mean mEPSCfrequency in both sh-con. epileptic group and sh-NL1epileptic weredramaticlly increased (P <0.05). There was a significant difference betweenthe normal control group and the sh-NL1epileptic group (P <0.05).
     3. A clear reduction in NMDAR/AMPAR ratio was observed in thesh-NL1epileptic group comparing with the normal control group or sh-con.epileptic group(P <0.05). Compared with the sh-con. epileptic group, thesh-NL1epileptic group showed a significant decrease in the averageamplitude of NMDAR-dependent EPSCs (P<0.05), but not AMPAR-dependent EPSCs (P>0.05).
     4. The total or the surface/total ratio of NMDAR1expression in bothepileptic group and sh-con. epileptic group were significantly higher thanthat in the control group (P <0.05). The total or the surface/total ratio ofNMDAR1protein expression in the sh-NL1epileptic group wassignificantly lower than that in the epileptic group and sh-con. epilepticgroup (P <0.05).
     Conclusion:
     1. The expression of endogenous NL1in the hippocampus remainssuppressed in vivo by shNL1in the rats at day30.
     2. Knockdown of NL1in epileptic rats inhibits hyperexcitability inepileptic hippocampal slices.
     3. NL1knockdown in epileptic rats could reduces NMDAR-mediatedsynaptic currents in hippocampal slices via postsynaptic NMDAR1.
引文
[1] Fisher, R.S., et al., Epileptic seizures and epilepsy: definitions proposed by theInternational League Against Epilepsy (ILAE) and the International Bureau forEpilepsy (IBE)[J]. Epilepsia,2005.46(4): p.470-2.
    [2] Hippocrates, On the articulations. The genuine works of Hippocrates[J]. ClinOrthop Relat Res,2002(400): p.19-25.
    [3] Sander, J.W., The epidemiology of epilepsy revisited[J]. Curr Opin Neurol,2003.16(2): p.165-70.
    [4] Cross, J.H., Epilepsy in the WHO European region: fostering epilepsy care inEurope[J]. Epilepsia,2011.52(1): p.187-8.
    [5] Majores, M., et al., Molecular neuropathology of temporal lobe epilepsy:complementary approaches in animal models and human disease tissue[J].Epilepsia,2007.48Suppl2: p.4-12.
    [6] Engel, J., Jr., Update on surgical treatment of the epilepsies[J]. Clin Exp Neurol,1992.29: p.32-48.
    [7] Franck, J.E., et al., Physiologic and morphologic characteristics of granule cellcircuitry in human epileptic hippocampus[J]. Epilepsia,1995.36(6): p.543-58.
    [8] Carter, D.S., et al., Characterization of spontaneous recurrent epileptiformdischarges in hippocampal-entorhinal cortical slices prepared from chronic epilepticanimals[J]. Seizure,2011.20(3): p.218-24.
    [9] Esclapez, M., et al., Newly formed excitatory pathways provide a substrate forhyperexcitability in experimental temporal lobe epilepsy[J]. J Comp Neurol,1999.408(4): p.449-60.
    [10]Dalva, M.B., A.C. McClelland, and M.S. Kayser, Cell adhesion molecules:signalling functions at the synapse[J]. Nat Rev Neurosci,2007.8(3): p.206-20.
    [11]Krueger, D.D., et al., The role of neurexins and neuroligins in the formation,maturation, and function of vertebrate synapses[J]. Curr Opin Neurobiol,2012.22(3): p.412-22.
    [12]Bottos, A., et al., Neurexins and neuroligins: synapses look out of the nervoussystem[J]. Cell Mol Life Sci,2011.
    [13]Ichtchenko, K., T. Nguyen, and T.C. Sudhof, Structures, alternative splicing, andneurexin binding of multiple neuroligins[J]. J Biol Chem,1996.271(5): p.2676-82.
    [14]Rao, A., K.J. Harms, and A.M. Craig, Neuroligation: building synapses around theneurexin-neuroligin link[J]. Nat Neurosci,2000.3(8): p.747-9.
    [15]Comoletti, D., et al., Characterization of the interaction of a recombinant solubleneuroligin-1with neurexin-1beta[J]. J Biol Chem,2003.278(50): p.50497-505.
    [16]Boucard, A.A., et al., A splice code for trans-synaptic cell adhesion mediated bybinding of neuroligin1to alpha-and beta-neurexins[J]. Neuron,2005.48(2): p.229-36.
    [17]Arac, D., et al., Structures of neuroligin-1and the neuroligin-1/neurexin-1betacomplex reveal specific protein-protein and protein-Ca2+interactions[J]. Neuron,2007.56(6): p.992-1003.
    [18]Prange, O., et al., A balance between excitatory and inhibitory synapses iscontrolled by PSD-95and neuroligin[J]. Proc Natl Acad Sci U S A,2004.101(38):p.13915-20.
    [19]Chubykin, A.A., et al., Activity-dependent validation of excitatory versus inhibitorysynapses by neuroligin-1versus neuroligin-2[J]. Neuron,2007.54(6): p.919-31.
    [20]Levinson, J.N., et al., Neuroligins mediate excitatory and inhibitory synapseformation: involvement of PSD-95and neurexin-1beta in neuroligin-inducedsynaptic specificity[J]. J Biol Chem,2005.280(17): p.17312-9.
    [21]Kwon, H.B., et al., Neuroligin-1-dependent competition regulates corticalsynaptogenesis and synapse number[J]. Nat Neurosci,2012.
    [22]Irie, M., et al., Binding of neuroligins to PSD-95[J]. Science,1997.277(5331): p.1511-5.
    [23]Chih, B., H. Engelman, and P. Scheiffele, Control of excitatory and inhibitorysynapse formation by neuroligins[J]. Science,2005.307(5713): p.1324-8.
