杂环芳香化合物降解菌群与降解基因克隆方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杂环芳香族化合物是工业废水处理过程中的主要的污染有机物。目前已开发出很多高效的去除这些污染物的方法,然而,人们对处理过程的生物降解机理并不是很清楚,对参与生物处理的微生物的区系结构、主要的功能菌以及降解相关基因也知之甚少。
     本研究主要采用微生物分子生态学技术及基因克隆技术,对降解喹啉和吲哚等杂环芳香族化合物的工业废水系统中的主要功能菌进行研究,对微生物区系进行解析,并进行克隆降解基因的方法探索。
     在本研究中,以取自上海焦化厂废水处理系统的活性污泥为种子污泥,采用含有高浓度吲哚的人工废水,驯化了一个反硝化反应器和一个厌氧反应器。经过大约6周的驯化后,两个反应器均达到稳定而高效的污染物去除能力,反硝化反应器和厌氧反应器的吲哚去除率分别为80.4±1.7%和52.0±4.5%。通过16S rDNA克隆文库技术和16S rRNA V3区基因的PCR-DGGE分析,对两个反应器的微生物群落结构进行研究。
     研究结果表明,两个反应器的微生物区系组成和种子污泥有很大区别,说明种子污泥在含吲哚的人工废水中进行驯化时,在反硝化和厌氧条件下降解吲哚的微生物被富集。在反硝化反应器中,Beta-proteobacteria是最优势的类群,其中Alicycliphilus,Acaligenes和Thauera可能是主要吲哚降解菌。而在厌氧反应器中,Clostridia和Actinobacteria是最优势的类群,可能也是厌氧条件下的主要吲哚降解菌。尽管两个反应器文库的微生物群落多样性指数差异不大,但在科和属水平的微生物区系组成却区别很大,而造成这个区别的唯一驱动力就是硝酸盐的存在与否。
     吲哚反硝化反应器与之前实验室建立的喹啉反硝化反应器相比,采用相同的种子污泥和相同的驯化条件,而微生物群落结构表现出很大的差异。喹啉驯化的群落中所有的OTU都属于Beta-proteobacteria,而吲哚驯化的群落中Beta-proteobacteria占56.3%,吲哚驯化的群落具有更高的多样性。两个群落的优势OTU也不同,喹啉驯化群落中Thauera及其它Rhodocyclaceae科的微生物占整个群落的73%,而吲哚驯化群落中优势OTU为Comamonadaceae科、Alcaligenaceae科和Rhodocyclaceae科等类型的微生物,其中Comamonadaceae科的一个OTU占群落的28.7%。结果表明,不同驯化底物对微生物群落结构具有较强的选择作用。这是首次报道的对高效降解喹啉和吲哚反硝化生物反应器微生物群落结构的比较。
     为了对杂环芳香化合物降解菌的功能基因进行更深入研究,本研究中构建了一套启动子捕获质粒系统。初步摸索了该系统的筛选方法,并尝试利用该系统,以底物诱导的基因表达筛选方式,从杂环芳香化合物降解菌以及废水处理系统生物膜样品中克隆相关污染物诱导的基因。
Heterocyclic aromatic hydrocarbons are major pollutants in industrial wasterwater treatment. Many efficient pollutant treating techniques have been developed, but we know little about the microbial community composition、major functional species and degrading-related genes.
     In this study, molecular microbial ecology technology and genomic technology were used to analyze the microbial communities in heterocyclic aromatic hydrocarbons (such as quinoline and indole) containing industrial wasterwater treatment. Functional species were studied and a promoter trap plasmid system were constructed for cloning degrading-related genes.
     Two lab scale bioreactors treating indole-containing wasterwater were acclimated using the same seeding sludge. They ran in denitrifying and anaerobic conditions, respectively. After 6 weeks acclimation, both of them reached the stable stage. The average indole removal efficiency was 80.4± 1.7% in denitrifying reactor and 52.0±4.5% in anaerobic reactor. The community structures of both reactors were investigated by clone library and DGGE methods after they reached steady-state.
     The results showed a distinct discrepancy among seeding sludge and two bioreactors. Beta-proteobacteria was the most dominant group of bacteria in denitrifying bioreactor. Among them, bacteria from genera Alicycliphilus, Acaligenes and Thauera might be the main degraders of indole, whereas the Clostridia and Actinobacteria became the dominant bacteria and probably also the main degrading members in anaerobic bioreactor. Although the diversity index of bacteria at OTU level kept in stable in two acclimation processes, the microbial composition both at class and genus level of those samples was distinctly different. The only difference between two reactor’s acclimation, nitrate added or not, had lead to the formation of two different communities.
     The comparison of quinoline and indole acclimated denitrifying bioreactor showed that, despite the same seeding sludge and identical acclimating condition was used, molecular ecological analysis showed distinctly different communities of two reactors. All OTUs of 16S rDNA clone library of quinoline acclimated bioreactor were affiliated to Beta-proteobacteria, whereas the percentage of this subclass in library of indole acclimated bioreactor was only 56.3%. Results showed that microbial diversity in indole acclimated community was higher. 73% clones in quinoline acclimated community was Thauera related OTUs from the Rhodocyclaceae family. But OTUs from the families of Comamonadaceae, Alcaligenaceae and Rhodocyclaceae were dominant OTUs in indole acclimated community. Its most dominant OTU from Comamonadaceae was 28.7% in clone library. These results showed that the type of pollutants in the wastewater had a strong effect on the selection of population in microbial community. Our study was the first report comparing the microbial structure of two effective denitrifying communities which could efficiently degrade quinoline and indole.
     In order to intensively investigate the functional genes related to heterocyclic aromatic hydrocarbons degrading, a promoter trap plasmid system was constructed. The screening method was initially explored for cloning functional genes from the degraders and biofilms of wasterwater treating bioreactor on the basis of substrate-induced gene expression screening.
引文
[1] Head, I.M., J.R. Saunders, and R.W. Pickup, Microbial Evolution, Diversity, and Ecology: A Decade of Ribosomal RNA Analysis of Uncultivated Microorganisms. Microb Ecol, 1998. 35(1): p. 1-21.
    [2] Wagner, M., et al., Probing activated sludge with oligonucleotides specific for proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure. Appl Environ Microbiol, 1993. 59(5): p. 1520-5.
    [3] Hugenholtz, P., B.M. Goebel, and N.R. Pace, Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol, 1998. 180(18): p. 4765-74.
