基于干扰管理的无线自组网性能优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无需任何基础设施的前提下,无线自组织网络(Wireless Ad Hoc Network, WANET)能够快速组网来支撑用户的应用需求,具有成本低、自愈能力高、可拓展性强等特点。目前,最初为军事应用所提出的无线自组织网络逐渐被应用到民用领域,如无线传感器网、无线网状网等,并发挥着越来越重要的作用。
     源于无线信道的开放共享特性,并行传输链路间的相互干扰问题一直影响着无线自组织网络的发展。如何有效地管理链路间的相互干扰,进而优化该网络的目标性能一直是研究的核心问题。传统干扰管理技术,如链路调度、功率控制、速率控制及拓扑控制都采用干扰避免的策略来确保链路的正确传输。而近年来提出的一些物理层干扰管理技术,如干扰解码、干扰中和以及干扰对准等则直接从信号处理的角度来消除干扰信号,从而为进一步优化无线自组织网络的性能提供了可能。围绕着这些传统和新型的干扰管理技术,本文展开以下四个方面的研究:
     1)能量效率和吞吐量是无线自组网的两个重要性能参数,分别决定了网络的平均寿命以及传输能力,而多速率802.11无线自组网不同速率级别所需最小传输功率及能量效率存在着比较大的差异。为此,本文提出了一种主动式的速率控制方案。该方案能够通过动态跟踪接口队列的长度来探测链路的实际传输需求,进而按需地提供传输速率及传输功率,从而最终优化网络的能量效率及吞吐量。
     2)无线自组网的多跳特性使得用户速率必须从端到端角度加以保证,而随机竞争式的链路调度机制不能保证每条链路所获得的信道接入时间,无法提供严格的端到端传输速率保证。为此,本文提出了一种基于物理干扰模型的协作式链路调度为基础,联合上层的路由选择及会话接入控制的跨层方案来为用户提供端到端传输速率保证。其中,链路调度模块允许各链路利用自身地理位置信息分布式地预留一定时隙来确保所服务用户的端到端传输速率,并保证每条链路在分配时隙内所受干扰不会影响正确传输;路由选择模块能够选择最佳路径来最大化链路调度模块的性能,即最小化满足用户速率所需的时隙总数;当网络负载超出容量时,会话控制模块会拒绝新用户的加入,从而保证已有用户的端到端传输速率。给定网络负载下,所提方案能够尽量用更少的时隙数来满足所有会话的端到端传输速率需求,进而容纳更多的会话。
     3)网络容量是无线自组网的一个重要因素,而传统基于干扰避免的拓扑控制忽略了新型干扰中和技术对网络容量的提升空间。为此,本文研究如何通过融合干扰中和技术的拓扑控制来进一步提高单天线无线自组网的网络容量。具体来讲,本文将邻居链路间协作式的干扰中和技术抽象为一种新型的协作通信模式,进而与传统的协作式通信模式、非协作式通信模式等一并列为链路的侯选传输模式。因此,拓扑控制被归结为以网络容量为目标的链路传输模式优化问题。针对此问题,本文推导了网络容量与链路传输模式的解析关系表达式,并在此基础上提出了新的拓扑控制方案来进一步优化网络容量。
     4)传统的链路调度采用干扰避免的策略来在时间上或者空间上分隔并行传输的链路,以确保每条链路的正确传输。该策略下,只有相距足够远的链路才能够复用同一个时隙。然而,近年来提出的干扰对准技术使得相邻链路间的并行传输成为可能。为此,本文研究干扰对准技术对多天线无线自组网中链路调度问题的影响,并提出了一个分布式链路调度算法来充分利用干扰对准技术支持邻居链路间的并行传输,进而优化链路调度的性能。
Without the assistance of any infrastructure, distributed wireless users can quickly formwireless ad hoc network (WANETs) on-line, so as to support various applications. Such kindof networks are known to be of low cost, high self-healing ability and strong scalability. Sincetheir first applications in the military field, they have now been widely applied in many civilfields, e.g., wireless sensor networks, wireless mesh networks, etc.
     Due to the open and shared nature of wireless medium, concurrent transmitting links sufferinevitable interference from each other. Thus, how to manage such mutual interference towardsmaximizing the network performance has been a longstanding research focus. Traditional tech-niques of interference management, such as link scheduling, power control, rate control andtopology control all follow the interference avoidance approach. On the contrary, recently pro-posed interference management techniques from the physical layer, e.g., interference neutral-ization, interference cancellation and interference alignment, directly remove the interferencesignal at the receiver. Concentrating on these traditional and new interference managementtechniques, research in this dissertation is carried out along the following four directions.