    [24]Stan, A., et al., Essential cooperation of N-cadherin and neuroligin-1in thetranssynaptic control of vesicle accumulation[J]. Proc Natl Acad Sci U S A,2010.107(24): p.11116-21.
    [25]Etherton, M.R., et al., An autism-associated point mutation in the neuroligincytoplasmic tail selectively impairs AMPA receptor-mediated synaptic transmissionin hippocampus[J]. EMBO J,2011.
    [26]Ching, M.S., et al., Deletions of NRXN1(neurexin-1) predispose to a widespectrum of developmental disorders[J]. Am J Med Genet B Neuropsychiatr Genet,2010.153B(4): p.937-47.
    [27]Harrison, V., et al., Compound heterozygous deletion of NRXN1causing severedevelopmental delay with early onset epilepsy in two sisters[J]. Am J Med Genet A,2011.155A(11): p.2826-31.
    [28]Duong, L., et al., Mutations in NRXN1in a family multiply affected with braindisorders: NRXN1mutations and brain disorders[J]. Am J Med Genet BNeuropsychiatr Genet,2012.159B(3): p.354-8.
    [29]Tuchman, R., M. Cuccaro, and M. Alessandri, Autism and epilepsy: historicalperspective[J]. Brain Dev,2010.32(9): p.709-18.
    [30]Brooks-Kayal, A., Epilepsy and autism spectrum disorders: are there commondevelopmental mechanisms?[J] Brain Dev,2010.32(9): p.731-8.
    [31]Pan, Y., et al., Abnormal expression of netrin-G2in temporal lobe epilepsy neuronsin humans and a rat model.[J] Exp Neurol,2010.224(2): p.340-6.
    [32]Fukata, Y., et al., Epilepsy-related ligand/receptor complex LGI1and ADAM22regulate synaptic transmission[J]. Science,2006.313(5794): p.1792-5.
    [33]Fang, M., et al., A new hypothesis of drug refractory epilepsy: neural networkhypothesis[J]. Med Hypotheses,2011.76(6): p.871-6.
    [34]Smith, B.N. and F.E. Dudek, Network interactions mediated by new excitatoryconnections between CA1pyramidal cells in rats with kainate-induced epilepsy[J].J Neurophysiol,2002.87(3): p.1655-8.
    [35]Lehmann, T.N., et al., Alterations of neuronal connectivity in area CA1ofhippocampal slices from temporal lobe epilepsy patients and frompilocarpine-treated epileptic rats[J]. Epilepsia,2000.41Suppl6: p. S190-4.
    [36]Gjorlund, M.D., et al., Neuroligin-1induces neurite outgrowth through interactionwith neurexin-1beta and activation of fibroblast growth factor receptor-1[J]. FASEBJ,2012.26(10): p.4174-86.
    [37]Racine, R.J., Modification of seizure activity by electrical stimulation. II. Motorseizure[J]. Electroencephalogr Clin Neurophysiol,1972.32(3): p.281-94.
    [38]Avoli, M., et al., Cellular and molecular mechanisms of epilepsy in the humanbrain[J]. Prog Neurobiol,2005.77(3): p.166-200.
    [39]Kwan, P. and M.J. Brodie, Early identification of refractory epilepsy[J]. N Engl JMed,2000.342(5): p.314-9.
    [40]Babb, T.L., et al., Distribution of pyramidal cell density and hyperexcitability in theepileptic human hippocampal formation[J]. Epilepsia,1984.25(6): p.721-8.
    [41]Houser, C.R., et al., Altered patterns of dynorphin immunoreactivity suggest mossyfiber reorganization in human hippocampal epilepsy[J]. J Neurosci,1990.10(1): p.267-82.
    [42]Ben-Ari, Y., Epilepsies and neuronal plasticity: for better or for worse?[J]Dialogues Clin Neurosci,2008.10(1): p.17-27.
    [43]Blumcke, I., Neuropathology of focal epilepsies: a critical review[J]. EpilepsyBehav,2009.15(1): p.34-9.
    [44]Song, J.Y., et al., Neuroligin1is a postsynaptic cell-adhesion molecule ofexcitatory synapses[J]. Proc Natl Acad Sci U S A,1999.96(3): p.1100-5.
    [45]Kim, J., et al., Neuroligin-1is required for normal expression of LTP andassociative fear memory in the amygdala of adult animals[J]. Proc Natl Acad Sci US A,2008.105(26): p.9087-92.
    [46]Engel, J., Jr., A proposed diagnostic scheme for people with epileptic seizures andwith epilepsy: report of the ILAE Task Force on Classification and Terminology[J].Epilepsia,2001.42(6): p.796-803.
    [47]Zara, F. and A. Bianchi, The impact of genetics on the classification of epilepsysyndromes[J]. Epilepsia,2009.50Suppl5: p.11-4.
    [48]Nakken, K.O. and E. Tauboll,[Drug-resistant epilepsy]. Tidsskr Nor Laegeforen,2009.129(19): p.1986-9.
    [49]Kuzniecky, R., T. Thesen, and O. Devinsky, Epilepsy: is localization-relatedepilepsy a progressive disorder? Maybe.[J]Nat Rev Neurol,2009.5(7): p.356-7.
    [50]Engel J Jr, Pedley TA. What is epilepsy? In: Epilepsy: A comprehensive textbook.Philadelphia: Lippincott-Raven,2005:1–11.
    [51]Pitkanen, A. and T.P. Sutula, Is epilepsy a progressive disorder? Prospects for newtherapeutic approaches in temporal-lobe epilepsy[J]. Lancet Neurol,2002.1(3): p.173-81.
    [52]Pitkanen, A. and K. Lukasiuk, Mechanisms of epileptogenesis and potentialtreatment targets[J]. Lancet Neurol,2011.10(2): p.173-86.
    [53]Pitkanen, A., Therapeutic approaches to epileptogenesis--hope on the horizon[J].Epilepsia,2010.51Suppl3: p.2-17.
