保护地土壤细菌和古菌群落多样性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国保护地栽培面积的扩大,保护地栽培措施的一些弊端日益显现出来,其多年连作、过量施用化肥、高温高湿、蒸发量大等特点,形成了有悖于露地土壤的物理、化学和生物学的特性,从而造成了土壤板结酸化、土壤养分失衡、土壤次生盐渍化、土传病害的严重发生、土壤微生物区系失衡、土壤根结线虫为害严重等各种问题。土壤微生物在土壤生态系统中具有不可替代的重要作用,它们的群落组成失衡将直接破坏土壤中的生态平衡,对土壤环境和农业生产带来严重影响。因此本研究应用16S rRNA基因克隆文库技术研究在保护地栽培条件下,土壤微生物群落区系结构的组成以及可能发生的变化,对于弄清保护地土壤微生物的群落多样性的变化给土壤和植物带来的影响提供理论依据,并对于保护地农业的可持续发展等问题具有重要意义。
     氮是植物生长所必需的营养元素,是土壤生产力的重要限制因素。土壤中氮循环的不平衡将影响到其他重要的生物地球化学循环,乃至全球环境的变化。保护地栽培环境改变了其覆盖地区土壤的生态环境,高温、高湿、高肥以及CO2浓度增高等都直接影响土壤中与氮素循环密切相关的氨氧化菌的群落结构组成。因而通过对保护地和露地土壤氨氧化菌amoA基因克隆文库的构建,研究保护地栽培条件下可能对土壤氨氧化菌群落多样性产生的影响,对于进一步研究农田氮素循环和全球环境变化等重大问题具有重要的意义。本研究主要结果如下:
     1、通过保护地(根结线虫发生地)和露地(健康)菜田土壤细菌(Bacteria)和古菌(Archaea)16S rRNA基因克隆文库的构建,对两地土壤细菌和古菌群落多样性的系统发育分析表明:
     (1)应用ARDRA技术对两地土壤细菌(Bacteria)和古菌(Archaea)多样性分析表明,露地土壤细菌和古菌的群落组成多样性均高于保护地栽培条件下两种群的多样性。
     (2)利用∫-Libshuff等生物信息技术等对两地土壤细菌(Bacteria)和古菌(Archaea)16S rRNA基因克隆文库的系统发育和比较分析表明:两地土壤细菌(Bacteria)群落区系结构组成没有显著的差异,但保护地根结线虫地土壤农杆菌(Agrobacterium)所占的比例较大,且其中能引起植物根癌病的Agrobacterium tumefaciens数量很大。保护地土壤农杆菌(Agrobacterium)的克隆数目是露地土壤农杆菌数目的3.66倍;利用∫-Libshuff计算两地土壤古菌(Archaea)克隆文库的P值均为0.0000(P<0.05),因此得到两古菌(Archaea)克隆文库存在显著不同,其中Euryarchaeota在保护地土壤和露地土壤古菌16S r RNA克隆文库中比例相差非常大,分别为19.0%和1.92%。
     (3)两地土壤细菌和古菌多样性分析表明,露地土壤中的多样性组成均高于保护地土壤。土壤的微生物种类不同其功能也很不同,因此微生物多样性的降低,将直接影响到各种微生物不同功能的发挥,以及相互间的互作。从而对土壤各种营养元素的循环、有机物的分解利用,植物对养分的吸收和生长发育产生严重的不良影响,破坏植物正常的生长环境从而使各种植物病害普遍发生。
     2、通过保护地和露地土壤细菌(Bacteria)和古菌(Archaea)amoA基因克隆文库的构建,对两地土壤氨氧化古菌(AOA)和氨氧化细菌(AOB)群落多样性的系统发育分析表明:
     (1)利用DOTUR软件对克隆文库丰富度(richness)和Chao1评估的丰度(Chao1-estimated richness)参数的比较分析表明:露地菜田土壤中的氨氧化菌(AOA和AOB)的种群多样性均明显高于保护地栽培条件下氨氧化菌的种群多样性。
     (2)利用∫-Libshuff等生物信息技术对两地氨氧化菌(AOA和AOB)amoA基因克隆文库的系统发育分析和比较分析表明:两地土壤氨氧化古菌(AOA)克隆文库的P值均为0.0000(P<0.05)。则得到两克隆文库显著不同;同时保护地土壤氨氧化细菌克隆文库与露地菜田氨氧化细菌(AOB)克隆文库的P值也均为0.0000(P<0.05),两克隆文库也存在显著的不同。因此得出保护地环境条件下土壤微生物中与氮循环有关的氨氧化菌的群落组成情况发生了显著的变化。
     (3)露地土壤中氨氧化菌的多样性组成均显著高于保护地土壤。本研究推测在保护地这一环境条件下由于氨氧化菌的多样性的降低,很可能使硝化作用变得脆弱和敏感,并且很容易受到干扰,硝化作用的效率降低,对复杂环境的适应能力显著减弱,进而严重影响土壤氮素循环的正常运转,从而进一步对土壤自身的养分循环、土壤生态系统的平衡、植物的生长发育带来诸多不良影响。
With the expansion protected area in China, the shortcomings of the protection cultivation measures gradually emerged.cultivation for many years, excessive use of fertilizers, high temperature and humidity, evaporation and other major features, soil formation contrary to the physical, chemical and biological properties. Resulting in the acidification of soil compaction, soil nutrient imbalance, soil salinization, soil-borne diseases a serious outbreak, soil microbial flora imbalance in the soil root-knot nematode damage and other serious problems. Soil Microbial in the soil ecosystems have an irreplaceable role .So that soil Microbial imbalance in will directly undermine the biological balance, product a serious impact on soil environment and agricultural production.In this study, Application of 16S rRNA gene cloning library technology research in the protection of cultural facilities to study the district of soil microbial community structure and change of the composition. To provide a theoretical basis for the diversity of soil microorganisms in the soil and the impact to the plants. There is great significance for the sustainable the development of protection agriculture and other issues.