     1) EnergyefficiencyandthroughputaretwoimportantperformancemetricsforWANETs,which decide the network lifetime and service quality respectively. In multi-rate802.11WANETs, energy efficiencies as well as minimum required transmission power of differ-ent rate level differ a lot from each other. Hence, this dissertation proposes a traffic-awareactive link rate adaptation algorithm to optimize the network performance. By constant-ly monitoring the length of interface queue for each link, the algorithm can tell whetherthe current link rate can satisfy the traffic demand or not, hence selects the right link rateas well as the right transmission power, which eventually increases the network energyefficiency as well as network throughput substantially.
     2) The multi-hop characteristic of WANETs requires end-to-end (e2e) transmission rateprovision for each user. Random competitive link scheduling can not guarantee the chan-nel access time of each link, thus fails in providing accurate e2e transmission rate. Hence,this dissertation proposes a cross-layer solution based on cooperative link scheduling un-derthephysicalinterferencemodel, whichjointlyconsidersroutingandadmissioncontrol to guarantee e2e transmission rate for each user. The link scheduling module allows eachlink reserves their transmission slots in a distributed way, while guaranteeing that linktransmission will not be failed by interference during the reserved slots. The routing mod-ule chooses the best path to maximize the performance of link scheduling performance,i.e., minimizing the number of required slots for a given e2e transmission rate require-ment. When the traffic load exceeds the network capacity, the admission control modulewill reject new users so as to guarantee e2e rate for existing users.
     3) Network capacity is of vital importance for WANETs, while traditional topology con-trol based on interference avoidance neglects the potential capacity enhancement broughtby the newly proposed interference neutralization (IN) technique. Hence, this dissertationstudies how to further boost network capacity for single-antenna WANETs via topologycontrol incorporating IN. Specifically, this dissertation abstracts IN between neighboringlinks as a new cooperative transmission pattern. Then by jointly considering this newtransmission as well as the existing non-cooperative transmission pattern and traditionalcooperative transmission pattern, this dissertation abstracts the topology control probleminto a transmission pattern optimization problem. After deriving the relationship betweentransmission pattern and network capacity, this dissertation proposes a distributed topol-ogy control scheme towards improved network capacity.
     4) Traditionallinkschedulingalgorithmensuresthequalityofeachlinkbyseparatingcon-current links either in the spatial domain or in the time domain. Only links far away fromeach other can possibly concurrently access the wireless medium. However, with the re-cently proposed technique of interference alignment (IA), concurrent transmission amongneighboring links are now possible. Hence, this dissertation revisits the minimum lengthscheduling problem in multiple-antenna WANETs, and propose a practical distributedlink scheduling algorithm. The proposed algorithm can support concurrent transmissionamong neighboring links by fully exploiting the IA technique, which in turn boost thescheduling performance.
引文
[1]孙利民.无线传感器网络[M].北京:清华大学出版社,2005.
    [2]张勇,郭达.无线网状网原理与技术[M].北京:电子工业出版社,2007.
    [3]常促宇,向勇,史美林.车载自组网的现状与发展[J].通信学报,2007,28(011):116–126.
    [4] Chandran K, Raghunathan S, Venkatesan S, et al. A feedback-based scheme for improving TCP per-formance in ad hoc wireless networks[J]. IEEE Personal Communications,2001,8(1):34–39.
    [5] Liu J, Singh S. ATCP: TCP for mobile ad hoc networks[J]. IEEE J. Sel. Areas Commun.,2001,19(7):1300–1315.
    [6] Kopparty S, Krishnamurthy S, Faloutsos M, et al. Split TCP for mobile ad hoc networks[A]. In: Proc.IEEE GLOBECOM’02[C],2002.1:138–142.
    [7] Jiang S, Zuo Q, Wei G. Decoupling congestion control from TCP for multi-hop wireless networks:semi-TCP[A]. In: Proc.4th ACM Workshop on Challenged Networks[C],2009:27–34.
    [8] LeeS,SuW,GerlaM. On-demandmulticastroutingprotocolinmultihopwirelessmobilenetworks[J].Mobile Networks and Applications,2002,7(6):441–453.
    [9] Wang L, Fan Y, Hu K. Effective Broadcasting Routing Algorithm Based on Ad Hoc Network[J].Journal of Jilin University, Information Science Edition(27).
    [10] Perkins C, Bhagwat P. Highly dynamic destination-sequenced distance-vector routing (DSDV) formobile computers[J]. ACM SIGCOMM Computer Communication Review,1994,24(4):234–244.
    [11] Chen T, Gerla M. Global state routing: A new routing scheme for ad-hoc wireless networks[A]. In:Proc. IEEE ICC’98[C],1998.1:171–175.
    [12] Perkins C, Royer E, Das S. Ad hoc on-demand distance vector (AODV)[J]. Request For Comments(RFC),2003,3561:30.
    [13] JohnsonD,MaltzD. Dynamicsourceroutinginadhocwirelessnetworks[J]. Mobilecomputing,1996:153–181.