    [54]Fisher, R.S., Animal models of the epilepsies[J]. Brain Res Brain Res Rev,1989.14(3): p.245-78.
    [55]55. Curia, G., et al., The pilocarpine model of temporal lobe epilepsy[J]. J NeurosciMethods,2008.172(2): p.143-57.
    [56]Bartolomei, F., et al., Entorhinal cortex involvement in human mesial temporal lobeepilepsy: an electrophysiologic and volumetric study[J]. Epilepsia,2005.46(5): p.677-87.
    [57]Mathern, G.W., et al., Hippocampal neuron damage in human epilepsy: Meyer'shypothesis revisited[J]. Prog Brain Res,2002.135: p.237-51.
    [58]Mathern, G.W., et al., Human fascia dentata anatomy and hippocampal neurondensities differ depending on the epileptic syndrome and age at first seizure[J]. JNeuropathol Exp Neurol,1997.56(2): p.199-212.
    [59]Leite, J.P., N. Garcia-Cairasco, and E.A. Cavalheiro, New insights from the use ofpilocarpine and kainate models[J]. Epilepsy Res,2002.50(1-2): p.93-103.
    [60]Huang, C.C. and Y.C. Chang, The long-term effects of febrile seizures on thehippocampal neuronal plasticity-clinical and experimental evidence[J]. Brain Dev,2009.31(5): p.383-7.
    [61]Walker, M.C., H.S. White, and J.W. Sander, Disease modification in partialepilepsy[J]. Brain,2002.125(Pt9): p.1937-50.
    [62]Beck, H. and Y. Yaari, Plasticity of intrinsic neuronal properties in CNS disorders[J].Nat Rev Neurosci,2008.9(5): p.357-69.
    [63]Sisodiya, S.M. and C. Marini, Genetics of antiepileptic drug resistance[J]. CurrOpin Neurol,2009.22(2): p.150-6.
    [64]Reynolds, A., et al., Rational siRNA design for RNA interference[J]. NatBiotechnol,2004.22(3): p.326-30.
    [65]Rubinson, D.A., et al., A lentivirus-based system to functionally silence genes inprimary mammalian cells, stem cells and transgenic mice by RNA interference[J].Nat Genet,2003.33(3): p.401-6.
    [66]Matsumoto, H. and C.A. Marsan, Cortical Cellular Phenomena in ExperimentalEpilepsy: Ictal Manifestations[J]. Exp Neurol,1964.9: p.305-26.
    [67]Johnston, D. and T.H. Brown, The synaptic nature of the paroxysmal depolarizingshift in hippocampal neurons[J]. Ann Neurol,1984.16Suppl: p. S65-71.
    [68]Nilsen, K.E., A.R. Kelso, and H.R. Cock, Antiepileptic effect of gap-junctionblockers in a rat model of refractory focal cortical epilepsy[J]. Epilepsia,2006.47(7): p.1169-75.
    [69]Nemani, V.M. and D.K. Binder, Emerging role of gap junctions in epilepsy[J].Histol Histopathol,2005.20(1): p.253-9.
    [70]Traub, R.D., et al., Gap junctions, fast oscillations and the initiation of seizures[J].Adv Exp Med Biol,2004.548: p.110-22.
    [71]Marchenko, V.G. and N.V. Pasikova, Synchronization of electrical field potentials inneocortex of rat after isolation of a cortex island in the contralateral brainhemisphere[J]. Zh Vyssh Nerv Deiat Im I P Pavlova,2008.58(1): p.88-97.
    [72]Ben-Ari, Y., V. Crepel, and A. Represa, Seizures beget seizures in temporal lobeepilepsies: the boomerang effects of newly formed aberrant kainatergic synapses[J].Epilepsy Curr,2008.8(3): p.68-72.
    [73]Buckmaster, P.S. and F.E. Dudek, In vivo intracellular analysis of granule cell axonreorganization in epileptic rats[J]. J Neurophysiol,1999.81(2): p.712-21.
    [74]Nadler, J.V., The recurrent mossy fiber pathway of the epileptic brain[J].Neurochem Res,2003.28(11): p.1649-58.
    [75]Lehmann, T.N., et al., Fluorescent tracer in pilocarpine-treated rats showswidespread aberrant hippocampal neuronal connectivity[J]. Eur J Neurosci,2001.14(1): p.83-95.
    [76]Kuo, L.W., et al., Mossy fiber sprouting in pilocarpine-induced status epilepticus rathippocampus: a correlative study of diffusion spectrum imaging and histology[J].Neuroimage,2008.41(3): p.789-800.
    [77]Cavazos, J.E., S.M. Jones, and D.J. Cross, Sprouting and synaptic reorganization inthe subiculum and CA1region of the hippocampus in acute and chronic models ofpartial-onset epilepsy[J]. Neuroscience,2004.126(3): p.677-88.
    [78]Sutula, T.P. and F.E. Dudek, Unmasking recurrent excitation generated by mossyfiber sprouting in the epileptic dentate gyrus: an emergent property of a complexsystem[J]. Prog Brain Res,2007.163: p.541-63.
    [79]Perez, Y., et al., Axonal sprouting of CA1pyramidal cells in hyperexcitablehippocampal slices of kainate-treated rats[J]. Eur J Neurosci,1996.8(4): p.736-748.
    [80]Menendez de la Prida, L., F. Suarez, and M.A. Pozo, Electrophysiological andmorphological diversity of neurons from the rat subicular complex in vitro[J].Hippocampus,2003.13(6): p.728-44.
    [81]Nakajima, S., et al., Local circuit synaptic interactions between CA1pyramidalcells and interneurons in the kainate-lesioned hyperexcitable hippocampus[J].Hippocampus,1991.1(1): p.67-78.
    [82]Isokawa, M. and M.F. Levesque, Increased NMDA responses and dendriticdegeneration in human epileptic hippocampal neurons in slices[J]. Neurosci Lett,1991.132(2): p.212-6.