     Nitrogen is essential nutrition element for plant growth, and a major limiting factor for soil productivity. Soil nitrogen cycle imbalance will affect other important biogeochemical cycles, and global environmental change. Protection of the cultural facilities changed the ecological environment of its coverage of the soil, high temperatures, high humidity, high-fat and higher CO2 concentration, that will directly affect the community structure of the ammonia-oxidizing bacteria and Archaea which are closely related to the nitrogen cycle. Therefore application of ammonia-oxidizing Bacteria and Archaea amoA gene library research the impact of the structure and the composition of soil microbial community in the protection of cultural facilities under the conditions of soil root knot nematode disease occurred areas, for further study nitrogen cycle of farmland and global environmental change is of great significance. The main results were as follows:
     1.The soil Bacteria and Archaea amoA 16S rRNA gene libraries were generated for the soil of protected cultivation and open field, the diversity and phylogenetic analysis of Bacteria and Archaea in the two soil showed that:
     (1) Application ARDRA technology on both the soil bacteria and Archaea diversity analysis showed that the bacteria and archaea community composition and diversity in the open field with health of soil are higher than the protection of cultural facilities root knot nematode took place.
     (2) These observed variations in community composition were statistically compared using∫- Libshuff. The Phylogenetic analysis and comparative analysis showed that: the department of community composed of two soil bacteria is no significant differences, but in the protection of cultural facilities root knot nematode took place,soil Agrobacterium has a larger proportion than the open field . Agrobacterium tumefaciens which can cause cancer of plant has the large numbers. the number of clones of soil Agrobacterium is 3.66 times than the open field; The P values of the two Archaea cloning library are 0.0000 (P <0.05), that calculate with the∫-Libshuff. So that the two Archaea clone libraries exists significant differences between them .The number of clones of the Euryarchaeota in the tow libraries of Archaea 16S rRNA gene are very difference, respectively 19.0 percent and 1.92 percent.
     (3) Bacteria and archaea diversity of the two soil analysis showed that the soil in the open field were higher than the protection land of biodiversity components. Different types of soil micro-organisms are very different functions, so the reduction of microbial diversity, will directly affect the different functions of the various micro-organisms, and the interaction between themselves. Thus the various soil nutrient cycle, the decomposition of organic matter, plant nutrient absorption and the growth and development will have serious adverse effects.
     2.The soil Bacteria and Archaea amoA gene library were generated for the soil of protected cultivation and open field, the two soil ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) diversity of the phylogenetic analysis showed that:
     (1) To assess AOA and AOB diversity within the soil of protected cultivation and open field, the OTUs predicted by richness and Chao1-estimated richness. the analysis showed that: the diversity of ammonia-oxidizing bacteria (AOA and AOB) in the open vegetable fields are significantly higher than the soil of protected cultivation.
     (2) These observed variations in community composition were statistically compared using∫- Libshuff. The phylogenetic analysis and comparative analysis of the libraries showed that: the P value of two ammonia-oxidizing archaea (AOA) clone libraries are 0.0000 (P <0.05). there is significant differences between the two libraries. the P value of two ammonia-oxidizing bacteria (AOB) clone libraries are 0.0000(P<0.05). two clone libraries also significantly different. All this show that the composition of the community of the AOA and AOB that related to the nitrogen cycle are significant change.
     (3) the diversity of ammonia-oxidizing bacteria and archaea were significantly higher than that of the protection land. So speculated that because of ammonia-oxidizing bacteria and archaea the diversity of the lower under the conditions of the protected land, the nitrification is likely to become fragile and sensitive. And are susceptible to interference, reduced the efficiency of nitrification, weakened the ability to adapt to the complex environment significantly. Then serious impact nitrogen cycle of normal operation in soil. Thus further to adverse affect soil nutrient cycling and soil ecosystem balance, plant growth and development.
引文
1. 陈三凤.现代微生物遗传学.北京:化学工业出版社,2003.
    2. 陈文新,李阜隶.我国土壤微生物学和生物固氮研究的回顾和展望.世界科技研究与发展,2003,24(4) :6~12.
    3. 陈文信.细菌系统发育.微生物学报,1998,38 (3) :240~243.
    4. 陈芝兰,周晓英,何建清.设施栽培措施对土壤微生物区系的影响.西藏科技,2007,1:14~15
    5. 陈岭,明镇寰.硝化池中氨氧化细菌 amoA 基因的检测及其多样性研究.浙江大学学报.2004,31(5):565-569
    6. 崔玉亭.化肥与生态环境保护.北京:化学工业出版社,2000,5~10.
    7. 戴欣,周惠,蔡创华.海洋沉积物种特有细菌类群的初步探讨.中山大学学报,2001,40 (6) :51~54.
    8. 东秀珠,洪俊华.原核微生物的多样性.生物多样性,2001,9 (1) :18~24.
    9. 董炜博,石延茂,李荣光.山东省保护地蔬菜根结线虫的种类及发生.莱阳农学院学报,2004,21(2):106~108.
    10. 杜睿,王庚辰.内蒙古典型草原土壤 N2O 产生的机理探讨.中国环境科学,2000,20(5) :387~391.