    [4] Pace, N.R., A molecular view of microbial diversity and the biosphere. Science, 1997. 276(5313): p. 734-40.
    [5] Soddell, J.A. and R.J.Seviour, Microbiology of foaming in activated sludge plants. J. Appl. Bacteriol., 1990. 69: p. 145-176.
    [6] Amann, R.I., W. Ludwig, and K.H. Schleifer, Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev, 1995. 59(1): p. 143-69.
    [7] Torsvik, V., L. Ovreas, and T.F. Thingstad, Prokaryotic diversity--magnitude, dynamics, and controlling factors. Science, 2002. 296(5570): p. 1064-6.
    [8] Moore, W.E. and L.V. Holdeman, Human fecal flora: the normal flora of 20 Japanese-Hawaiians. Appl Microbiol, 1974. 27(5): p. 961-79.
    [9] Rappe, M.S. and S.J. Giovannoni, The uncultured microbial majority. Annu Rev Microbiol, 2003. 57: p. 369-94.
    [10] Giovannoni, S.J., et al., Genetic diversity in Sargasso Sea bacterioplankton. Nature, 1990.345(6270): p. 60-63.
    [11] Zoetendal, E.G., E.E. Vaughan, and W.M. de Vos, A microbial world within us.Mol Microbiol, 2006. 59(6): p. 1639-50.
    [12] van Hannen, E.J., et al., Detritus-dependent development of the microbial community in an experimental system: qualitative analysis by denaturing gradient gel electrophoresis. Appl Environ Microbiol, 1999. 65(6): p. 2478-84.
    [13] Girvan, M.S., et al., Responses of active bacterial and fungal communities in soils under winter wheat to different fertilizer and pesticide regimens. Appl Environ Microbiol, 2004. 70(5): p. 2692-701.
    [14] Torsvik, V., J. Goksoyr, and F.L. Daae, High diversity in DNA of soil bacteria. Appl Environ Microbiol, 1990. 56(3): p. 782-7.
    [15] Hill, J.E., et al., Extensive profiling of a complex microbial community by high-throughput sequencing. Appl Environ Microbiol, 2002. 68(6): p. 3055-66.
    [16] Cole, S.T. and I. Saint Girons, Bacterial genomics. FEMS Microbiol Rev, 1994. 14(2): p. 139-60.
    [17] Palys, T., L.K. Nakamura, and F.M. Cohan, Discovery and classification of ecological diversity in the bacterial world: the role of DNA sequence data. Int J Syst Bacteriol, 1997. 47(4): p. 1145-56.
    [18] Dahllof, I., H. Baillie, and S. Kjelleberg, rpoB-based microbial community analysis avoids limitations inherent in 16S rRNA gene intraspecies heterogeneity. Appl Environ Microbiol, 2000. 66(8): p. 3376-80.
    [19] Nubel, U., et al., Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J Bacteriol, 1996. 178(19): p. 5636-43.
    [20] Olsen, G.J., et al., Microbial ecology and evolution: a ribosomal RNA approach. Annu Rev Microbiol, 1986. 40: p. 337-65.
    [21] Bourne, D.G., I.R. McDonald, and J.C. Murrell, Comparison of pmoA PCR primer sets as tools for investigating methanotroph diversity in three Danish soils. Appl Environ Microbiol, 2001. 67(9): p. 3802-9.
    [22] Hill, J.E., et al., cpnDB: a chaperonin sequence database. Genome Res, 2004. 14(8): p. 1669-75.
    [23] Watanabe, K., et al., ICB database: the gyrB database for identification and classification of bacteria. Nucleic Acids Res, 2001. 29(1): p. 344-5.
    [24] Juretschko, S., et al., Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations. Appl Environ Microbiol, 1998. 64(8): p. 3042-51.
    [25] Purkhold, U., et al., Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Appl Environ Microbiol, 2000. 66(12): p. 5368-82.
    [26] Daims, H., et al., Nitrification in sequencing biofilm batch reactors: lessons from molecular approaches. Water Sci Technol, 2001. 43(3): p. 9-18.
    [27] Egli, K., et al., Community analysis of ammonia and nitrite oxidizers during start-up of nitritation reactors. Appl Environ Microbiol, 2003. 69(6): p. 3213-22.
    [28] Gieseke, A., et al., Community structure and activity dynamics of nitrifying bacteria in a phosphate-removing biofilm. Appl Environ Microbiol, 2001. 67(3): p. 1351-62.
    [29] Watanabe, K., et al., Molecular detection, isolation, and physiological characterization of functionally dominant phenol-degrading bacteria in activated sludge. Appl. Environ. Microbiol., 1998. 64(11): p. 4396-402.
    [30] Zhang, X., et al., Microdiversity of phenol hydroxylase genes among phenol-degrading isolates of Alcaligenes sp. from an activated sludge system. FEMS Microbiol Lett, 2004. 237(2): p. 369-75.
    [31] Junca, H. and D.H. Pieper, Functional gene diversity analysis in BTEX contaminated soils by means of PCR-SSCP DNA fingerprinting: comparative diversity assessment against bacterial isolates and PCR-DNA clone libraries.Environ Microbiol, 2004. 6(2): p. 95-110.
    [32] Mesarch, M.B., C.H. Nakatsu, and L. Nies, Development of catechol 2,3-dioxygenase-specific primers for monitoring bioremediation by competitive quantitative PCR. Appl Environ Microbiol, 2000. 66(2): p. 678-83.
    [33] Cavalca, L., E. Dell'Amico, and V. Andreoni, Intrinsic bioremediability of an aromatic hydrocarbon-polluted groundwater: diversity of bacterial population and toluene monoxygenase genes. Appl Microbiol Biotechnol, 2004. 64(4): p. 576-87.
    [34] Beja, O., et al., Construction and analysis of bacterial artificial chromosome libraries from a marine microbial assemblage. Environ Microbiol, 2000. 2(5): p. 516-29.
    [35] DeLong, E.F., Microbial population genomics and ecology: the road ahead. Environ Microbiol, 2004. 6(9): p. 875-8.
    [36] Nelson, K.E., The future of microbial genomics. Environ Microbiol, 2003. 5(12): p. 1223-5.
    [37] Wellington, E.M., A. Berry, and M. Krsek, Resolving functional diversity in relation to microbial community structure in soil: exploiting genomics and stable isotope probing. Curr Opin Microbiol, 2003. 6(3): p. 295-301.