    [83]Rice, A.C. and R.J. DeLorenzo, NMDA receptor activation during status epilepticusis required for the development of epilepsy[J]. Brain Res,1998.782(1-2): p.240-7.
    [84]Mathern, G.W., et al., Hippocampal N-methyl-D-aspartate receptor subunit mRNAlevels in temporal lobe epilepsy patients[J]. Ann Neurol,1999.46(3): p.343-58.
    [85]Dalmau, J., et al., Clinical experience and laboratory investigations in patients withanti-NMDAR encephalitis[J]. Lancet Neurol,2011.10(1): p.63-74.
    [86]Meldrum, B.S., Excitotoxicity and selective neuronal loss in epilepsy[J]. BrainPathol,1993.3(4): p.405-12.
    [87]Lau, C.G. and R.S. Zukin, NMDA receptor trafficking in synaptic plasticity andneuropsychiatric disorders[J]. Nat Rev Neurosci,2007.8(6): p.413-26.
    [88]Seeburg, P.H., The TINS/TiPS Lecture. The molecular biology of mammalianglutamate receptor channels[J]. Trends Neurosci,1993.16(9): p.359-65.
    [89]Kirson, E.D. and Y. Yaari, Synaptic NMDA receptors in developing mousehippocampal neurones: functional properties and sensitivity to ifenprodil[J]. JPhysiol,1996.497(Pt2): p.437-55.
    [90]Tovar, K.R. and G.L. Westbrook, The incorporation of NMDA receptors with adistinct subunit composition at nascent hippocampal synapses in vitro[J]. JNeurosci,1999.19(10): p.4180-8.
    [91]Blundell, J., et al., Neuroligin-1deletion results in impaired spatial memory andincreased repetitive behavior[J]. J Neurosci,2010.30(6): p.2115-29.
    [1] Duncan JS, Sander JW, Sisodiya SM, Walker M, Adult epilepsy[J]. Lancet,2006.367(9516): p.1087-100.
    [2] Sander JW, The epidemiology of epilepsy revisited[J]. Curr Opin Neurol,2003.16(2): p.165-70.
    [3] Tan NC, Berkovic SF, Prediction of drug resistance in epilepsy: not as easy asABC[J]. Lancet Neurol,2006.5(8): p.641-2.
    [4] Remy S, Beck H, Molecular and cellular mechanisms of pharmacoresistance inepilepsy[J]. Brain,2006.129(Pt1): p.18-35.
    [5] Beleza, P, Refractory epilepsy: a clinically oriented review[J]. Eur Neurol,2009.62(2): p.65-71.
    [6] Sperling MR., The consequences of uncontrolled epilepsy[J]. CNS Spectr,2004.9(2): p.98-101,106-9.
    [7] Devinsky O, Patients with refractory seizures[J]. N Engl J Med,1999.340(20): p.1565-70.
    [8] Loscher W, Schmidt D, New horizons in the development of antiepileptic drugs: thesearch for new targets[J]. Epilepsy Res,2004.60(2-3): p.77-159.
    [9] Luna-Tortos C, Fedrowitz M, Loscher W, Several major antiepileptic drugs aresubstrates for human P-glycoprotein[J]. Neuropharmacology,2008.55(8): p.1364-75.
    [10]Brandt C, Bethmann K, Gastenset AM, L scher W, Neurobiol Dis,2006.24(1): p.202-11.
    [11]Garcia-Cairasco N, Puzzling challenges in contemporary neuroscience: insightsfrom complexity and emergence in epileptogenic circuits[J]. Epilepsy Behav,2009.14Suppl1: p.54-63.
    [12]Garcia-Cairasco N, Learning about brain physiology and complexity from the studyof the epilepsies[J]. Braz J Med Biol Res,2009.42(1): p.76-86.
    [13]Mirnics K, Middleton FA, Marquez A, et al., Molecular characterization ofschizophrenia viewed by microarray analysis of gene expression in prefrontalcortex[J]. Neuron,2000.28(1): p.53-67.
    [14]Lock, C, Hermans G, Pedotti R, et al., Gene-microarray analysis of multiplesclerosis lesions yields new targets validated in autoimmune encephalomyelitis[J].Nat Med,2002.8(5): p.500-8.
    [15]Ginsberg SD, Hemby SE, Virginia MYL, et al., Expression profile of transcripts inAlzheimer's disease tangle-bearing CA1neurons[J]. Ann Neurol,2000.48(1): p.77-87.
    [16]Xi ZQ, Xiao F, Yuan J, et al., Gene expression analysis on anterior temporalneocortex of patients with intractable epilepsy[J]. Synapse,2009.63(11): p.1017-28.
    [17]Crino PB, Becker AJ, Gene profiling in temporal lobe epilepsy tissue and dysplasticlesions[J]. Epilepsia,2006.47(10): p.1608-16.
    [18]Lee TS, Mane S, Eid T,et al., Gene expression in temporal lobe epilepsy isconsistent with increased release of glutamate by astrocytes[J]. Mol Med,2007.13(1-2): p.1-13.
    [19]Ozbas-Gerceker F, Redeker S, Boer K, et al., Serial analysis of gene expression inthe hippocampus of patients with mesial temporal lobe epilepsy[J]. Neuroscience,2006.138(2): p.457-74.
    [20]Elliott RC, Miles MF, Lowenstein DH, Overlapping microarray profiles of dentategyrus gene expression during development-and epilepsy-associated neurogenesisand axon outgrowth[J]. J Neurosci,2003.23(6): p.2218-27.
    [21]Lowery LA, Vactor D Van, The trip of the tip: understanding the growth conemachinery[J]. Nat Rev Mol Cell Biol,2009.10(5): p.332-43.
    [22]Chilton JK, Molecular mechanisms of axon guidance[J]. Dev Biol,2006.292(1): p.13-24.