    [14] Haas Z, Pearlman M, Samar P. The zone routing protocol (ZRP) for ad hoc networks[J].2002.
    [15] Abramson N. THE ALOHA SYSTEM: another alternative for computer communications[A]. In:Proc. of Fall Joint Computer Conf.[C],1970:281–285.
    [16] Colvin A. CSMA with collision avoidance[J]. Computer Communications,1983,6(5):227–235.
    [17] Eklund C, Marks R, Stanwood K, et al. IEEE standard802.16: a technical overview of the Wire-lessMANTM air interface for broadband wireless access[J]. IEEE Communications Magazine,2002,40(6):98–107.
    [18] Gupta P, Kumar P. The capacity of wireless networks[J]. IEEE Trans. Inform. Theory,2000,46(2):388–404.
    [19] Raniwala A, Chiueh T. Architecture and algorithms for an IEEE802.11-based multi-channel wirelessmesh network[A]. In: Proc. IEEE INFOCOM’05[C],2005.3:2223–2234.
    [20] Bruno R, Conti M, Gregori E. Mesh networks: commodity multihop ad hoc networks[J]. IEEE Com-munications Magazine,2005,43(3):123–131.
    [21] Cadambe V R, Jafar S A. Interference Alignment and Degrees of Freedom of the K-User InterferenceChannel[J]. IEEE Trans. Inform. Theory,2008,54(8):3425–3441.
    [22] Mohajer S, Diggavi S N, Fragouli C, et al. Transmission Techniques for Relay-Interference Network-s[J]. arXiv:0812.1597,2008.
    [23] Verdu S. Multiuser detection[M].[S.l.]: Cambridge Univ Pr,1998.
    [24] Kohno R, Hatori M. Cancellation techniques of co-channel interference in asynchronous spread spec-trum multiple access systems[J]. Electronics and Communications in Japan (Part I: Communications),1983,66(5):20–29.
    [25] Toumpis S, Goldsmith A. Capacity regions for wireless ad hoc networks[J]. IEEE Wireless Comm.,2003,2(4):736–748.
    [26] Garcia-Luna-Aceves J, Sadjadpour H, Wang Z. Challenges: towards truly scalable ad hoc networks[J].Proc. of ACM MobiCom2007,2007:9–14.
    [27] Yuan D, Angelakis V, Chen L, et al. On Optimal Link Activation with Interference Cancellation inWireless Networking[J]. arXiv:1112.1314,2011.
    [28] Gupta P, Kumar P. The capacity of wireless networks[J]. IEEE Trans. Inform. Theory,2000,46(2):388–404.
    [29] WangP. Throughputoptimizationofurbanwirelessmeshnetworks[D]:[PhDThesis].[S.l.]: Universityof Delaware,2009.
    [30] Karn P. MACA-a new channel access method for packet radio[A]. In: ARRL/CRRL Amateur radio9th computer networking Conf.[C],1990.140:134–140.
    [31] Yang X, Vaidya N. On physical carrier sensing in wireless ad hoc networks[A]. In: Proc. IEEEINFOCOM’05[C],2005.4:2525–2535.
    [32] Cali F, Conti M, Gregori E. Dynamic tuning of the IEEE802.11protocol to achieve a theoreticalthroughput limit[J]. IEEE/ACM Trans. Netw.,2000,8(6):785–799.
    [33] Alawieh B, Zhang Y, Assi C, et al. Improving Spatial Reuse in Multihop Wireless Networks-ASurvey[J]. IEEE Communications Surveys&Tutorials,2009,11(3):71–91.
    [34] Wang W, Wang Y, Li X Y, et al. Efficient interference-aware TDMA link scheduling for static wirelessnetworks[A]. In: Proc. MobiCom’06[C],2006:262–273.
    [35] Gronkvist J, Hansson A. Comparison between graph-based and interference-based STDMA schedul-ing[A]. In: Proc.2nd ACM Int. Symp. on Mobile ad hoc Netw. and Compt.[C],2001:255–258.
    [36] Goussevskaia O, Oswald Y A, Wattenhofer R. Complexity in geometric SINR[A]. In: Proc.8th ACMInt. symposium on Mobile Ad Hoc Netw. and Comput.[C],2007:100–109.
    [37] Hajek B, Sasaki G. Link scheduling in polynomial time[J]. IEEE Trans. Inform. Theory,1988,34(5):910–917.
    [38] Ramanathan S, Lloyd E. Scheduling algorithms for multihop radio networks[J]. IEEE/ACM Trans.Netw.,1993,1(2):166–177.
    [39] Erlebach T, Jansen K, Seidel E. Polynomial-time approximation schemes for geometric graphs[A].In: Proc.12th ACM-SIAM Symp. on Discrete algorithms[C]. Society for Industrial and AppliedMathematics,2001:671–679.