    11. 古文海,陈建.设施农业的现状分析及展望.农机化研究,2004,(1):46~48.
    12. 郭永霞,李彩华,靳学慧.农业措施对大豆根际土壤微生物区系的影响.土壤肥料科学,2006,22(10):234~237.
    13. 何芬,马承伟中国设施农业发展现状与对策分析农业工程科学,2007,23(3):462~465
    14. 胡元森,刘亚峰,吴坤.黄瓜连作土壤微生物区系变化研究.土壤通报,2006,37(1):126~129.
    15. 黄立南,周惠,陈月琴.垃圾填埋场渗滤液中古菌群落 16S rRNA 基因的 ARDRA 分析.生态学报,2002,22(7):1085~1090.
    16. 姜学艳,黄艺.菌根真菌增加植物抗盐碱胁迫的机理.生态环境,2003,12 (3) :353~356.
    17. 雷娟利,周艳虹,丁 桔.不同蔬菜连作对土壤细菌 DNA 分子水平多态性影响的研究.中国农业科学,2005,38(10): 2076-2083.
    18. 李刚,文景芝,吴凤芝.连作条件下设施黄瓜根际微生物种群结构及数量消长.东北农业大学学报,2006,37(4):444~448.
    19. 李慧,陈冠雄,张颖.分子生物学方法在污染土壤微生物多样性研究中的应用.土壤学报,2004,41 (4) :612~617.
    20. 李琼芳.不同连作年限麦冬根际微生物区系动态研究.土壤通报,2006,37(3):563~565.
    21. 李铁,张玉龙,古士艳.施用沼肥对保护地土壤微生物群落影响的研究可再生能源,2007,2:24~28.
    22. 李奕林,张亚丽,张耀鸿.施 N 对不同水稻品种 N 肥利用率及硝化作用和硝化微生物的影响生态学报,2007,27(6):2507~2515.
    23. 林先贵,胡君利,褚海燕.土壤氨氧化细菌对大气 CO2 浓度增高的响应.农村生态环境,2005,21(1):44~46.
    24. 刘春增.长期施肥对砂土肥力变化及硝态氮积累和分布的影响.土壤通报,1996,27(5): 216~218.
    25. 刘维志,段玉玺.植物病原线虫学.北京:中国农业出版社,2000,213~281.
    26. 罗文富,喻盛甫,贺承福.三七根腐病病原及复合侵染的研究.植物病理学报,1997, 27(1): 85~91.
    27. 潘沧桑,林竞.穿刺芽孢杆菌菌剂研制及其对根结线虫的防治.微生物学报,1997,37(6):480~482.
    28. 邱化蛟,程序,常欣.北京市水资源状况分析.北京农学院学报,2004,19(40):4~9.
    29. 沈萍.微生物学.北京:高等教育出版社,2000.
    30. 宋元林,柴本祥.蔬菜保护地栽培技术大全.北京:中国农业出版社,1996,181-190.
    31. 孙建光,高俊莲,马晓彤.反硝化微生物分子生态学技术及相关研究进展.中国土壤与肥料,2007,2:7~11.
    32. 滕懿群.16S rRNA 基因 PAR 对细菌感染的分子生物学研究.国外医学:流行病学传染病学分册,1997,24 (2) :61.
    33. 王书锦,胡江春,张宪武.新世纪中国土壤微生物学的展望.微生物学杂志,2002,22 (1)::36~39.
    34. 王素英,杨晓丽,李海峰.西藏根瘤菌新表观群的 DNA 同源性及 16S rRNA 全序列分析.微生物学报,2006,46(1):132~135.
    35. 王效科,庄亚辉,李长生.中国农田土壤 N2O 排放通量分布格局研究.生态学报, 2001, 21(8): 1225~1232.
    36. 温东辉,唐孝炎.异养硝化及其在污水脱氮中的作用.环境污染与防治,2003,25 (5) :283~285.
    37. 吴冠芸,潘华珍。生物化学与分子生物学实验常用数据手册.北京:科学出版社, 1999, 249~250.
    38. 肖昌松,刘大力,周培瑾.南极长城站地区土壤微生物生态作用的初步探讨.生物多样性,1995,3 (3) :134~138.
    39. 徐涤,秦松,庞国兴.青岛和大连海区海带(Lam inria japonica ) 外生细菌的 16S rRNA 基因序列分析.高技术通讯,2004,14 (2) :81~86.
    40. 徐阳春,沈其荣.长期免耕与施用有机肥对土壤微生物生物量的影响.土壤学报,2002,39 (1) :89~95.
    41. 杨凤林,王芳,张兴文.SBAR 中同步脱氮好氧颗粒污泥的菌种特性.中国环境科学,2005,
    25 (2) :218~221.
    42. 杨海君,谭周进.假单胞菌的生物防治作用研究.中国生态农业学报,2004,12 (3) :158~161.
    43. 姚健,杨永华,沈晓蓉.农用化学品污染对土壤微生物群落 DNA 序列多样性影响研究.生态学报,2000,20:1021~1027.
    44. 喻盛甫,胡先奇,王扬.包含病原线虫的植物复合侵染病害.植物病理学报,1999,29(1):1~7.
    45. 袁飞,冉炜,胡江.变性梯度凝胶电泳法研究我国不同土壤氨氧化细菌群落组成及活性.生态学报,2005,25(6):1318~1324.
    46. 曾润颖,李根,林昱.一株具抗肿瘤活性的北极细菌的筛选及分子鉴定.厦门大学学报,2002,41 (6) :800~803.