    [38] Rondon, M.R., et al., Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol, 2000. 66(6): p. 2541-7.
    [39] Beja, O., et al., Proteorhodopsin phototrophy in the ocean. Nature, 2001. 411(6839): p. 786-9.
    [40] Lorenz, P., et al., Screening for novel enzymes for biocatalytic processes: accessing the metagenome as a resource of novel functional sequence space. Curr Opin Biotechnol, 2002. 13(6): p. 572-7.
    [41] Yun, J., et al., Characterization of a novel amylolytic enzyme encoded by a gene from a soil-derived metagenomic library. Appl Environ Microbiol, 2004. 70(12): p.7229-35.
    [42] Venter, J.C., et al., Environmental genome shotgun sequencing of the Sargasso Sea. Science, 2004. 304(5667): p. 66-74.
    [43] Tyson, G.W., et al., Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature, 2004. 428(6978): p. 37-43.
    [44] Ventura, M., et al., Molecular microbial analysis of Bifidobacterium isolates from different environments by the species-specific amplified ribosomal DNA restriction analysis (ARDRA). FEMS Microbiol Ecol, 2001. 36(2-3): p. 113-121.
    [45] Gich, F.B., et al., Assessment of microbial community structure changes by amplified ribosomal DNA restriction analysis (ARDRA). Int Microbiol, 2000. 3(2): p. 103-6.
    [46] Fischer, S.G. and L.S. Lerman, DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proc Natl Acad Sci U S A, 1983. 80(6): p. 1579-83.
    [47] Lerman, L.S., et al., Sequence-determined DNA separations. Annu Rev Biophys Bioeng, 1984. 13: p. 399-423.
    [48] Myers, R.M., et al., Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis. Nucleic Acids Res, 1985. 13(9): p. 3131-45.
    [49] Myers, R.M., et al., Modification of the melting properties of duplex DNA by attachment of a GC-rich DNA sequence as determined by denaturing gradient gel electrophoresis. Nucleic Acids Res, 1985. 13(9): p. 3111-29.
    [50] Muyzer, G., E.C. de Waal, and A.G. Uitterlinden, Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol, 1993. 59(3): p. 695-700.
    [51] Muyzer, G., DGGE/TGGE a method for identifying genes from natural ecosystems.Curr Opin Microbiol, 1999. 2(3): p. 317-22.
    [52] Muyzer, G. and K. Smalla, Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek, 1998. 73(1): p. 127-41.
    [53] Zoetendal, E.G., A.D. Akkermans, and W.M. De Vos, Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl Environ Microbiol, 1998. 64(10): p. 3854-9.
    [54] LaPara, T.M., et al., Stability of the bacterial communities supported by a seven-stage biological process treating pharmaceutical wastewater as revealed by PCR-DGGE. Water Research, 2002. 36(3): p. 638-646.
    [55] Schwieger, F. and C.C. Tebbe, A new approach to utilize PCR-single-strand-conformation polymorphism for 16S rRNA gene-based microbial community analysis. Appl Environ Microbiol, 1998. 64(12): p. 4870-6.
    [56] Manichanh, C., et al., Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach. Gut, 2006. 55(2): p. 205-11.
    [57] Schwieger, F. and C.C. Tebbe, Effect of field inoculation with Sinorhizobium meliloti L33 on the composition of bacterial communities in rhizospheres of a target plant (Medicago sativa) and a non-target plant (Chenopodium album)-linking of 16S rRNA gene-based single-strand conformation polymorphism community profiles to the diversity of cultivated bacteria. Appl Environ Microbiol, 2000. 66(8): p. 3556-65.
    [58] Welsh, J. and M. McClelland, Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res, 1990. 18(24): p. 7213-8.
    [59] Williams, J.G., et al., DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res, 1990. 18(22): p. 6531-5.
    [60] Wikstrom, P., A.C. Andersson, and M. Forsman, Biomonitoring complexmicrobial communities using random amplified polymorphic DNA and principal component analysis. Fems Microbiology Ecology, 1999. 28(2): p. 131-139.
    [61] Guieysse, B., et al., Biomonitoring of continuous microbial community adaptation towards more efficient phenol-degradation in a fed-batch bioreactor. Appl Microbiol Biotechnol, 2001. 56(5-6): p. 780-7.
    [62] Di Cello, F., et al., Biodiversity of a Burkholderia cepacia population isolated from the maize rhizosphere at different plant growth stages. Appl. Environ. Microbiol., 1997. 63(11): p. 4485-93.
    [63] Guieysse, B., et al., Biomonitoring of continuous microbial community adaptation towards more efficient phenol-degradation in a fed-batch bioreactor. Appl Microbiol Biotechnol, 2001. 56(5-6): p. 780-7.
    [64] Yang, Y.H., J. Yao, and M.C. Wang, RAPD marker and substrate utilization pattern applied to study microbial community diversity in the soil affected by agricultural chemicals. J Environ Sci Health B, 2004. 39(1): p. 125-38.
    [65] Xia, X., J. Bollinger, and A. Ogram, Molecular genetic analysis of the response of three soil microbial communities to the application of 2,4-D. Mol Ecol, 1995. 4(1): p. 17-28.
    [66] Franklin, R.B., D.R. Taylor, and A.L. Mills, Characterization of microbial communities using randomly amplified polymorphic DNA (RAPD). J Microbiol Methods, 1999. 35(3): p. 225-35.
    [67] Wikstrom, P., et al., Influence of TNT transformation on microbial community structure in four different lake microcosms. J Appl Microbiol, 2000. 89(2): p. 302-8.
    [68] Wikstrom, P., L. Hagglund, and M. Forsman, Structure of a Natural Microbial Community in a Nitroaromatic Contaminated Groundwater Is Altered during Biodegradation of Extrinsic, but Not Intrinsic Substrates. Microb Ecol, 2000. 39(3): p. 203-210.
    [69] Marsh, T.L., et al., Terminal restriction fragment length polymorphism analysis program, a web-based research tool for microbial community analysis. Appl Environ Microbiol, 2000. 66(8): p. 3616-20.
    [70] Gillings, M. and M. Holley, Amplification of anonymous DNA fragments using pairs of long primers generates reproducible DNA fingerprints that are sensitive to genetic variation. Electrophoresis, 1997. 18(9): p. 1512-8.