    [40] Krumke S O, Marathe M V, Ravi S S. Models and Approximation Algorithms for Channel Assignmentin Radio Networks[J]. Wireless Networks,2000,7:575–584.
    [41] Wang Y, Wang W, Li X, et al. Interference-Aware Joint Routing and TDMA Link Scheduling for StaticWireless Networks[J]. IEEE Trans. on Parallel and Distributed Systems2008,19(12):1709–1726.
    [42] Hong C Y, Pang A C.3-Approximation algorithm for joint routing and link scheduling in wirelessrelay networks[J]. IEEE Wireless Comm.,2009,8(2):856–861.
    [43] Schneider J, Wattenhofer R. A log-star distributed maximal independent set algorithm for growth-bounded graphs[A]. In: Proc.27th ACM Symp. on Principles of Distributed Comput.[C],2008:35–44.
    [44] Djukic P, Valaee S. Distributed Link Scheduling for TDMA Mesh Networks[A]. In: Proc. IEEE ICC’07[C],2007.
    [45] Moscibroda T, Wattenhofer R. The Complexity of Connectivity in Wireless Networks[A]. In: Proc.IEEE INFOCOM’06[C],2006:1–13.
    [46] Chafekar D, Kumart V S, Marathe M V, et al. Approximation Algorithms for Computing Capacity ofWireless Networks with SINR Constraints[A]. In: Proc. IEEE INFOCOM’08[C],2008:1166–1174.
    [47] Goussevskaia O, WattenhoferR, Halldorsson M M,et al. Capacityof Arbitrary WirelessNetworks[A].In: Proc. IEEE Infocom’09,[C], Apr2009:1872–1880.
    [48] Blough D M, Resta G, Santi P. Approximation Algorithms for Wireless Link Scheduling With SINR-Based Interference[J]. IEEE/ACM Trans. Netw.,2010,18(6):1701–1712.
    [49] Dinitz M. Distributed Algorithms for Approximating Wireless Network Capacity[A]. In: Proc. IEEEINFOCOM’10[C],2010.
    [50] Asgeirsson E I, Mitra P. On a game theoretic approach to capacity maximization in wireless network-s[A]. In: Proc. IEEE INFOCOM’11[C],2011:3029–3037.
    [51] Li P, Shen Q, Fang Y, et al. Power controlled network protocols for Multi-Rate ad hoc networks[J].IEEE Wireless Comm.,2009,8(4):2142–2149.
    [52] Gomez J, Campbell A, Naghshineh M, et al. Conserving transmission power in wireless ad hoc net-works[A]. In: Proc.9th Int. Conf. on Netw. Protocols[C],2001:24–34.
    [53] Jung E S, Vaidya N H. A power control MAC protocol for ad hoc networks[A]. In: Proc.8th Int.Conf. on Mobile Compt. and Netw.[C],2002:36–47.
    [54] Muqattash A, Krunz M. POWMAC: a single-channel power-control protocol for throughput enhance-ment in wireless ad hoc networks[J].2005,23(5):1067–1084.
    [55] Jung E S, Vaidya N H. A power control MAC protocol for ad hoc networks[J]. Wireless Network,2005,11(1-2):55–66.
    [56] Muqattash A, Krunz M. Power controlled dual channel (PCDC) medium access protocol for wirelessad hoc networks[A]. In: Proc. IEEE INFOCOM’03[C],2003.1:470–480.
    [57] ElBatt T, Ephremides A. Joint scheduling and power control for wireless ad hoc networks[J]. IEEEWireless Comm.,2004,3(1):74–85.
    [58] Tang J, Xue G, Chandler C, et al. Link Scheduling with Power Control for Throughput Enhancementin Multihop Wireless Networks[A]. In: Proc.2nd Int. Conf. on Quality of Service in HeterogeneousWired/Wireless Netw.[C],2005:11–15.
    [59] Borbash S A, Ephremides A. Wireless Link Scheduling With Power Control and SINR Constraints[J].IEEE Trans. Inform. Theory,2006,52(11):5106–5111.
    [60] FuL,LiewC,HuangJ. JointPowerControlandLinkSchedulinginWirelessNetworksforThroughputOptimization[A]. In: Proc. IEEE ICC’08[C],2008:3066–3072.
    [61] Fu L, Liew S C, Huang J. Fast algorithms for joint power control and scheduling in wireless network-s[J]. IEEE Wireless Comm.,2010,9(3):1186–1197.
    [62] Capone A, Carello G, Filippini I, et al. Routing, scheduling and channel assignment in Wireless MeshNetworks: Optimization models and algorithms[J]. Ad Hoc Network,2010,8(6):545–563.
    [63] Behzad A, Rubin I. Optimum Integrated Link Scheduling and Power Control for Multihop WirelessNetworks[J]. IEEE Trans. Veh. Tech.,2007,56(1):194–205.