    47. 张萍,刀志灵,郭辉军.高黎贡山不同土地利用方式对土壤微生物数量和多样性的影响.云南植物研究,1999, (增刊Ⅺ) :84~89.
    48. 张维理,武淑霞,冀宏杰.中国农业面源污染形势估计及控制对策 I.21 世纪初期中国农业面源污染的形势估计.中国农业科学,2004,37(7):1008~1017.
    49. 赵勇,周志华,李武.土壤微生物分子生态学研究中总 DNA 的提取.农业环境科学学报,2005,24(5):854~860.
    50. 周贤轩,杨波,陈新华.几种分子生物学方法在菌种鉴定中的应用.生物技术,2004, 14(6) :35~38.
    51. 朱兆良.氨挥发.中国土壤氮素,1992:171~194.
    52. 朱兆良.农田中氮肥的损失与对策.土壤与环境,2000,9(1):1~6.
    53. 朱兆良.我国农业生态系统中氮素的循环和平衡.中国土壤氮素,1992:288~303.
    54. 祖元刚,高崇洋,王文杰.喜树替代紫茎泽兰过程中根际微生物群落特征.中国科学:C辑,2006,36(5):459~467.
    55. Alde′n L., Demoling F., Baath E.. Rapid method of determining factors limiting bacterial growth in soil. Applied and Environmental Microbiology 2001, 67: 1830~1838.
    56. Amann R. I., Ludwig E, Schleifer K.H..Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Review 1995 ,59 :143~169.
    57. Andrew E. B., Claudia C..Isolation of high molecular weight DNA from soil for cloning into BAC vectors. FEMS Microbiology Letters 2003, 15~20.
    58. Arp D.J., Sayavedra-Soto L.A., Hommes N.G..Molecular biology and Biochemistry of ammonia oxidation by Nitrosomonas europaea. Archvies of Microbiololgy 2002, 178:250~255.
    59. Atkinson B. F..Some diseases of cotton. Alabama Polytech. Inst. Agric. Exp. Stn, Bull 1892, 41: 64~65.
    60. Bakken L.R..Separation and purification of bacteria from soil. Applied Environmental. Microbiology 1985, 49:1482~1487.
    61. Bateman E.J., Baggs E.M..Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biology and Fertility of Soils , 2005 , 41 (6): 379~385.
    62. Becker J.O..Effects of rhizobacteria on root-knot nematodes and gallformation. Phytopathology 1988, 78(11): 1466~1469.
    63. Bing Yan, Kui Hong, Zi-Niu Yu.Archaeal Communities in Mangrove Soil Characterized by 16S rRNA Gene Clones. The Journal of Microbiology 2006, 44(5):566~571.
    64. Bird D.M..Signaling between nematodes and plants. Current Opinion in Plant Biology 2004, 7:372~376.
    65. Borneman J., Skroch P.W., Palus J.A..Molecular microbial diversity of an agricultural soil in Wisconsin. Applied and Environmental Microbiology 1996, 62: 1935~1943.
    66. Bourrain M., Achouak W., Urbain V.. DNA extraction from activated sludge. Current Microbiology 1999, 38(6) : 315~319.
    67. Bull A.T., Goodfellow M., Slater J.H..Biodiversity as a source of innovation in biotechnology. Annu Rev Microbiol , 1992 , 46: 219 ~252.
    68. Burgmann H., Pesaro M., Widmer F..A strategy for optimizing quality and quantity of DNA extracted from soil. Microbiology of Methods 2001, 45(1): 7~20.
    69. Buther S.S., Challson R.J., Orians G.H..Global Biochemical Cycles. San Diego: Academic Press 1992, 263~284.
    70. Chao A..Nonparametric estimation of the number of classes in a population. Scandinavian journal of statistics 1984, 11:265~270.
    71. Cheo C.C..A note on the relation of nematodes (Tylenchus tritici) to the development of the bacterial disease of wheat caused by Bacterium tritici. Annals Applied Biololgy 1946; 33(4): 447~449.
    72. Chi Z.M. .Microbiology Ecology. Shandong University Publishing House, China. 1999.
    73. Christa S., German J., Melanie J..Genomic studies of uncultivated archaea. Nature reviews microbiology 2005, 3:479~488.
    74. Christopher A. F., Kathryn J.R..Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. The National Academy of Sciences of the USA 2005,102(41):14683~14688.
    75. Clement B.G., Kehl L.E., De Bord K.L..Terminal restriction fragment patterns (TRFPs) , a rapid PCR-based method for the comparison of complex bacterial communities. J Microbiology Methods 1998, 31(3): 134~142.
    76. Cole J.R., Chai B., Marsh T. L..The Ribosomal DatabaseProject (RDP-II): previewing a new autoaliger that allows regular updates and the new prokaryotic taxonomy . Nucleic Acids Research 2003, 31: 442~443.
    77. Cornelia W., Ben A., Marco J.L..Coolen. Archaeal nitrification in the ocean. PNAS 2006, 103(33):12317~12322.
    78. Curtis T.P., Sloan W.T., Scannell J.W.. Estimating prokaryotic diversity and its limits. Proc Natl Acad Sci USA 2002, 99: 10494~10499.
    79. D. N. Miller, J. E. Bryant, E. L. Madsen.Evaluation and Optimization of DNA Extraction and Purification Procedures for Soil and Sediment Samples.Applied and Environment Microbiology 1999, 65(11): 4715~4724.