    [71] Gillings, M. and M. Holley, Repetitive element PCR fingerprinting (rep-PCR) using enterobacterial repetitive intergenic consensus (ERIC) primers is not necessarily directed at ERIC elements. Lett Appl Microbiol, 1997. 25(1): p. 17-21.
    [72] Wei, G., et al., ERIC-PCR fingerprinting-based community DNA hybridization to pinpoint genome-specific fragments as molecular markers to identify and track populations common to healthy human guts. J Microbiol Methods, 2004. 59(1): p. 91-108.
    [73] 鲁海峰等, ERIC-PCR 分子杂交技术分析大熊猫肠道菌群结构. 中国微生态学杂志, 2005. 17(2): p. 81-84.
    [74] 高平平, 赵义, 赵立平, 焦化废水处理系统微生物群落结构动态的ERIC-PCR 指纹图谱分析. 环境科学学报, 2003. 23(6): p. 705-710.
    [75] 李亮等, 用PCR 指纹图技术分析焦化废水接触氧化池中悬浮污泥和生物膜的微生物种群组成. 中国微生态学杂志, 2004. 16(1): p. 8-12.
    [76] Liu, W.T., et al., Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol, 1997. 63(11): p. 4516-22.
    [77] Marsh, T.L., Terminal restriction fragment length polymorphism (T-RFLP): an emerging method for characterizing diversity among homologous populations of amplification products. Curr Opin Microbiol, 1999. 2(3): p. 323-7.
    [78] Amann, R., B.M. Fuchs, and S. Behrens, The identification of microorganisms by fluorescence in situ hybridisation. Curr Opin Biotechnol, 2001. 12(3): p. 231-6.
    [79] Amann, R., et al., In situ visualization of high genetic diversity in a natural microbial community. J Bacteriol, 1996. 178(12): p. 3496-500.
    [80] Amann, R.I., W. Ludwig, and K.H. Schleifer, Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev, 1995. 59(1): p. 143-69.
    [81] Zhang, y., et al., Microarrays and Their Application to Environmental Microorganisms. Acta Microbiologica Sinica, 2003. 44(3): p. 406-410.
    [82] Loy, A., et al., 16S rRNA gene-based oligonucleotide microarray for environmental monitoring of the betaproteobacterial order "Rhodocyclales". Appl Environ Microbiol, 2005. 71(3): p. 1373-86.
    [83] Suau, A., et al., Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol, 1999. 65(11): p. 4799-807.
    [84] Shalon, D., S.J. Smith, and P.O. Brown, A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genome Res, 1996. 6(7): p. 639-45.
    [85] Welsh, J. and M. McClelland, Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res, 1990. 18(24): p. 7213-8.
    [86] Amann, R. and W. Ludwig, Ribosomal RNA-targeted nucleic acid probes for studies in microbial ecology. Fems Microbiology Reviews, 2000. 24(5): p. 555-565.
    [87] Stubner, S., Enumeration of 16S rDNA of Desulfotomaculum lineage 1 in rice field soil by real-time PCR with SybrGreen (TM) detection. Journal of Microbiological Methods, 2002.
    [88] Harms, G., et al., Real-time PCR quantification of nitrifying bacteria in a municipal wastewater treatment plant. Environmental Science & Technology, 2003. 37(2): p. 343-351.
    [89] Tyagi, S. and F.R. Kramer, Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol, 1996. 14(3): p. 303-8.
    [90] Broude, N.E., Stem-loop oligonucleotides: a robust tool for molecular biology and biotechnology. Trends in Biotechnology, 2002. 20(6): p. 249-256.
    [91] Sims G K, Sommers L E, Konopka A. Degradation of pyridine by Micrococcus lutens isolated from soil. Appl Enviro Microbiol, 1986, 51(5): 963~968.
    [92] 王连生编著,环境健康化学. 北京:科学出版社,1994.
    [93] 北京大学化学系有机化学教研室.有机化学词典.北京:科学出版社,1986
    [94] Silyn-Roberts, G. and G. Lewis, In situ analysis of Nitrosomonas spp. in wastewater treatment wetland biofilms. Water Res, 2001. 35(11): p. 2731-9.
    [95] Wouters, J., B. Bergman, and S. Janson, Cloning and expression of a putative cyclodextrin glucosyltransferase from the symbiotically competent cyanobacterium Nostoc sp. PCC 9229. FEMS Microbiol Lett, 2003. 219(2): p. 181-5.
    [96] Boldrick, J.C., et al., Stereotyped and specific gene expression programs in human innate immune responses to bacteria. Proc Natl Acad Sci U S A, 2002. 99(2): p. 972-7.
    [97] Hall, S.J., et al., The development and use of real-time PCR for the quantification of nitrifiers in activated sludge. Water Sci Technol, 2002. 46(1-2): p. 267-72.
    [98] 杨云龙,白晓平.焦化废水中几种典型难降解有机物的特性研究及处理技术.重庆环境科学.2001,23(4):39-41
    [99] Fischer, S.G. and L.S. Lerman, DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proc Natl Acad Sci U S A, 1983. 80(6): p. 1579-83.
    [100] Lerman, L.S., et al., Sequence-determined DNA separations. Annu Rev Biophys Bioeng, 1984. 13: p. 399-423.
    [101] Hopper, D.J., P.J. Chapman, and S. Dagley, Metabolism of L-malate and D-malateby a species of Pseudomonas. J. Bacteriol., 1970. 104: p. 1197-1202.
    [102] Nakamura, K., H. Ishida, and T. Iizumi, Constitutive trichloroethylene degradation led by tac promoter chromosomally integrated upstream of phenol hydroxylase genes of Ralstonia sp. KN1 and its nucleotide sequence analysis. J. Biosci. Bioeng., 2000. 89: p. 47-54.
    [103] Dagley, S., Catabolism of aromatic compounds by micro-organisms Adv.Microb.Physiol, 1971. 6: p. 1-46.
    [104] Caroline, S.H. and E.P. Rebecca, The ?-ketoadipate pathway and the biology of selg-identity. Annual Review of Microbiology, 1996. 50: p. 553-590.
    [105] Cain, R., The uptake and catabolism of lignin-related aromatic compounds and their regulation in microorganisms. In Lignin Degradation: Microbiology, Chemistry, and Potential Applications, ed. K. TK, H. T , and C. H. 1980, Boca Raton, Florida: CRC Press.
    [106] Neidle, E. and L. Ornston, Benzoate and muconate, structurally dissimilar metabolites, induce expression of catA in Acinetobacter calcoaceticus. J. Bacteriol, 1987. 169: p. 414-415.