    [64] Hu L. Topology control for multihop packet radio networks[J]. IEEE Trans. Commun.,1993,41(10):1474–1481.
    [65] RamanathanR,Rosales-HainR. Topologycontrolofmultihopwirelessnetworksusingtransmitpoweradjustment[A]. In: Proc. IEEE INFOCOM’00[C],2000.2:404–413.
    [66] WattenhoferR,LiL,BahlP,etal. Distributedtopologycontrolforpowerefficientoperationinmultihopwireless ad hoc networks[A]. In: Proc. IEEE INFOCOM’01[C],2001.3:1388–1397.
    [67] Liu J, Li B. MobileGrid: capacity-aware topology control in mobile ad hoc networks[A]. In: Proc.11th Int’l Conf. Computer Commu. and Netw.[C],2002:570–574.
    [68] Gao Y, Hou J, Nguyen H. Topology Control for Maintaining Network Connectivity and MaximizingNetworkCapacityunderthePhysicalModel[A]. In: Proc.IEEEINFOCOM’08[C],2008:1013–1021.
    [69] Guan Q, Yu F R, Jiang S, et al. Prediction-Based Topology Control and Routing in Cognitive RadioMobile Ad Hoc Networks[J]. IEEE Trans. Veh. Tech.,2010,59(9):4443–4452.
    [70] KoushaMoaveni-NejadXYL. Low-InterferenceTopologyControlforWirelessAdHocNetworks[J].Ad Hoc Sensor Wireless Networks,2005,1:41–64.
    [71] Burkhart M, von Rickenbach P, Wattenhofer R, et al. Does topology control reduce interference?[A].In: Proc.5th ACM Int. Symp. Mobile Ad hoc Netw. Comput.[C],2004.
    [72] Moscibroda T, Wattenhofer R. Minimizing interference in ad hoc and sensor networks[A]. In: Proc.6th Joint Workshop on Foundations of Mobile Comput.[C],2005:24–33.
    [73] Blough D M, Leoncini M, Resta G, et al. The k-Neighbors Approach to Interference Bounded andSymmetric Topology Control in Ad Hoc Networks[J]. IEEE Trans. Mobile Comput.,2006,5(9):1267–1282.
    [74] Benkert M, Gudmundsson J, Alex H H, et al. Constructing interference-minimal networks[A]. In:Proc. of the32nd Conf. on Current Trends in Theory and Practice of Computer Science[C],2006:166–176.
    [75] Wang X, Poor H. Iterative (turbo) soft interference cancellation and decoding for coded CDMA[J].IEEE Trans. Commun.,1999,47(7):1046–1061.
    [76] Divsalar D, Simon M, Raphaeli D. Improved parallel interference cancellation for CDMA[J]. IEEETrans. Commun.,1998,46(2):258–268.
    [77] Xue G, Weng J, Le-Ngoc T, et al. Adaptive multistage parallel interference cancellation for CDMA[J].1999,17(10):1815–1827.
    [78] Patel P, Holtzman J. Performance comparison of a DS/CDMA system using a successive interferencecancellation (IC) scheme and a parallel IC scheme under fading[A]. In: Proc. IEEE ICC’94[C],1994:510–514.
    [79] Andrews J. Interference cancellation for cellular systems: a contemporary overview[J]. IEEE WirelessComm.,2005,12(2):19–29.
    [80] Rankov B, Wittneben A. Spectral efficient protocols for half-duplex fading relay channels[J]. IEEE J.Sel. Areas Commun.,2007,25(2):379–389.
    [81] Fazeli-Dehkordy S, Shahbazpanahi S, Gazor S. Multiple Peer-to-Peer Communications Using a Net-work of Relays[J]. IEEE Trans. Signal Proc.,2009,57(8):3053–3062.
    [82] Chen H, Gershman A B, Shahbazpanahi S. Distributed peer-to-peer beamforming for multiuser relaynetworks[A]. In: Proc. ICASSP’09[C],2009:2265–2268.
    [83] Yang Y, Wang X, Cai X. On the number of relays for orthogonalize-and-forward relaying[A]. In:Proc. WCSP’11[C],2011:1–5.
    [84] Gou T, Jafar S A, Jeon S W, et al. Aligned interference neutralization and the degrees of freedom ofthe2×2×2interference channel[A]. In: Proc. of2011IEEE Int. Symposium on Information TheoryProceedings[C]. IEEE,2011:2751–2755.
    [85] WangC,ChenH,YinQ,etal. Multi-UserTwo-WayRelayNetworkswithDistributedBeamforming[J].IEEE Wireless Comm.,2011,10(10):3460–3471.
    [86] Zeng M, Zhang R, Cui S. On Design of Collaborative Beamforming for Two-Way Relay Networks[J].IEEE Transactions on Signal Processing,2011,59(5):2284–2295.