    80. De Grange, R. Bardin. Detection and counting of Nitrobacter populations in soil by PCR. Applied and Environment Microbiology 1995, 61:2093~2098.
    81. Degens B.P.. Microbial catabolic evenness: a potential integrative indicator of organic matter management. In: Rees R.M., Campell B.C. eds. Sustainable Management of Organic Matter. Walling ford: CABI Publishing 2001, 172~178.
    82. DeLong E.F.. Diversity of naturally occurring prokaryotes. In: Colwell R.R. ed. Microbial Diversity in Time and Space. New York: Plenum 1996, 125~133.
    83. DeLong E.F. .Archaea in coastal marine environments. Proc Natl Acad Sci USA 1992, 89(12): 5685.
    84. Delong E.F., Wickham G.S., Pace N.R.. Phylogenetic stains: ribosomal RNA -based probes for the identification of single cells. Science 1989, 243: 1360~1363.
    85. Ding H., Wang Y.S., Xiang H.Y..Nitrification and denitrification potential in different types of Paddy soils in Fujian Province. Journal of Agro-Environment Science 2003, 22 (6): 715~ 719.
    86. Dropkin V.H. .Introduction to plant nematology. New York: John Wiley & Sons 1980, 159~170.
    87. Ferris M. J. , Muyzer G., Ward D.M..Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial community. Applied and Environment Microbiology 1996, 62: 340~346.
    88. Francis, C. A., K. J. Roberts.Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci USA 2005, 102:14683–14688.
    89. Gabor E.M., Vries E.J., Janssen D.B..Efficient recovery ofenvironmental DNA for exp ression cloning by indirect extraction methods. FEMS Microbiology Ecology 2003, 44(2) : 153~163.
    90. Garbeva P., van Veen J. A., van Elsas J. D..Microbial diversity in soil: selection of microbial populations by plant and soil type and implication for disease suppressiveness. Annual Review of Phytopathology 2004, 42: 243~270.
    91. Giovannoni S.J., Britschgi T.B., Moyer C.L..Genetic diversity in Sargasso Sea bacterioplankton. Nature 1990, 345(6270): 60~63.
    92. Good I.L..The population frequencies of species and the estimation of population parameters. Biometrika 1953, 40: 237-264.
    93. Govannoni S., Britschgi T., Moyer C..Genetic diversity in Sargasso Sea bacteriop lankton. Nature 1990, 345: 60~63.
    94. Gray M.W., Sankoff D., Cedergren R. J.. On the evolutionary desent of organelles: a global phylogeny based on a highly conserved core in small subunit ribosomal RNA. Nucleic Acid Research 1984, 12 (14) : 5837~5851.
    95. Hawksworth D.L. . The fungal dimension of biodiversity: magnitude, significance, and conservation . Mycological Research 1991, 95: 641~655.
    96. Heck, K. L., G. V. Belle, and D. Simberloff.Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size. Ecology 1975, 56:1459~1461.
    97. Hewitt W.B., Raski D.J., Goheen A.C..Nematode vector of soil-borne fanleaf virus of grapevines. Phytopathology 1958, 48: 586~595.
    98. Hommes N.G., Sayavedra-Soto L.A., Arp D.J..Transcript analysis of multiple copies of amo(encoding ammonia monooxygenase) and hao(encoding hydroxylamine oxidoreductase) in Nitrosomonas europaea. J Bacteriol 2001, 183:1096~1100.
    99. Hooper A.B., Vannelli T., Bergmann D.J..Enzymology of the oxidation of ammonia to nitrite by bacteria. Antonie van Leeuwenhoek 1997, 71: 59~67.
    100. Horn, H. L. Drake, A. Schramm. Nitrous oxide reductase genes (nosZ) of denitrifying microbial populations in soil and the earthworm gut are phylogenetically similar. Applied Environment Microbiology 2006, 72:1019~1026.
    101. Hsiao-Hui Yang, Robert T. Vinopal, Barth F..SmetsHigh Diversity among Environmental Escherichia coli Isolates from a Bovine Feedlot. Applied Environment Microbiology 2004, 70(3): 1528~1536.
    102. Hu S.J., van Bruggen A. H. C., Grunwald N. J.. Dynamics of bacterial populations in relation to carbon availability in a residue-amended soil. Applied Soil Ecology 1999, 13: 21~30.
    103. Hugenholtz, B.M.Goebel, N.R.Pace.Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. Journal of Bacteriology 1998, 180: 4765~4774.
    104. Hughes J.B., Hellmann J.J., Bohannan B.J.M..Counting the uncountable: Statistical approaches to estimating microbial diversity. Applied Environment Microbiology 2001, 67: 4399~4406.
    105. Inagaki F., Sakihama Y., Inoue A..Molecular phylogenetic analyses of reverse-transcribed bacterial rRNA obtained from deep-sea cold seep sediments. Environ Microbiology 2002, 4(5) : 277~286.
    106. J. Michael Beman, Christopher A. Francis.Diversity of Ammonia-Oxidizing Archaea and Bacteria in the Sediments of a Hypernutrified Subtropical Estuary: Bah?′a del To′bari, Mexico. Applied Environment Microbiology 2006, 72(12): 7767–7777.
    107. James E.M., Stach, Luis A..New primers for the class Actinobacteria: application to marine and terrestrial environments. Environmental Microbiology 2003, 5(10): 828~841.
    108. Johnson H.A., Powell N.T.. Influence of root-knot nematodes on bacterial wilt development in flue-cured tobacco. Phytopathology 1969, 59: 486~491.