    [107] Parke, D., Characterization of PcaQ, a LysR-type transcriptional activator required for catabolism of phenolic compounds, from Agrobacterium tumefaciens. J. Bacteriol., 1996. 178: p. 266-272.
    [108] Rann, D. and R. Cain, Regulation of the enzymes of aromatic ring fission in the genus Nocardia. Biochem. Soc. Trans, 1973. 1: p. 658-661.
    [109] Parke, D., F. Rynne, and A. Glenn, Regulation of phenolic catabolism in Rhizobium leguminosarum biovar trifolii. J. Bacteriol, 1991. 173: p. 5546-5556.
    [110] Cook, K. and R. Cain, Regulation of aromatic metabolism in the fungi: metabolic control of the 3-oxoadipate pathway in the yeast Rhodotorula mucilaginosa. J. Gen. Microbiol, 1974. 85: p. 37-50.
    [111] Mazur, P., et al., 3-Carboxy- cis,cis-muconate lactonizing enzyme fromNeurospora crassa: an alternate cycloisomerase motif. J. Bacteriol, 1994. 176: p. 1718-1728.
    [112] Buvinger, W., L. Stone, and H. Heath, Biochemical genetics of tryptophan synthesis in Pseudomonas acidovorans. J. Bacteriol, 1981. 147: p. 62-68.
    [113] Ornston, M.K. and L.N. Ornston, The regulation of the -ketoadipate pathway in Pseudomonas acidovorans and Pseudomonas testosteroni. Journal of General Microbiology, 1972. 73(3): p. 455-64.
    [114] Ornston, L., The conversion of catechol and protocatechuate to ?-ketoadipate by Pseudomonas putida. II. Enzymes of the protocatechuate pathway. J. Biol. Chem, 1966. 241: p. 3787-3789.
    [115] Diaz, E., et al., Biodegradation of aromatic compounds by Escherichia coli. Microbiol Mol Biol Rev, 2001. 65(4): p. 523-69, table of contents.
    [116] Mechichi, T., et al., Phylogenetic and metabolic diversity of bacteria degrading aromatic compounds under denitrifying conditions, and description of Thauera phenylacetica sp. nov., Thauera aminoaromaticasp. nov., and Azoarcus buckelii sp. nov. Arch Microbiol, 2002. 178(1): p. 26-35.
    [117] Evans, W.C., Biochemistry of the bacterial catabolism of aromatic compounds in anaerobic environments. Nature, 1977. 270(5632): p. 17-22.
    [118] Dutton, P.L. and W.C. Evans, The metabolism of aromatic compounds by Rhodopseudomonas palustris. Biochem.J., 1968. 113: p. 525-535.
    [119] Evans, W.C. and G. Fuchs, Anaerobic degradation of aromatic compounds. Annu Rev Microbiol, 1988. 42: p. 289-317.
    [120] Harwood, C.S. and J. Gibson, Anaerobic and aerobic metabolism of diverse aromatic compounds by the photosynthetic bacterium Rhodopseudomonas palustris. Appl Environ Microbiol, 1988. 54(3): p. 712-7.
    [121] Nozawa, T. and Y. Maruyama, Anaerobic metabolism of phthalate and other aromatic compounds by a denitrifying bacterium. J Bacteriol, 1988. 170(12): p.5778-84.
    [122] Anders, H.J., et al., Taxonomic position of aromatic -degrading denitrifying pseudomonad strains K 172 and KB 740 and their description as new members of the genera Thauera, as Thauera aromatica sp. nov., and Azoarcus, as Azoarcus evansii sp. nov., respectively, members of the beta subclass of the Proteobacteria. Int J Syst Bacteriol, 1995. 45(2): p. 327-33.
    [123] Springer, N., et al., Azoarcus anaerobius sp. nov., a resorcinol-degrading, strictly anaerobic, denitrifying bacterium. Int J Syst Bacteriol, 1998. 48 Pt 3: p. 953-6.
    [124] Song, B., L.Y. Young, and N.J. Palleroni, Identification of denitrifier strain T1 as Thauera aromatica and proposal for emendation of the genus Thauera definition. Int J Syst Bacteriol, 1998. 48 Pt 3: p. 889-94.
    [125] Rhee, S.K., et al., Anaerobic and aerobic degradation of pyridine by a newly isolated denitrifying bacterium. Appl Environ Microbiol, 1997. 63(7): p. 2578-85.
    [126] Zhou, J., et al., Phylogenetic analyses of a new group of denitrifiers capable of anaerobic growth of toluene and description of Azoarcus tolulyticus sp. nov. Int J Syst Bacteriol, 1995. 45(3): p. 500-6.
    [127] Blake, C.K. and D.G. Hegeman, Plasmid pCBI carries genes for anaerobic benzoate catabolism in Alcaligenes xylosoxidans subsp. denitrificans PN-1. J. Bacteriol., 1987. 169: p. 4878-4883.
    [128] Bak, F. and F. Widdel, Anaerobic degradation of phenol and phenol derivatives by Desulfobacterium phenolicum gen. nov., sp. nov. . Arch. Microbiol., 1986. 146: p. 177-180.
    [129] Szewzyk, U. and N. Pfennig, Complete oxidation of catechol by the strictly anaerobic sulfate-reducing Desulfobacterium catecholicum sp. nov. Arch. Microbiol., 1987. 147: p. 163-168.
    [130] Gorny, N. and B. Schink, Anaerobic degradation of catechol by Desulfobacterium sp. strain Cat2 proceeds via carboxylation to protocatechuate. Appl EnvironMicrobiol, 1994. 60(9): p. 3396-400.
    [131] Rabus, R., et al., Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium. Appl Environ Microbiol, 1993. 59(5): p. 1444-51.
    [132] Lovley, D.R., et al., Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol, 1993. 159: p. 336-344.
    [133] Lovley, D.R. and D.J. Lonergan, Anaerobic Oxidation of Toluene, Phenol, and p-Cresol by the Dissimilatory Iron-Reducing Organism, GS-15. Appl Environ Microbiol, 1990. 56(6): p. 1858-1864.
    [134] Hale, R. and K. Aneiro, Determination of coal tar and creosote constituents in the aquatic environment. J Chromatogr A, 1997. 774: p. 79-95.
    [135] Mayer, A., et al., Fate and effects of pollutants.Groundwater quality. . Water Environ Res, 1997. 69: p. 777-844.