    [87] Havary-Nassab V, Shahbazpanahi S, Grami A. Optimal Distributed Beamforming for Two-Way RelayNetworks[J]. IEEE Transactions on Signal Processing,2010,58(3):1238–1250.
    [88] El Ayach O, Peters S, Heath R. The Feasibility of Interference Alignment Over Measured MIMO-OFDM Channels[J]. IEEE Trans. Veh. Tech.,2010,59(9):4309–4321.
    [89] González O, Ramirez D, Santamaria I, et al. Experimental validation of interference alignment tech-niques using a multiuser MIMO testbed[A]. In: Proc. of Int. Workshop on Smart Antennas[C],2011:1–8.
    [90] Lv S, Zhuang W, Wang X, et al. Scheduling in wireless ad hoc networks with successive interferencecancellation[A]. In: Proc. IEEE INFOCOM’11[C],2011:1287–1295.
    [91] Angelakis V, Chen L, Yuan D. Optimal and Collaborative Rate Selection for Interference Cancellationin Wireless Networks[J]. IEEE Communications Letters,2011,15(8):819–821.
    [92] Mitran P, Rosenberg C, Shabdanov S. Throughput optimization in wireless multihop networks withSuccessive Interference Cancellation[A]. In: Proc.(WTS)’11[C],2011:1–7.
    [93] Gelal E, Pelechrinis K, Kim T, et al. Topology control for effective interference cancellation in multi-user MIMO networks[A]. In: Pro. IEEE INFOCOM’10[C],2010:1–9.
    [94] Kamerman A, Monteban L. WaveLAN-II: A high-performance wireless LAN for the unlicensedband[J]. Bell Labs Technical Journal,1997,2(3):118–133.
    [95] LacageM,ManshaeiMH,TurlettiT. IEEE802.11RateAdaptation: APracticalApproach[J]. Analysisand Simulation of Wireless and Mobile Systems,2004:126–134.
    [96] J.C.Bicket. Bit-rate Selection in Wireless Networks[M]. Master thesis.[S.l.]: Massachusetts Instituteof Technology2005.
    [97] Rong Y, Teymorian A, Ma L, et al. A novel rate adaptation scheme for802.11networks[J]. IEEEWireless Comm.,2009,8(2):862–870.
    [98] Song Y, Zhu X, Fang Y, et al. Threshold optimization for rate adaptation algorithms in IEEE802.11WLANs[J]. IEEE Wireless Comm.,2010,9(1):318–327.
    [99] Joshi T, Ahuja D, Singh D, et al. SARA: Stochastic Automata Rate Adaptation for IEEE802.11Networks[J]. IEEE Trans. Parallel and Distributed Systems,2008,19(11):1579–1590.
    [100] Pang Q, Leung V, Liew S. A rate adaptation algorithm for IEEE802.11WLANs based on MAC-layerloss differentiation[A]. In: Proc.2nd Int. Conf. on Broadband Netw.[C],2005.1:659–667.
    [101] Biaz S, Wu S. Loss Differentiated Rate Adaptation in Wireless Networks[A]. In: Proc. IEEE WirelessCommunications and Netw. Conf.2008[C],2008:1639–1644.
    [102] Choi J, Na J, sup Lim Y, et al. Collision-aware design of rate adaptation for multi-rate802.11WLAN-s[J]. IEEE J. Sel. Areas Commun.,2008,26(8):1366–1375.
    [103] Chen X, Qiao D, Yu J, et al. Probabilistic-Based Rate Adaptation for IEEE802.11WLANs[A]. In:Proc. IEEE GLOBECOM2007[C],2007:4904–4908.
    [104] Holland G, Vaidya N, Bahl P. A rate-adaptive MAC protocol for multi-hop wireless networks[A]. In:Proc.7th Annual Int. Conf. Mobile Comput. and Netw.[C]. Rome, Italy,2001:236–250.
    [105] Sadeghi B, Kanodia V, Sabharwal A, et al. Opportunistic media access for multirate ad hoc network-s[A]. In: Proc.8th Annual Int. Conf. Mobile Comput. and Netw.[C]. Atlanta, GA, United states,2002:24–35.
    [106] Zhang J, Tan K, Zhao J, et al. A Practical SNR-Guided Rate Adaptation[A]. In: Proc. INFOCOM2008[C],2008:2083–2091.
    [107] Biaz S, Wu S. Rate adaptation algorithms for IEEE802.11networks: A survey and comparison[A].In: Proc. IEEE Symposium on Computers and Communications[C],2008:130–136.
    [108] Li Z, Das A, Gupta A, et al. Full auto rate MAC protocol for wireless ad hoc networks[J]. IEEEProceedings Communications,2005,152(3):311–319.
    [109] Yee J, Pezeshki-Esfahani H. Understanding wireless LAN performance trade-offs[J]. CommunicationSystems Design,2002:32–35.