    109. Johnson M. J., Lee K.Y., cow K.M..DNA finger print reveals link s among agricultural crops, soil properties, and the composition of soil microbial communities. Geoderma 2003, 114: 279~ 303.
    110. Jones R.D., Hood M.A..Effect of temperature, pH, salinity and in organic nitrogen on the rate of ammonium oxidation by nitrifiers isolated from wet land. Environments Microbiology Ecology1980, 6:339~347.
    111. Joo H.S., Hirai M., Shoda M..Characteristics of ammonium removal by heterotrophic nitrification aerobic denitrification by Alcaligenes faecalis No. 4. Journal of Bioscience and Bioengineering 2005 , 100(2): 184~191.
    112. Klotz M.G., Alzerrec A.J., Norton J.M.. A gene encoding a membrane protein exists upstream of the amoA/amoB genes in ammonia oxidizing bacteria: a third member of the amo operon. FEMS Microbiology Letter 1997,150(1): 65~73.
    113. Klotz M.G., Norton J.M..Sequence of anammonia monooxygenase subunit A-encoding gene from Nitrosospirasp. NpAV. Gene 1995, 163:159~160.
    114. Klotz M.G., Norton J.M., Multiple copies of ammonia monooxygenas (amo) operons have evolved under biased AT/GC mutational pressure in ammonia-oxidizing autotrophic bacteria. FEMS Microbiology Letter 1998, 168:303~311.
    115. Kowalchuk G.A., Stephen J.R..Ammonia-oxidizing bacteria: amodel formolecular microbial ecology. Annual Review of Microbiology 2001, 55:485~529.
    116. Kumar S., Tamura K., Nei M..MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Briefings in Bioinformatics 2004, 5: 150-163.
    117. L i L.N., Guenzennec J., Nichols P..Microbial diversity in Nankai Trough sediments at a depth of 3843 m . J Oceanography 1999, 55: 635~642.
    118. L. Halda-Alija, S.P. Hendricks, T.C. Johnston.Spatial and Temporal Variation of Enterobacter Genotypes in sediments and the Underlying Hyporheic Zone of an Agricultural Stream Microbial Ecology 2001, 42 : 286~294.
    119. LaMontagne M.G., Holden P.A., Reddy C.A..Evaluation of extraction and purification methods for obtaining PCR-amplifiable DNA from compost for microbial community analysis. Microbiology Methods 2002, 49 (3): 255~264.
    120. Lasse D.R.. Effets of mercury contamination on the culturable heterotrophic, functional and genetic diversity of the bacterial community in soil. FEMS Microbioloy Ecology 2001, 36:1~9.
    121. Lee S.B., Strand S. E., Stensel H. D..Pseudonocardia chloroethenivorans sp. nov., a chloroethene-degrading actinomycete. Int J Syst Evol Microbiol 2004, 54:131~139.
    122. Leininger, T. Urich, C. Schleper.Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 2006, 442:806.
    123. Liu W.T., Marsh T.L., Cheng H..Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Applied and Environment Microbiology 1997, 63:4516~4522.
    124. Luc M., Sikora R.A., Bridge J..Plant parasitic nematodes in subtropical and tropical agriculture. Wallingford: CAB International Institute of Parasitology, 1990.
    125. Lucas G.B., Sasser J.N., Kelman A..The relationship of root-knot nematodes to Granville wilt resistance in tobacco. Phytopathology 1955, 45(10): 537~540.
    126. Ludwig, W., K.H. Schleifer.ARB: a software environment for sequence data. Nucleic Acids Research 2004, 32:1363~1371.
    127. Lunn M, Sloan W.T., Curtis T.P.. Estimating bacterial diversity from clone libraries with flat rank abundance distributions. Environment Microbiology 2004, 6:1081~1085.
    128. Luo H.F., Qi H.Y., Xue K..Influence of application of GC-clamp on study of soil microbialdiversity by PCR-DGGE. Acta Ecologica Sinica 2003, 23 (10) : 2170~2175.
    129. Macgregor B.J. .Crenarchaeota in Lake Michogan sediment. Applied and Environment Microbiology 1997, 63(3): 1178.
    130. Marschner P., Yang C.H., Lieberei R..Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biology Biochemistry 2001, 33: 1437~1445.
    131. Martin Pet.N2 - fixing bacteria in the rhizospere Quantification and hormonal effects on root development. Pflanzenernr Bodend 1989, 152: 237~245.
    132. Martin-Laurent F., Philippot L., Hallet S. .DNA extraction from soils: Old bias for new microbial diversity analysis method. Applied and Environment Microbiology 2001, 67: 2354~2359.
    133. Mary B., Recous S., Robin D.A methods for calculating nitrogen fluxes in soil using 15N tracing. Soil Biology Biochemistry 1998, 30:1963~1979.
    134. McCaig A. E., Glover L. A., Prosser J. I..Molecular analysis of bacterial community structure and diversity in unimproved and improved upland grass pastures. Applied and Environmental Microbiology 1999, 65: 1721~1730.
    135. Michael T.M. .Biology of Microorganisms. 8th ed. Prentice-Hall: Inc Simon &Schuster/A Viacom Company, 1997.
    136. Mieth ling R., Wieland G., Backhaus H..Variation of microbial rhizosphere communities in response to crop species, soil origin, and inoculation with Sinorhizobium meliloti L33. Microbial Ecology 2000, 40: 43~56.
    137. Muller C., Stevens R.J., Laughlin R.J.. A N-15 tracing model to analyse N transformations in old grassland soil. Soil Biology & Biochemistry 2004, 36(4): 619 ~632.