    [136] Canter, L. and D. Sabatini, Contamination of public ground water supplies by Superfund sites. Int J Environ Stud, 1994. 46: p. 25-57.
    [137] Pereira, W., et al., Fate and movement of azaarenes and their anaerobic biotransformation products in an aquifer contaminated by wood-treatment chemicals. Environ Toxicol Chem 1987. 6: p. 163-176.
    [138] Johansen, S., et al., Identification of heteroaromatic and other organic compounds in ground water at creosote-contaminated sites in Denmark. Ground Water Monit Rem 1997. 17: p. 106-115.
    [139] Schach, S., et al., Degradation of 3-methylquinoline by Comamonas testosteroni 63. Biol Chem Hoppe-Seyler, 1993. 374: p. 175-181.
    [140] Schach, S., et al., Quinoline 2-oxidoreductase and 2-oxo-1,2-dihydroquinoline 5,6-dioxygenase from Comamonas testosteroni 63. The first two enzymes in quinoline and 3-methylquinoline degradation. Eur J Biochem, 1995. 232: p.536-544.
    [141] Hund, H., A.d. Beyer, and F. Lingens, Degradation of quinaldine by Arthrobacter sp. Biol Chem Hoppe-Seyler, 1990. 371: p. 1005-1008.
    [142] Bauer, I., et al., A novel type of oxygenolytic ring cleavage: 2,4-oxygenation and decarbonylation of 1H-3-hydroxy-4-oxoquinaldine and 1H-3-hydroxy-4-oxoquinolin. FEMS Microbiol Lett, 1994. 117: p. 299-304.
    [143] Liu, S. and C. Kuo, Microbial potential for the anaerobic transformation of simple homocyclic and heterocyclic compounds in sediments of the Tsengwen River,Taiwan. Chem Ecol 1996. 12: p. 41-56.
    [144] Licht, D., B. Ahring, and E. Arvin, Effects of electron acceptors,reducing agents, and toxic metabolites on anaerobic degradation of heterocyclic compounds. Biodegradation, 1996. 7: p. 83-90.
    [145] Wagner, M. and A. Loy, Bacterial community composition and function in sewage treatment systems. Curr Opin Biotechnol, 2002. 13(3): p. 218-27.
    [146] Ginige, M.P., J. Keller, and L.L. Blackall, Investigation of an acetate-fed denitrifying microbial community by stable isotope probing, full-cycle rRNA analysis, and fluorescent in situ hybridization-microautoradiography. Applied and Environmental Microbiology, 2005. 71(12): p. 8683-8691.
    [147] Wagner, M., et al., Probing activated sludge with oligonucleotides specific for proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure. Appl Environ Microbiol, 1993. 59(5): p. 1520-5.
    [148] Bothe, H., et al., Molecular analysis of ammonia oxidation and denitrification in natural environments. FEMS Microbiol Rev, 2000. 24(5): p. 673-90.
    [149] Purkhold, U., et al., Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: Implications for molecular diversity surveys. Applied and Environmental Microbiology, 2000. 66(12): p. 5368-5382.
    [150] Burrell, P.C., J. Keller, and L.L. Blackall, Microbiology of a nitrite-oxidizing bioreactor. Applied and Environmental Microbiology, 1998. 64(5): p. 1878-1883.
    [151] Okabe, S., H. Satoh, and Y. Watanabe, In situ analysis of nitrifying biofilms as determined by in situ hybridization and the use of microelectrodes. Applied and Environmental Microbiology, 1999. 65(7): p. 3182-3191.
    [152] Schramm, A., et al., Identification and activities in situ of Nitrosospira and Nitrospira spp. as dominant populations in a nitrifying fluidized bed reactor. Applied and Environmental Microbiology, 1998. 64(9): p. 3480-3485.
    [153] Juretschko, S., et al., Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations. Applied and Environmental Microbiology, 1998. 64(8): p. 3042-3051.
    [154] Daims, H., et al., In situ characterization of Nitrospira-like nitrite oxidizing bacteria active in wastewater treatment plants. Applied and Environmental Microbiology, 2001. 67(11): p. 5273-5284.
    [155] Watanabe, K., et al., Molecular detection, isolation, and physiological characterization of functionally dominant phenol-degrading bacteria in activated sludge. Appl. Environ. Microbiol., 1998. 64(11): p. 4396-402.
    [156] Hashimoto, S. and M. Fujita, Identification of three phenol-degrading microorganisms isolated from activated sludges and their characteristics. J. Jpn. Sewage Works, 1987. 9: p. 655-660.
    [157] Nakamura, K., H. Ishida, and T. Iizumi, Constitutive trichloroethylene degradation led by tac promoter chromosomally integrated upstream of phenol hydroxylase genes of Ralstonia sp. KN1 and its nucleotide sequence analysis. J. Biosci. Bioeng., 2000. 89: p. 47-54.
    [158] Hino, S., K. Watanabe, and N. Takahashi, Phenol hydroxylase cloned from Ralstonia eutropha strain E2 exhibits novel kinetic properties. Microbiology, 1998.144 ( Pt 7): p. 1765-72.
    [159] Ehrt, S., F. Schirmer, and W. Hillen, Genetic organization, nucleotide sequence and regulation of expression of genes encoding phenol hydroxylase and catechol 1,2-dioxygenase in Acinetobacter calcoaceticus NCIB8250. Mol. Microbiol., 1995. 18(1): p. 13-20.
    [160] Arai, H., et al., Adaptation of Comamonas testosteroni TA441 to utilize phenol: organization and regulation of the genes involved in phenol degradation. Microbiology, 1998. 144: p. 2895-903.
    [161] Watanabe, K., et al., Diversity in kinetics of bacterial phenol-oxygenating activity. J. Ferment. Bioeng., 1996. 81: p. 560-563.
    [162] Futamata, H., S. Harayama, and K. Watanabe, Group-specific monitoring of phenol hydroxylase genes for a functional assessment of phenol-stimulated trichloroethylene bioremediation. Appl. Environ. Microbiol., 2001. 67(10): p. 4671-7.
    [163] Kim, I.C. and P.J. Oriel, Characterization of the Bacillus stearothermophilus BR219 phenol hydroxylase gene. Appl Environ Microbiol, 1995. 61(4): p. 1252-6.
    [164] van Schie, P.M. and L.Y. Young, Isolation and characterization of phenol-degrading denitrifying bacteria. Appl Environ Microbiol, 1998. 64(7): p. 2432-8.