    [23]Mortimer D, Fothergill T, Pujic Z, Richards LJ, Goodhill GJ, Growth conechemotaxis[J]. Trends Neurosci,2008.31(2): p.90-8.
    [24]Geraldo S, Gordon-Weeks PR, Cytoskeletal dynamics in growth-cone steering[J]. JCell Sci,2009.122(Pt20): p.3595-604.
    [25]Quinn CC,Wadsworth WG, Axon guidance: asymmetric signaling orients polarizedoutgrowth[J]. Trends Cell Biol,2008.18(12): p.597-603.
    [26]Xiao, F, Wang XF, Li JM, et al., Overexpression of N-WASP in the brain of humanepilepsy[J]. Brain Res,2008.1233: p.168-75.
    [27]Yuan J,Wang L,Li JM, et al., Altered expression of the small guanosinetriphosphatase RhoA in human temporal lobe epilepsy[J]. J Mol Neurosci.42(1): p.53-8.
    [28]Zou, Y, Engert F, Tao HW, The assembly of neural circuits[J]. Neuron,2004.43(2):p.159-63.
    [29]Stoeckli E, Zou Y, How are neurons wired to form functional and plastic circuits?Meeting on Axon Guidance, Synaptogenesis&Neural Plasticity[J]. EMBO Rep,2009.10(4): p.326-30.
    [30]Munno DW, Syed NI, Synaptogenesis in the CNS: an odyssey from wiring togetherto firing together[J]. J Physiol,2003.552(Pt1): p.1-11.
    [31]Wang W, Niekerk E van, Willis DE, Twiss JL, RNA transport and localized proteinsynthesis in neurological disorders and neural repair[J]. Dev Neurobiol,2007.67(9):p.1166-82.
    [32]Satkauskas S, Bagnard D, Local protein synthesis in axonal growth cones: what isnext?[J] Cell Adh Migr,2007.1(4): p.179-84.
    [33]Verma P, Chierzi S, Codd AM,et al., Axonal protein synthesis and degradation arenecessary for efficient growth cone regeneration[J]. J Neurosci,2005.25(2): p.331-42.
    [34]Dontchev VD, Letourneau PC, Growth cones integrate signaling from multipleguidance cues[J]. J Histochem Cytochem,2003.51(4): p.435-44.
    [35]Yang F, Wang JC, Han JL, Zhao G, Jiang W, Different effects of mild and severeseizures on hippocampal neurogenesis in adult rats[J]. Hippocampus,2008.18(5): p.460-8.
    [36]Xu B, Li S, Brown A, Gerlai R, Fahnestock M, Racine RJ,et al., EphA/ephrin-Ainteractions regulate epileptogenesis and activity-dependent axonal sprouting inadult rats[J]. Mol Cell Neurosci,2003.24(4): p.984-99.
    [37]Sahay A, Kim CH, Sepkuty JP, et al., Secreted semaphorins modulate synaptictransmission in the adult hippocampus[J]. J Neurosci,2005.25(14): p.3613-20.
    [38]Yaron A, Zheng B, Navigating their way to the clinic: emerging roles for axonguidance molecules in neurological disorders and injury[J]. Dev Neurobiol,2007.67(9): p.1216-31.
    [39]Holtmaat AJGD, Gorter JA, Wit JD,et al., Transient downregulation of Sema3AmRNA in a rat model for temporal lobe epilepsy. A novel molecular eventpotentially contributing to mossy fiber sprouting[J]. Exp Neurol,2003.182(1): p.142-50.
    [40]Fang M, Liu GW, Pan YM,et al., Abnormal expression and spatiotemporal changeof Slit2in neurons and astrocytes in temporal lobe epileptic foci: A study ofepileptic patients and experimental animals[J]. Brain Res.1324: p.14-23.
    [41]Pan YM, Liu GW, Fang M et al., Abnormal expression of netrin-G2in temporallobe epilepsy neurons in humans and a rat model[J]. Exp Neurol.224(2): p.340-6.
    [42]Wu Y, Wang XF, Mo X,et al., Expression of laminin beta1in hippocampi of patientswith intractable epilepsy[J]. Neurosci Lett,2008.443(3): p.160-4.
    [43]Einheber S, Pierce JP, Chow D, Znamensky V, Schnappc LM, Milner TA, Dentatehilar mossy cells and somatostatin-containing neurons are immunoreactive for thealpha8integrin subunit: characterization in normal and kainic acid-treated rats[J].Neuroscience,2001.105(3): p.619-38.
    [44]Fasen K, Elger CE, Lie AA, Distribution of alpha and beta integrin subunits in theadult rat hippocampus after pilocarpine-induced neuronal cell loss, axonalreorganization and reactive astrogliosis[J]. Acta Neuropathol,2003.106(4): p.319-22.
    [45]Lledo PM, Alonso M,Grubb MS, Adult neurogenesis and functional plasticity inneuronal circuits[J]. Nat Rev Neurosci,2006.7(3): p.179-93.
    [46]Engel J, Jr, Introduction to temporal lobe epilepsy[J]. Epilepsy Res,1996.26(1): p.141-50.
    [47]Chang BS,Lowenstein DH, Epilepsy. N Engl J Med,2003.349(13): p.1257-66.
    [48]Magloczky Z, Sprouting in human temporal lobe epilepsy: excitatory pathways andaxons of interneurons[J]. Epilepsy Res.89(1): p.52-9.
    [49]Dudek FE, Shao LR, Mossy fiber sprouting and recurrent excitation: directelectrophysiologic evidence and potential implications[J]. Epilepsy Curr,2004.4(5):p.184-7.
    [50]Scharfman HE, The CA3"backprojection" to the dentate gyrus[J]. Prog Brain Res,2007.163: p.627-37.
    [51]Ribak CE, Peterson GM, Intragranular mossy fibers in rats and gerbils formsynapses with the somata and proximal dendrites of basket cells in the dentategyrus[J]. Hippocampus,1991.1(4): p.355-64.