    138. Muyzer G., De Wall E.C., Uitterlinden A.G..Profiling of complex microbial populations by denaturing gradient gelelectrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environment Microbiology 1993, 59: 695~700.
    139. Muyzer G.DGGE/TGGE a method for identifying genes from natural ecosystems. Current Opinion Microbiology 1999, 2: 317~322.
    140. Norton J.M., Alzerreca J.J., Suwa Y..Diversity of ammoni monooxygenase operon in autotrophic ammonia-oxidizing bacteria. Archives of Microbiology 2002, 177:139~149.
    141. Nusbaum C.J., Todd F.A..The role of chemical soil treatments in the control of nematode -disease complexes of tobacco. Phytopathology 1970, 60: 7~12.
    142. O’F lahery S..Comparison of phenotypic, functional and genetic diversity of bacterial communities in soils. In: Rees R.M. and Campell BC (eds) Sustainable Management of Organic Matter. Wallingford: CABI Publishing 2001, 370~376.
    143. Ogram A. .Discussion soil molecular microbial ecology at age 20: Methodological challenges for the future. Soil Biology & Bio-chemistry 2000, 32(11): 1499~1504.
    144. Ogram A., Sayler G.S., Barkay T. .The extraction and purification of microbial DNA from sediments. J Microbiology Methods 1987, (7): 57~66.
    145. Olicier J.G.J., Bouwman A. F., Hoek K.W.V. .Global air emission inventories for anthropogenic sources of NOx, NH3 and N2O in 1990. Environmental Pollution 1998, 102: 135~148.
    146. Papen H., Berg R.V.. A most probable number method (MPN) for the estimation of cell numbers of heterotrophic nitrifying bacteria in soil .Plant and soil 1998, 199: 123~130.
    147. Park, H. D., G. F. Wells, C. A. Francis.Occurrence of ammonia-oxidizing archaea in wastewater treatment plant bioreactors. Applied Environment Microbiology 2006, 72:5643–5647.
    148. Patrick D. S., Jo Handelsman.Status of the Microbial Census,Microbiology And Molecular Biology Reviews 2004, 686~691.
    149. Powell N.T., Melendez P.L., Batten C.K. .Disease complexes in tobacco involving Meloidogyne incognita and soil-borne fungi. Phytopathology 1971, 61: 1332~1337.
    150. Powell V. H. .Introduction to plant nematology. New York: John Wiley & Sons 1980, 159~170.
    151. Purkhold U., Pommerening-Roser A., Juretschko S. .Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Applied and Environment Microbiology 2000, 66: 5368~5382.
    152. Ranjard L., Richaume A. . Quantitative and qualitative microscale distribution of bacteria in soil. Research of Microbiology 2001, 152: 707~716.
    153. Rotthauwe J.H., Deboer W., Liesack W..Comparative analysis of gene sequences encoding ammonia monooxygenase of Nitrosospira sp. AHB1 and Nitrosolobus multiform is C-71. FEMS Microbiology Letters 1995, 133: 131~135.
    154. S.Leininger, T.Urich, M.Schloter . Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 2006, 442: 806~809.
    155. Sambrook J., Fritsch E.F., Maniatis T. .Molecular Cloning: A Laboratory Manual. nd ed. New York : Cold Spring Harbor Laboratory Press , 1989.
    156. Santoro, A. B. Boehm, C. A. Francis.Denitrifier community composition along a nitrate and salinity gradient in a coastal aquifer. Applied Environment Microbiology 2006, 72:2102~2109.
    157. Sarathchandra S.U., Yeates G.W., Burch G..Effect of nitrogen and phosphate fertilisers on m icrobial and nematode diversity in pasture soils. Soil Biology Biochemistry 2001, 33: 953~964.
    158. Sasser J.N, Lucas G.B., Powers H.R.Jr..The relationship of root-knot nematodes to black shank resistance in tobacco. Phytopathology 1955, 45: 459~461.
    159. Sasser J.N., Freckman D.W..World perspective on nematology, the role of the society. In. Veech J.A., Diekson D.W., eds. virtus on Nematology, society of Nematologists, Inc. Hyattsville, 1987, 7~14.
    160. Sayavedra-Soto L.A., Hommes N.G., Alzerreca J.J..Transcription of the amoC, amoA, and amoB genes in Nitrosomonas europaea and Nitrosospirasp. NpAV. FEMS Microbiololgy Letter 1998,167:81~88.
    161. Sayavedra-Soto L.A., Hommes N.G., Arp D.J. . Characterization of the gene encoding hydroxylamine oxidoreductase in Nitrosomonas europaea. J Bacteriol 1994, 176:504~510.
    162. Schloss P. D., Handelsman J..Status of the Microbial Census. Microbiology and MolecularBiology Reviews 2004, 68(4): 686~691.
    163. Schloss P.D., Handelsman J..Toward a census of bacteria in soil. Plos Computational Biology 1996, 2(7): 786~793.
    164. Schloss, P. D., J. Handelsman.Integration of microbialecology and statistics: a test to compare gene libraries. Applied and Environmental Microbiology 2004, 70: 5485~5492.
    165. Schwieger F., Tebbe C.C. . A new approach to utilize PCR-single-strand-conformation polymorphism for 16S rRNA gene-based microbial community analysis. Applied and Environment Microbiology 1998, 64: 4870~4876.
    166. Singh J.S., Raghubanshi A.S., Singh R.S..Microbial biomass actsas a source of plant nutrient sin dry tropical for stand savanna. Nature 1989, 338:499~500.