    [110] Floyd S, Jacobson V. Random early detection gateways for congestion avoidance[J]. IEEE/ACMTrans. Netw.,1993,1(4):397–413.
    [111] Heusse M, Rousseau F, Berger-Sabbatel G, et al. Performance anomaly of802.11b[A]. In: Proc.INFOCOM2003[C],2003.2:836–843vol.2.
    [112] KimT,LimH,HouJC. Improvingspatialreusethroughtuningtransmitpower,carriersensethreshold,and data rate in multihop wireless networks[A]. In: Proc.12th MOBICOM[C]. Los Angeles, CA,United states,2006.2006:366–377.
    [113] Liu Y, Lv B, Li Y. A new MAC mechanism to resolve802.11b performance anomaly[A]. In:2nd Int.Conf. Signal Processing Systems[C],2010.3:V3–134–V3–138.
    [114] Xu Y, Lui J C, Chiu D. Improving energy efficiency via probabilistic rate combination in802.11multi-rate wireless networks[J]. Ad Hoc Networks,2009,7(7):1370–1385.
    [115] Perkins C, Royer E. Ad-hoc on-demand distance vector routing[A]. In: Proc.2nd IEEE Workshop onMobile Computing Systems and Applications[C],1999:90–100.
    [116] Salonidis T, Tassiulas L. Distributed dynamic scheduling for end-to-end rate guarantees in wireless adhoc networks[A]. In: Proc.6th ACM Int. Symp. on Mobile Ad Hoc Netw. and Comput.[C],2005:145–156.
    [117] Abdrabou A, Zhuang W. A position-based QoS routing scheme for UWB mobile ad hoc networks[J].IEEE J. Sel. Areas Commun.,2006,24(4).
    [118] Hong C, Pang A, Wu J. QoS Routing and Scheduling in TDMA based Wireless Mesh Backhaul Net-works[A]. In: Proc. IEEE WCNC’07[C],2007:3232–3237.
    [119] Hong C, Pang A, Hsiu P. Approximation Algorithms for a Link Scheduling Problem in Wireless RelayNetworks with QoS Guarantee[J]. IEEE Trans. Mobile Comput.,2010,9(12):1732–1748.
    [120] Goussevskaia O, Oswald Y A, Wattenhofer R. Complexity in geometric SINR[A]. In: Proc.8th ACMInt. Symposium on Mobile ad hoc Netw. and Comput.[C]. New York, NY, USA,2007:100–109.
    [121] Blough D M, Resta G, Santi P. Approximation Algorithms for Wireless Link Scheduling With SINR-Based Interference[J]. IEEE/ACM Trans. Netw., Dec2010,18(6):1701–1712.
    [122] Basagni S, Chlamtac I, Syrotiuk V. Dynamic source routing for ad hoc networks using the globalpositioning system[A]. In: Proc. IEEE WCNC’99[C],1999:301–305.
    [123] Chen Q, Schmidt-Eisenlohr F, Jiang D, et al. Overhaul of ieee802.11modeling and simulation inns-2[A]. In: Proc.10th ACM Symp. on Modeling, Analysis, and Simulation of Wireless and MobileSystems[C],2007:159–168.
    [124] Djukic P, Valaee S. Delay aware link scheduling for multi-hop TDMA wireless networks[J].IEEE/ACM Trans. Netw.,2009,17(3):870–883.
    [125] Hoymann C, Chen W, Montojo J, et al. Relaying operation in3GPP LTE: challenges and solutions[J].IEEE Comm. Mag.,2012,50(2):156–162.
    [126] WoraditK,QuekTQ,SuwansantisukW,etal. Outagebehaviorofselectiverelayingschemes[J]. IEEEWireless Comm.,2009,8(8):3890–3895.
    [127] SeddikK,SadekA,SuW,etal. Outageanalysisofmulti-nodeamplify-and-forwardrelaynetworks[A].In: Proc. IEEE WCNC’06[C],2006.2.
    [128] DingH,GeJ, BenevidesdaCostaD,etal. OutageAnalysisfor MultiuserTwo-WayRelaying inMixedRayleigh and Rician Fading[J]. IEEE Comm. Letters,2011,15(4):410–412.
    [129] Dong L, Petropulu A P, Poor H V. Weighted Cross-Layer Cooperative Beamforming for WirelessNetworks[J]. IEEE Trans. Signal Proc.,2009,57(8):3240–3252.
    [130] Phan K T, Le-Ngoc T, Vorobyov S A, et al. Power allocation in wireless multi-user relay networks[J].IEEE Wireless Comm.,2009,8(5):2535–2545.
    [131] Johansson T, Carr-Moty??ková L. Reducing interference in ad hoc networks through topology con-trol[A]. In: Proc. Joint Workshop Foundations Mobile Comput.[C],2005.