    [52]Smith BN, Dudek FE, Short-and long-term changes in CA1network excitabilityafter kainate treatment in rats[J]. J Neurophysiol,2001.85(1): p.1-9.
    [53]Morin F, Beaulieu C, Lacaille JC, Alterations of perisomatic GABA synapses onhippocampal CA1inhibitory interneurons and pyramidal cells in the kainate modelof epilepsy[J]. Neuroscience,1999.93(2): p.457-67.
    [54]Salin P, Tseng GF, Hoffman S, Parada I, Prince DA, Axonal sprouting in layer Vpyramidal neurons of chronically injured cerebral cortex[J]. J Neurosci,1995.15(12): p.8234-45.
    [55]Sanabria ER, Silva AV Da, Spreafico R, Cavalheiro EA,et al., Damage,reorganization, and abnormal neocortical hyperexcitability in the pilocarpine modelof temporal lobe epilepsy[J]. Epilepsia,2002.43Suppl5: p.96-106.
    [56]Huttmann K, Sadgrove M, Wallraff A,et al., Seizures preferentially stimulateproliferation of radial glia-like astrocytes in the adult dentate gyrus: functional andimmunocytochemical analysis[J]. Eur J Neurosci,2003.18(10): p.2769-78.
    [57]Parent JM, Elliott RC, Pleasure SJ, et al., Aberrant seizure-induced neurogenesis inexperimental temporal lobe epilepsy[J]. Ann Neurol,2006.59(1): p.81-91.
    [58]Walter C,Murphy BL,Pun RYK, et al., Pilocarpine-induced seizures cause selectivetime-dependent changes to adult-generated hippocampal dentate granule cells[J]. JNeurosci,2007.27(28): p.7541-52.
    [59]Shapiro LA, Ribak CE, Newly born dentate granule neurons afterpilocarpine-induced epilepsy have hilar basal dendrites with immature synapses[J].Epilepsy Res,2006.69(1): p.53-66.
    [60]Ribak CE,Tran PH, Spigelman I, Okazaki MM,Nadler JV, Statusepilepticus-induced hilar basal dendrites on rodent granule cells contribute torecurrent excitatory circuitry[J]. J Comp Neurol,2000.428(2): p.240-53.
    [61]Jessberger S, Zhao C, Toni N,et al., Seizure-associated, aberrant neurogenesis inadult rats characterized with retrovirus-mediated cell labeling[J]. J Neurosci,2007.27(35): p.9400-7.
    [62]Patel LS, Wenzel HJ, Schwartzkroin PA, Physiological and morphologicalcharacterization of dentate granule cells in the p35knock-out mouse hippocampus:evidence for an epileptic circuit[J]. J Neurosci,2004.24(41): p.9005-14.
    [63]Austin JE, Buckmaster PS, Recurrent excitation of granule cells with basaldendrites and low interneuron density and inhibitory postsynaptic current frequencyin the dentate gyrus of macaque monkeys[J]. J Comp Neurol,2004.476(3): p.205-18.
    [64]Parent JM, Bussche N Von Dem,Lowenstein DH, Prolonged seizures recruit caudalsubventricular zone glial progenitors into the injured hippocampus[J]. Hippocampus,2006.16(3): p.321-8.
    [65]Scharfman HE, Sollas AE, Berger RE, Goodmanet JH, Pierce JP, Perforant pathactivation of ectopic granule cells that are born after pilocarpine-induced seizures[J].Neuroscience,2003.121(4): p.1017-29.
    [66]Scharfman HE, Functional implications of seizure-induced neurogenesis[J]. AdvExp Med Biol,2004.548: p.192-212.
    [67]Scharfman HE, Goodman JH, Sollas AL, Granule-like neurons at the hilar/CA3border after status epilepticus and their synchrony with area CA3pyramidal cells:functional implications of seizure-induced neurogenesis[J]. J Neurosci,2000.20(16):p.6144-58.
    [68]Sutula TP, Mechanisms of epilepsy progression: current theories and perspectivesfrom neuroplasticity in adulthood and development[J]. Epilepsy Res,2004.60(2-3):p.161-71.
    [69]Sutula TP, Hermann B, Progression in mesial temporal lobe epilepsy[J]. AnnNeurol,1999.45(5): p.553-6.
    [70]Pitkanen A, Sutula TP, Is epilepsy a progressive disorder? Prospects for newtherapeutic approaches in temporal-lobe epilepsy[J]. Lancet Neurol,2002.1(3): p.173-81.
    [71]Rouach N, Koulakoff A, Abudara V, Willecke K, Giaume C, Astroglial metabolicnetworks sustain hippocampal synaptic transmission[J]. Science,2008.322(5907): p.1551-5.
    [72]Benarroch EE, Astrocyte-neuron interactions: implications for epilepsy[J].Neurology,2009.73(16): p.1323-7.
    [73]Halassa MM, Fellin T, Takano H, Donget JH, Haydon PG, Synaptic islands definedby the territory of a single astrocyte[J]. J Neurosci,2007.27(24): p.6473-7.
    [74]Haber M, Zhou L, Murai KK, Cooperative astrocyte and dendritic spine dynamicsat hippocampal excitatory synapses[J]. J Neurosci,2006.26(35): p.8881-91.
    [75]Christopherson KS, Ullian EM, Stokes CCA, et al., Thrombospondins areastrocyte-secreted proteins that promote CNS synaptogenesis[J]. Cell,2005.120(3):p.421-33.
    [76]Bolton MM, Eroglu C, Look who is weaving the neural web: glial control ofsynapse formation[J]. Curr Opin Neurobiol,2009.19(5): p.491-7.
    [77]Binder DK, Steinhauser C, Functional changes in astroglial cells in epilepsy[J]. Glia,2006.54(5): p.358-68.