    [165] Gibson, D.T., Microbial degradation of aromatic compounds. Science, 1967. 161(846): p. 1093-7.
    [166] Neujahr, H.Y. and A. Gaal, Phenol hydroxylase from yeast. Purification and properties of the enzyme from Trichosporon cutaneum. Eur J Biochem, 1973. 35(2): p. 386-400.
    [167] Whiteley, A.S., et al., Ecological and physiological analyses of Pseudomonad species within a phenol remediation system. J Microbiol Methods, 2001. 44(1): p. 79-88.
    [168] Mechichi, T., et al., Phylogenetic and metabolic diversity of bacteria degrading aromatic compounds under denitrifying conditions, and description of Thauera phenylacetica sp nov., Thauera aminoaromatica sp nov., and Azoarcus buckelii sp nov. Archives of Microbiology, 2002. 178(1): p. 26-35.
    [169] Zhou, J., et al., Phylogenetic analyses of a new group of denitrifiers capable of anaerobic growth of toluene and description of Azoarcus tolulyticus sp. nov. Int J Syst Bacteriol, 1995. 45(3): p. 500-6.
    [170] Song, B.K., et al., Characterization of halobenzoate-degrading. denitrifying Azoarcus and Thauera isolates and description of Thauera chlorobenzoica sp nov. International Journal of Systematic and Evolutionary Microbiology, 2001. 51: p. 589-602.
    [171] Liu, B.B., et al., Thauera and Azoarcus as functionally important genera in a denitrifying quinoline-removal bioreactor as revealed by microbial community structure comparison. Fems Microbiology Ecology, 2006. 55(2): p. 274-286.
    [172] Ginige, M.P., J. Keller, and L.L. Blackall, Investigation of an acetate-fed denitrifying microbial community by stable isotope probing, full-cycle rRNA analysis, and fluorescent in situ hybridization-microautoradiography. Applied and Environmental Microbiology, 2005. 71(12): p. 8683-8691.
    [173] Juretschko, S., et al., The microbial community composition of a nitrifying-denitrifying activated sludge from an industrial sewage treatment plant analyzed by the full-cycle rRNA approach. Syst Appl Microbiol, 2002. 25(1): p. 84-99.
    [174] Manefield, M., et al., RNA stable isotope probing, a novel means of linking microbial community function to Phylogeny. Applied and Environmental Microbiology, 2002. 68(11): p. 5367-5373.
    [175] Nordlund, I., et al., Conservation of regulatory and structural genes for a multi-component phenol hydroxylase within phenol-catabolizing bacteria thatutilize a meta-cleavage pathway. J Gen Microbiol, 1993. 139 ( Pt 11): p. 2695-703.
    [176] Peters, M., et al., Acquisition of a deliberately introduced phenol degradation operon, pheBA, by different indigenous Pseudomonas species. Appl. Environ. Microbiol., 1997. 63(12): p. 4899-906.
    [177] Nurk, A., L. Kasak, and M. Kivisaar, Sequence of the gene (pheA) encoding phenol monooxygenase from Pseudomonas sp. EST1001: expression in Escherichia coli and Pseudomonas putida. Gene, 1991. 102(1): p. 13-8.
    [178] Braker, G., et al., Nitrite reductase genes (nirK and nirS) as functional markers to investigate diversity of denitrifying bacteria in pacific northwest marine sediment communities. Appl Environ Microbiol, 2000. 66(5): p. 2096-104.
    [179] Gerben, J.Z., K. Eungbin, and A. K.Goyal, comparative molecular analysis of genes for polycyclic aromatic hydrocarbon degradation Genetic engineering, 1997. 19: p. 257-269.
    [180] Etchebehere, C. and J. Tiedje, Presence of two different active nirS nitrite reductase genes in a denitrifying Thauera sp. from a high-nitrate-removal-rate reactor. Appl Environ Microbiol, 2005. 71(9): p. 5642-5.
    [181] Birgit Carl, Anke Arnold, Bernhard Hauer, et al., Sequence and transcriptional analysis of a gene cluster of Pseudomonas putida 86 involved in quinoline degradation. gene, 2004. 331, 177-188
    [182] Julia J. Griese, Roman P. Jakob, Stephan Schwarzinger, et al., Xenobiotic Reductase A in the Degradation of Quinoline by Pseudomonas putida 86: Physiological Function, Structure and Mechanism of 8-Hydroxycoumarin Reduction, J.Mol.Biol., 2006. 361, 140-152
    [183] Song, B. and B.B. Ward, Genetic diversity of benzoyl coenzyme A reductase genes detected in denitrifying isolates and estuarine sediment communities. Appl Environ Microbiol, 2005. 71(4): p. 2036-45.
    [184] Muyzer, G., de Waal, E.C., Uitterlinden, A.G. (1993) Profiling of complexmicrobial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reactionamplified genes coding for 16S rRNA. Appl Environ Microbiol. 59, 695-700.
    [185] Dagher, F., Déziel, E., Lirette, P., Paquette, G., Bisaillon, J.G., Villemur, R. (1997) Comparative study of five polycyclic aromatic hydrocarbon degrading bacterial strains isolated from contaminated soils. Can J Microbiol. 43(4), 368-377.
    [186] Bak, F., Widdel, F. (1986) Anaerobic degradation of indolic compounds by sulfate-reducing enrichment cultures, and description of Desulfobacterium indolicum gen. nov., sp. Nov. Archives of Microbiology. 146, 170-176.
    [187] Claus, G. and Kutzner, H.J. (1983) Degradation of Indole by Alcaligenes spec. Systematic and Applied Microbiology. 4, 169-180.
    [188] Berry, H.K. (1987) Screening for mucopolysaccharide disorders with the Berry spot test. Clin Biochem. 20(5), 365-371.
    [189] Gu, J.D., Berry, D.F. (1991) Degradation of substituted indoles by an indole-degrading methanogenic consortium. Applied and Environmental Microbiology. 57, 2622-2627.
    [190] Gu, J.D., Berry, D.F. (1992). Metabolism of indole by a methanogenic consortium. Applied and Environmental Microbiology. 58, 2667-2669.
    [191] Gu, J.D., Fan, Y.Z., Shi, H.C. (2002) Relationship between structures of substituted indolic compounds and their degradation by marine anaerobic microorganisms. Marine Pollution Bulletin. 45, 379-384.