    [132] Jain K, Padhye J, Padmanabhan V N, et al. Impact of interference on multi-hop wireless networkperformance[A]. In: Proc.9th Annual Int. Conf. Mobile Comput. Netw.[C],2003.
    [133] Liu P, Tao Z, Narayanan S, et al. CoopMAC: A cooperative MAC for wireless LANs[J]. IEEE J. Sel.Areas Commun.,2007,25(2):340–354.
    [134] Faria D. Modeling signal attenuation in IEEE802.11wireless LANs-vol.1[R].[S.l.]: Computer Sci-ence Department, Stanford University,2005.
    [135] Guan Q, Jiang S, Ding Q, et al. Impact of topology control on capacity of wireless ad hoc networks[A].In: Proc. IEEE ICCS’08[C],2008.
    [136] Qiu X, Chawla K. On the performance of adaptive modulation in cellular systems[J]. IEEE Trans.Commun.,1999,47(6):884–895.
    [137] Mandke K, Daniels R C, Choi S H, et al. Physical concerns for cross-layer prototyping and wirelessnetwork experimentation[A]. In: Proc.2nd ACM WinTECH’07[C],2007:11–18.
    [138] Guan Q, Yu F R, Jiang S, et al. Topology Control in Mobile Ad Hoc Networks with CooperativeCommunications[J]. IEEE Wireless Comm. Mag. Special Issue on User Cooperation for WirelessNetworks,2012,19(2):74–79.
    [139] Joo C, Shroff N. Local Greedy Approximation for Scheduling in Multi-hop Wireless Networks[J].IEEE Trans. Mobile Comput.,2011, PP(99):1–1.
    [140] Hong C, Pang A. Link Scheduling with QoS Guarantee for Wireless Relay Networks[A]. In: Proc.IEEE INFOCOM’09[C],2009:2806–2810.
    [141] Kompella S, Wieselthier J E, Ephremides A, et al. On Optimal SINR-Based Scheduling in MultihopWireless Networks[J]. IEEE/ACM Trans. Netw.,2010,18(6):1713–1724.
    [142] Wan P, Frieder O, Jia X, et al. Wireless link scheduling under physical interference model[A]. In:Proc. IEEE INFOCOM’11[C],2011:838–845.
    [143] Gandham S, Dawande M, Prakash R. Link scheduling in sensor networks: Distributed edge coloringrevisited[A]. In: Proc. IEEE INFOCOM’05[C],2005.4:2492–2501.
    [144] Djukic P, Valaee S. Link scheduling for minimum delay in spatial re-use TDMA[A]. In: Proc. IEEEINFOCOM’07[C],2007:28–36.
    [145] Rhee I, Warrier A, Min J, et al. DRAND: Distributed Randomized TDMA Scheduling for Wireless AdHoc Networks[J]. IEEE Trans. Mobile Comput.,2009,8(10):1384–1396.
    [146] Peters S W, Heath R W. Interference alignment via alternating minimization[A]. In: Proc. of IEEEInt. Conf. on Acoustics, Speech and Signal Processing[C],2009:2445–2448.
    [147] Nosrat-Makouei B, Andrews J G, Heath R W. MIMO Interference Alignment Over Correlated Chan-nels With Imperfect CSI[J]. IEEE Trans. Signal Proc.,2011,59(6):2783–2794.
    [148] Bhatia R, Li L. Throughput optimization of wireless mesh networks with MIMO links[A]. In: Proc.IEEE INFOCOM’07[C],2007:2326–2330.
    [149] Hamdaoui B, Shin K G. Characterization and analysis of multi-hop wireless MIMO network through-put[A]. In: Proc. of the8th ACM Int. Symp. on Mobile Ad Hoc Netw. and Comput.[C]. ACM,2007:120–129.
    [150] Sundaresan K, Sivakumar R. Routing in ad-hoc networks with MIMO links: Optimization considera-tions and protocols[J]. Computer Networks,2008,52(14):2623–2644.
    [151] LiuJ,ShiY,HouY. ATractableandAccurateCross-LayerModelforMulti-HopMIMONetworks[A].In: Proc. INFOCOM’10[C],2010:1–9.
    [152] Ge W, Zhang J, Xue G. MIMO-Pipe Modeling and Scheduling for Efficient Interference Managementin Multihop MIMO Networks[J]. IEEE Trans. Veh. Tech.,2010,59(8):3966–3978.
    [153] Yetis C M, Gou T, Jafar S A, et al. On Feasibility of Interference Alignment in MIMO InterferenceNetworks[J]. IEEE Trans. Signal Proc.,2010,58(9):4771–4782.
    [154] Notarstefano G, Bullo F. Distributed Abstract Optimization via Constraints Consensus: Theory andApplications[J]. IEEE Trans. on Automatic Control,2011,56(10):2247–2261.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700