    [78]Borges K, McDermott D, Irier H, et al., Degeneration and proliferation of astrocytesin the mouse dentate gyrus after pilocarpine-induced status epilepticus[J]. ExpNeurol,2006.201(2): p.416-27.
    [79]Wang L, Wang XF, Yuan J, et al., Nestin in the temporal neocortex of the intractableepilepsy patients[J]. Neurochem Res,2009.34(3): p.574-80.
    [80]Zhou S, Sun X, Liu L, et al., Increased expression of aquaporin-1in the anteriortemporal neocortex of patients with intractable epilepsy[J]. Neurol Res,2008.30(4):p.400-5.
    [81]Lu Y, Xue T, Yuan J, et al., Increased expression of TGFbeta type I receptor in braintissues of patients with temporal lobe epilepsy[J]. Clin Sci (Lond),2009.117(1): p.17-22.
    [82]Roitbak T, Sykova E, Diffusion barriers evoked in the rat cortex by reactiveastrogliosis[J]. Glia,1999.28(1): p.40-8.
    [83]Li YQ,Xue T, Wang L, et al., Up-Regulation of Epithelial Membrane Protein-1inthe Temporal Neocortex of Patients with Intractable Epilepsy[J]. Neurochem Res,2009.34(9):1594-1602.
    [1] Luscher, C. and J.T. Isaac, The synapse: center stage for many brain diseases[J]. JPhysiol,2009.587(Pt4): p.727-9.
    [2] Han, K. and E. Kim, Synaptic adhesion molecules and PSD-95[J]. Prog Neurobiol,2008.84(3): p.263-83.
    [3] Kim, E. and M. Sheng, PDZ domain proteins of synapses[J]. Nat Rev Neurosci,2004.5(10): p.771-81.
    [4] Jamain, S., et al., Mutations of the X-linked genes encoding neuroligins NLGN3andNLGN4are associated with autism[J]. Nat Genet,2003.34(1): p.27-9.
    [5] Ichtchenko, K., T. Nguyen, and T.C. Sudhof, Structures, alternative splicing, andneurexin binding of multiple neuroligins[J]. J Biol Chem,1996.271(5): p.2676-82.
    [6] Varoqueaux, F., S. Jamain, and N. Brose, Neuroligin2is exclusively localized toinhibitory synapses[J]. Eur J Cell Biol,2004.83(9): p.449-56.
    [7] Song, J.Y., et al., Neuroligin1is a postsynaptic cell-adhesion molecule of excitatorysynapses[J]. Proc Natl Acad Sci U S A,1999.96(3): p.1100-5.
    [8] Hoon, M., et al., Neuroligin-4is localized to glycinergic postsynapses and regulatesinhibition in the retina[J]. Proc Natl Acad Sci U S A,2011.108(7): p.3053-8.
    [9] Levinson, J.N., et al., Postsynaptic scaffolding molecules modulate the localizationof neuroligins[J]. Neuroscience,2010.165(3): p.782-93.
    [10]Ushkaryov, Y.A., et al., Neurexins: synaptic cell surface proteins related to thealpha-latrotoxin receptor and laminin[J]. Science,1992.257(5066): p.50-6.
    [11] Rozov, A., et al., Transmitter release modulation by intracellular Ca2+buffers infacilitating and depressing nerve terminals of pyramidal cells in layer2/3of the ratneocortex indicates a target cell-specific difference in presynaptic calciumdynamics[J]. J Physiol,2001.531(Pt3): p.807-26.
    [12] Kattenstroth, G., et al., Postsynaptic N-methyl-D-aspartate receptor functionrequires alpha-neurexins[J]. Proc Natl Acad Sci U S A,2004.101(8): p.2607-12.
    [13] Missler, M., et al., Alpha-neurexins couple Ca2+channels to synaptic vesicleexocytosis[J]. Nature,2003.423(6943): p.939-48.
    [14] Dean, C., et al., Neurexin mediates the assembly of presynaptic terminals[J]. NatNeurosci,2003.6(7): p.708-16.
    [15]Linkenhoker, B.A., C.G. von der Ohe, and E.I. Knudsen, Anatomical traces ofjuvenile learning in the auditory system of adult barn owls[J]. Nat Neurosci,2005.8(1): p.93-8.
    [16] Boucard, A.A., et al., A splice code for trans-synaptic cell adhesion mediated bybinding of neuroligin1to alpha-and beta-neurexins[J]. Neuron,2005.48(2): p.229-36.
    [17] Arikkath, J. and L.F. Reichardt, Cadherins and catenins at synapses: roles insynaptogenesis and synaptic plasticity[J]. Trends Neurosci,2008.31(9): p.487-94.
    [18]Irie, M., et al., Binding of neuroligins to PSD-95[J]. Science,1997.277(5331): p.1511-5.
    [19] Nguyen, T. and T.C. Sudhof, Binding properties of neuroligin1and neurexin1betareveal function as heterophilic cell adhesion molecules[J]. J Biol Chem,1997.272(41): p.26032-9.
    [20] Scheiffele, P., et al., Neuroligin expressed in nonneuronal cells triggers presynapticdevelopment in contacting axons[J]. Cell,2000.101(6): p.657-69.
    [21]Fu, Z., et al., Functional excitatory synapses in HEK293cells expressing neuroliginand glutamate receptors[J]. J Neurophysiol,2003.90(6): p.3950-7.
    [22]Graf, E.R., et al., Neurexins induce differentiation of GABA and glutamatepostsynaptic specializations via neuroligins[J]. Cell,2004.119(7): p.1013-26.
    [23]Nam, C.I. and L. Chen, Postsynaptic assembly induced by neurexin-neuroligininteraction and neurotransmitter[J]. Proc Natl Acad Sci U S A,2005.102(17): p.6137-42.
    [24]Varoqueaux, F., et al., Neuroligins determine synapse maturation and function[J].Neuron,2006.51(6): p.741-54.