    [192] Madsen, E.L. and Bollag, J.M. (1989) Pathway of indole metabolism by a denitrifying microbial community. Archives of Microbiology. 151, 71-76.
    [193] Madsen, E.L., Francis, A.J., Bollag, J.M. (1988) Environmental factors affecting indole metabolism under anaerobic conditions. Applied and Environmental Microbiology. 54, 74-78.
    [194] Yin, B., Gu, J.D., Wan, N. (2005) Degradation of indole by enrichment culture andPseudomonas aeruginosa Gs isolated from mangrove sediment. International Biodeterioration & Biodegradation. 56, 243-248.
    [195] Li, Y.M., Li, W.S., Gu, G.W. (2006) Cometabolic biodegradation of nitrogenous heterocyclic compounds indole and pyridine under anoxic conditions. Huan Jing Ke Xue. 27(2), 300-4.
    [196] Liu, B., Zhang, F., Feng, X., Liu, Y., Yan, X., Zhang, X., Wang, L., Zhao, L. (2006) Thauera and Azoarcus as functionally important genera in a denitrifying quinoline-removal bioreactor as revealed by microbial community structure comparison. FEMS Microbiol Ecol. 55(2), 274-286.
    [197] Kemp, P.F., Aller, J.Y. (2004) Bacterial diversity in aquatic and other environments: what 16S rDNA libraries can tell us. FEMS Microbiol Ecol. 47, 161-177.
    [198] Chao, A. (1987) Estimating the population size for capture–recapture data with unequal catchability. Biometrics. 43, 783-791.
    [199] Chao, A., Ma, M.C., Yang, M.C.K. (1993) Stopping rules and estimation for recapture debugging with unequal failure rates. Biometrika. 80,193-201.
    [200] Kemp, P.F., Aller, J.Y. (2004) Estimating prokaryotic diversity: when are 16S rDNA libraries large enough? Limnol Oceanogr Methods. 2, 114-125.
    [201] Krebs, C.J. (1989) Ecological Methodology. Harper Collins Inc, NewYork.
    [202] Simpson, E.H. (1949) Measurement of diversity. Nature 163, 688.
    [203] Lozupone, C., Knight, R. (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol. 71(12), 8228-35.
    [204] Muyzer, G., de Waal, E.C., Uitterlinden, A.G. (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reactionamplified genes coding for 16S rRNA. Appl Environ Microbiol. 59, 695-700.
    [205] Weelink, S.A., Tan, N.C., Ten Broeke, H., van Doesburg, W., Langenhoff, A.A.,Gerritse, J., Stams, A.J. (2007) Physiological and phylogenetic characterization of a stable benzene-degrading, chlorate-reducing microbial community. FEMS Microbiology Ecology. 60(2), 312-321.
    [206] Moser R, Stahl U. (2001) insights into the genetic diversity of initial dioxygenases from PAH-degrading bacteria. Appl Microbiol Biotechnol. 55(5),609-618..
    [207] Boon, N., Goris, J., De Vos, P., Verstraete, W., Top, E.M. (2001) Genetic diversity among 3-chloroaniline- and aniline-degrading strains of the Comamonadaceae. Appl Environ Microbiol. 67(3), 1107-1115.
    [208] Khan, S.T., Horiba, Y., Yamamoto, M., Hiraishi, A. (2002) Members of the family Comamonadaceae as primary poly (3-hydroxybutyrate-co-3-hydroxyvalerate) -degrading denitrifiers in activated sludge as revealed by a polyphasic approach. Appl Environ Microbiol. 68(7), 3206-3214.
    [209] Zhang, X., P. Gao, Q. Chao, L. Wang, E. Senior, and L. Zhao. (2004) Microdiversity of phenol- hydroxylase genes among phenol-degrading isolates of Alcaligenes sp. from an activated sludge system. FEMS Microbiol Lett. 237, 369-75.
    [210] Akasaka, H. Ueki, A., Hanada, S., Kamagata, Y. Ueki, K. (2003) Propionicimonas paludicola gen. nov., sp. nov., a novel facultatively anaerobic, Gram-positive, propionate-producing bacterium isolated from plant residue in irrigated rice-field soil. Int J Syst Evol Microbiol. 53(6), 1991-8.
    [211] Bae, H.S., Moe, W.M., Yan, J., Tiago, I., da Costa, M.S., Rainey, F.A. (2006) Propionicicella superfundia gen. nov., sp. nov., a chlorosolvent-tolerant propionate-forming, facultative anaerobic bacterium isolated from contaminated groundwater. Syst Appl Microbiol. 29(5), 404-13.
    [212] Romanov, M.N., Bato, R.V.ee,e.T., Rust, S.R. (2004) PCR detection and 16S rRNA sequence-based phylogeny of a novel Propionibacterium acidipropionici applicable for enhanced fermentation of high moisture corn. J Appl Microbiol.97(1), 38-47.
    [213] Daniel, R. The soil metagenome-a rich resource for the discovery of novel natural products. Curr. Opin. Biotechnol. 2004,15, 199–204
    [214] Okuta, A., Ohnishi, K.,Harayama, S. PCR isolation of catechol 2,3-dioxygenase gene fragments from environmental samples and their assembly into functional genes. Gene,1998, 212, 221–228
    [215] Henne, A., Daniel, R., Schmitz, R.A. et al Construction of environmental DNA libraries in Escherichia coli and screening for the presence of genes conferring utilization of 4-hydroxybutyrate. Appl. Environ. Microbiol. 1999, 65, 3901–3907
    [216] Uchiyama T., Abe T., Ikemura T, et al, Substrate-induced gene-expression screening of environmental metagenome libraries for isolation of catabolic genes, Nature Biotechnology, 2005, 23, 88-93
    [217] Debarbouille, M., Martin-Verstraete, I., Klier, A. et al, G. The transcriptional regulator LevR of Bacillus subtilis has domains homologous to both sigma54-and phosphotransferase system-dependent regulators. Proc. Natl. Acad. Sci. USA 88, 2212–2216.
    [218] Rogowsky, P.M. et al. Molecular characterization of the vir regulon of Agrobacterium tumefaciens: complete nucleotide sequence and gene organization of the 2863-kbp regulon cloned as a single unit. Plasmid, 1990, 23, 85–106
    [219] Valdivia, R.H.,Falkow, S. Fluorescence-based isolation of bacterial genes expressed within host cells. Science,1997,277, 2007–2011

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700