    167. Smith A.L..The reaction of cotton varieties to Fusarium wilt and root-knot nematode. Phytopathology 1941, 31: 1099~1107.
    168. Sokal, R. R., and F. J. Rohlf.Biometry, 3rd ed. W. H. Freeman, NewYork, N.Y. 1984.
    169. Solbrig O.T..From genes to ecosystems: a research agenda for biodiversity. Report of a IUBS-SCOPEUNESCO workshop. The International Union of Biological Sciences[C].Paris France : 51 Boulevar dole Montmorenny. 1991.
    170. Stefan R.J., Goksor J, Boj A.K..Recovery of DNA from soil and sediments. Applied and Environment Microbiology 1998, (54): 2908~2915.
    171. Stefan, W. Arnold.Dversity of uncultured microorganisms associated with the seagrass Halophila stipulacea estimated by rest riction f ragment length polymorphism analysis of PCR-Amplified 16S rRNA genes. Applied and Environment Microbiology 1996, 62 (3): 7667~7711.
    172. Stein L.Y., Sayavedra-Soto L.A., Hommes N.G..Differential regulation of amoA and amoB gene copies in Nitrosomonas europaea. FEMS Microbiology Letter 2000, 192:163~168.
    173. Sugden A.M..Ecology: diversity and ecosystem resilience. Science 2000, 290 (5490): 233~235.
    174. Tatiana A.T., Thomas L.M..Blast 2 sequences–a new tool for comparing protein and nucleotide sequences. Fems Microbiology Letters 1999, 174: 247~250.
    175. Tatsunori D.M., Koltai H..Plant parasitic nematodes: habitats, hormones, and horizontally acquired genes. Plant Growth Regul 2000, 19: 183~194.
    176. Tatsunori Nakagawa, Kiji Mori, Chiaki Kato.Distribution of Cold-Adapted Ammonia-Oxidizing Microorganism in the Deep-Ocean of the Northeastern Japan Sea. Microbes Environ 2007, 22(4): 365~372.
    177. Tebbe C.C., Vahjen W..Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast. Applied and Environment Microbiology 1993, (59): 2657~2665.
    178. Thompson J.D., Gibson T. J., Plewniak F..The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 1997, 25: 4876~4882.
    179. Tiedje J.M., Asuming-Brempong S., Nusslein K..Opening the black box of soil microbial diversity. Applied Soil Ecology 1999, 13(2): 109~122.
    180. Tsai Y.L., Olson B.H.. Rapid method for direct extraction of DNA from soil and sediments. Applied Environment Microbiology 1991, 57 (4): 1070~1074.
    181. V. Torsvik. Microbial Diversity and Community Structure in Two Different Agricultural Soil Community. Microbial Ecology 1998, 36: 303~315.
    182. van Bruggen A.H.C., Demenov A.M..Insearch of biological indicators for soil health suppression. Applied Soil Ecology 2000, 15: 13~24.
    183. Van Veen J.A., Van Overbeek L.S., Van Elsas J.D..Fate and activity of microorganisms introduced into soil microbiology. Microbiology and Molecular Biology Review. 1997, 61 (2) :121~135.
    184. Vaneechoutte M.R., Rossau R., DeVos P. . Rapid identification of bacteria of the Comamonadaceae with amplified ribosomal DNA-restriction analysis (ARDRA). FEMS Microbiology Letter 1992, 93: 227~234.
    185. Vetriani C. .Population structure and phylogenetic characterization of marine benthic aechaea in deep-sea sediments. Applied and Environment Microbiology 1999, 65(10):4375.
    186. Volossiouk T., Robb E.J., Nazar R.N..Direct DNA Extraction for PCR-Mediated Assays of Soil Organisms. Applied and Environment Microbiology 1995, 61(11) : 3972~3976.
    187. Wander M.M., Hdrick D.S., Kaufman D..The functional significance of the microbial biomass in organic and conventionally managed soils. Plant and Soil 1995, 170(1): 87~97.
    188. Watve M.G., Gangal R.M..Problems in measuring bacterial diversity and a possible solution . A ppl . Environmental Microbiology 1996, 62 (11) : 4299~4301.
    189. Webster J.M..Economic nematology. New York: Academic Press, 1972.
    190. Xia Bei cheng, D.S.TREVES, Zhou Ji zhong.Soil microbial community diversity and driving mechanisms. Progress in Natural Science 2001, 818~823.
    191. Xue Y., Sun X., Zhou P..Gordonia paraffinivorans sp. nov. , a hydrocabon-degrading actinomycete isolated from an oil-producing well. International Journal Systematic Evolutionry Microbiology 2003, 53: 1643 ~1646.
    192. Yannarell, T. F. Steppe, H. W. Paerl.Genetic variance in thecomposition of two functional groups (diazotrophs and cyanobacteria) from a hypersaline microbial mat. Applied Environment Microbiology , 72:1207~1217.
    193. Yeates C., Gillings M.R., Davison A.D..Methods for microbial DNA extraction from soil for PCR amplification. Biology Procedure Online 1998, 1 (1) : 40~47.
    194. Yu S.F., Shew H.D., Barker K.R.. Interaction of Meloidogyne incognita, Phytophthora parasitica var. nicotianae and metalaxyl on resistant and susceptible tobacco. Journal of Nematology 1994, 26(4): 571~578.
    195. Zhou J. Z ., Bruns M.A., Tiedje J.M..DNA recovery from soils of diverse composition. A pplied and Environmental Microbiology 1996, 62 : 316~322.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700