    [25]Etherton, M.R., et al., Mouse neurexin-1alpha deletion causes correlatedelectrophysiological and behavioral changes consistent with cognitiveimpairments[J]. Proc Natl Acad Sci U S A,2009.106(42): p.17998-8003.
    [26]Chubykin, A.A., et al., Activity-dependent validation of excitatory versus inhibitorysynapses by neuroligin-1versus neuroligin-2[J]. Neuron,2007.54(6): p.919-31.
    [27]Shipman, S.L., et al., Functional dependence of neuroligin on a new non-PDZintracellular domain[J]. Nat Neurosci,2011.14(6): p.718-26.
    [28]Jedlicka, P., et al., Increased dentate gyrus excitability in neuroligin-2-deficientmice in vivo[J]. Cereb Cortex,2011.21(2): p.357-67.
    [29]Ko, J., et al., Neuroligin-1performs neurexin-dependent and neurexin-independentfunctions in synapse validation[J]. EMBO J,2009.28(20): p.3244-55.
    [30]Hines, R.M., et al., Synaptic imbalance, stereotypies, and impaired socialinteractions in mice with altered neuroligin2expression[J]. J Neurosci,2008.28(24): p.6055-67.
    [31]Baudouin, S. and P. Scheiffele, SnapShot: Neuroligin-neurexin complexes[J]. Cell,2010.141(5): p.908,908e1.
    [32]Chen, S.X., et al., Neurexin-neuroligin cell adhesion complexes contribute tosynaptotropic dendritogenesis via growth stabilization mechanisms in vivo[J].Neuron,2010.67(6): p.967-83.
    [33]Barrow, S.L., et al., Neuroligin1: a cell adhesion molecule that recruits PSD-95andNMDA receptors by distinct mechanisms during synaptogenesis[J]. Neural Dev,2009.4: p.17.
    [34]Jung, S.Y., et al., Input-specific synaptic plasticity in the amygdala is regulated byneuroligin-1via postsynaptic NMDA receptors[J]. Proc Natl Acad Sci U S A,2010.107(10): p.4710-5.
    [35]Kim, J., et al., Neuroligin-1is required for normal expression of LTP andassociative fear memory in the amygdala of adult animals[J]. Proc Natl Acad Sci US A,2008.105(26): p.9087-92.
    [36]Blundell, J., et al., Neuroligin-1deletion results in impaired spatial memory andincreased repetitive behavior[J]. J Neurosci,2010.30(6): p.2115-29.
    [37]Dahlhaus, R., et al., Overexpression of the cell adhesion protein neuroligin-1induces learning deficits and impairs synaptic plasticity by altering the ratio ofexcitation to inhibition in the hippocampus[J]. Hippocampus,2010.20(2): p.305-22.
    [38] Schapitz, I.U., et al., Neuroligin1is dynamically exchanged at postsynaptic sites[J].J Neurosci,2010.30(38): p.12733-44.
    [39] Lord, C., et al., Autism spectrum disorders[J]. Neuron,2000.28(2): p.355-63.
    [40]Tuchman, R., M. Alessandri, and M. Cuccaro, Autism spectrum disorders andepilepsy: moving towards a comprehensive approach to treatment[J]. Brain Dev,2010.32(9): p.719-30.
    [41]Miley, M., Missed connections[J]. Nat Med,2011.17(4): p.408-10.
    [42]Schmitz, C. and P. Rezaie, The neuropathology of autism: where do we stand?[J]Neuropathol Appl Neurobiol,2008.34(1): p.4-11.
    [43]Courchesne, E., et al., Mapping early brain development in autism[J]. Neuron,2007.56(2): p.399-413.
    [44]Feng, J., et al., High frequency of neurexin1beta signal peptide structural variantsin patients with autism[J]. Neurosci Lett,2006.409(1): p.10-3.
    [45]Kim, H.G., et al., Disruption of neurexin1associated with autism spectrumdisorder[J]. Am J Hum Genet,2008.82(1): p.199-207.
    [46]Marshall, C.R., et al., Structural variation of chromosomes in autism spectrumdisorder[J]. Am J Hum Genet,2008.82(2): p.477-88.
    [47]Talebizadeh, Z., et al., Novel splice isoforms for NLGN3and NLGN4with possibleimplications in autism[J]. J Med Genet,2006.43(5): p. e21.
    [48]Yan, J., et al., Analysis of the neuroligin3and4genes in autism and otherneuropsychiatric patients[J]. Mol Psychiatry,2005.10(4): p.329-32.
    [49]Tabuchi, K., et al., A neuroligin-3mutation implicated in autism increasesinhibitory synaptic transmission in mice[J]. Science,2007.318(5847): p.71-6.
    [50]Sheng, M. and C.C. Hoogenraad, The postsynaptic architecture of excitatorysynapses: a more quantitative view[J]. Annu Rev Biochem,2007.76: p.823-47.
    [51]Durand, C.M., et al., Mutations in the gene encoding the synaptic scaffoldingprotein SHANK3are associated with autism spectrum disorders[J]. Nat Genet,2007.39(1): p.25-7.
    [52]Tobaben, S., T.C. Sudhof, and B. Stahl, The G protein-coupled receptor CL1interacts directly with proteins of the Shank family[J]. J Biol Chem,2000.275(46):p.36204-10.
    [53]Comoletti, D., et al., The Arg451Cys-neuroligin-3mutation associated with autismreveals a defect in protein processing[J]. J Neurosci,2004.24(20): p.4889-93.
    [54]Moessner, R., et al., Contribution of SHANK3mutations to autism spectrumdisorder[J]. Am J Hum Genet,2007.81(6): p.1289-97.
    [5]Lawson-Yuen, A., et al., Familial deletion within NLGN4associated with autism andTourette syndrome[J]. Eur J Hum Genet,2008.16(5): p.614-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700