西藏米拉山古菌16S rRNA及amoA基因多样性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
古菌不仅存在于极端环境下,而且广泛分布于自然环境中,甚至作为优势菌群存在,在全球的生物地球化学过程中的作用不可忽视。细菌曾被认为是单独负责催化硝化过程的限速步骤,但是最近一些研究表明泉古菌同样具有氨氧化的能力,是土壤中居主导地位的氨氧化微生物。西藏米拉山的高寒草甸土壤,是青藏高原的典型土壤类型。在全球气候变暖的大背景下,青藏高原的气温正呈现较大幅度的变暖趋势,是全球气候变暖的敏感区,对全球气候变化的先兆性具有特殊的研究意义。为了分析西藏米拉山高寒草甸土壤中古菌及氨氧化古菌群落结构组成情况,本研究以西藏米拉山MP(位于米拉山口附近的公路旁,植被覆盖率小于50%)和GY(位于工布江达县,离村庄较远,植被覆盖率大于90%)两个地点土壤为样品,每个样品提取10份DNA,每份DNA进行3次PCR扩增古菌16S rRNA和amoA基因,分别以30次PCR扩增产物构建MP和GY两地古菌16S rRNA克隆文库(ARC-MP, ARC-GY)和amoA基因克隆文库(AOA-MP, AOA-GY)。并且为了检验本研究构建文库的方法是否具有重复性,采用同一土壤样品MP,使用相同的方法重复构建了古菌16S rRNA和amoA基因克隆文库(ARC-MPr和AOA-MPr)。使用DOTUR、∫-Libshuff、TreeClimber以及SONS等软件对西藏米拉山古菌16S rRNA基因克隆文库和古菌amoA基因克隆文库的多样性进行了分析。
     三个古菌16S rRNA基因克隆文库均包括嗜泉古菌界(Crenarchaeota)和未分类的古菌(unclassified_Archaea)两类,未发现广域古菌界(Euryarchaeota),并且获得的所有泉古菌均为热变形菌门(Thermoprotei)。三个古菌amoA基因克隆文库中氨氧化古菌主要为嗜泉古菌界。获得的古菌和氨氧化古菌与来自其它环境土壤中的序列具有很高的相似性,其中MP土壤中有一些古菌及氨氧化古菌序列与来自保护地土壤中的序列相似性很高,这一现象可能与MP土壤退化有关。
     使用DOTUR软件将古菌和氨氧化古菌序列按照相似性97%的标准分成若干个可操作分类单元(OTUs)。三个古菌16S rRNA基因克隆文库ARC-MP、ARC-MPr和ARC-GY分别包括54、51、和51个OTUs,表明MP与GY两地土壤古菌丰度基本相同。三个古菌amoA基因克隆文库AOA-MP、AOA-MPr和AOA-GY分别包括51、44和23个OTUs,表明MP土壤氨氧化古菌丰富度高于GY土壤,随着草甸的退化,氨氧化古菌类群逐渐扩大,作用逐渐加强。
     利用∫-Libshuff和TreeClimber两种软件对文库ARC-MP和ARC-GY进行比较分析,两种分析方法得到的P值均小于0.05(P<0.05),表明两文库在古菌群落组成上存在显著差异;对文库AOA-MP和AOA-GY进行比较分析,两种分析方法得到的P值均小于0.05(P<0.05),两文库存在显著差异。表明MP和GY两种不同类型土壤中古菌和氨氧化古菌的群落组成均存在显著差异;对文库ARC-MP和ARC-MPr进行比较分析,得到的P值均大于0.05(P>0.05),表明两文库间无显著差异;对文库AOA-MP和AOA-MPr进行比较分析,得到的P值大于0.05(P>0.05),表明两文库间无显著差异。以上两组采用同一土壤样品MP重复构建的文库间均无显著差异,说明采用本研究方法对同一土壤样品构建文库具有可重复性。
     使用SONS软件分析文库ARC-MP和ARC-GY的重叠率为36.05%,文库AOA-MP和AOA-GY间的重叠率为31.26%,说明MP和GY两地区的古菌和氨氧化古菌群落组成上有明显的不同,与利用∫-Libshuff和TreeClimber两种方法分析得到的AOA-MP和AOA-GY两文库在古菌群落组成上存在显著差异相呼应。SONS软件分析文库ARC-MP和ARC-MPr间的重叠率为98.29%,文库AOA-MP和AOA-MPr间的重叠率为84.01%,表明以上两组重复构建的文库间重叠率很高,与利用∫-Libshuff和TreeClimber两种方法分析得到的两文库在氨氧化古菌群落组成上无显著差异相吻合,再次验证了采用本文构建克隆文库的方法具有可重复性。
     总之,本研究使用DOTUR、∫-Libshuff、TreeClimber以及SONS等多种软件对西藏米拉山高寒草甸土壤古菌16S rRNA和amoA基因克隆文库的多样性进行分析,表明不同植被覆盖率的MP和GY两地古菌和氨氧化古菌群落组成存在显著差异,并且古菌资源比较丰富,表明古菌在高寒草甸土壤的氮循环中可能具有重要的作用,同时本研究也为开发利用极端环境微生物奠定了基础。
Archaea could not only survive under extreme conditions, but also exist in normal environments. With its huge abundance, Archaea is playing a highly important role in the biogeochemistry processes on the Earth. Nitrification in soil plays an important role in the global nitrogen cycle. Although bacteria were thought to be solely responsible for catalyzing the rate-limiting step of this process, several recent studies have suggested that Crenarchaeota are capable of performing ammonia oxidation. This area is a sensitive key region to the global warming. Alpine meadow is the key plant community type, which covered most area of Tibetan Plateau. Here we examine the diversity of archaea and ammonia-oxidizing archaea (AOA) within the soil of MP (at the entrance of Mila Mountain where the grass cover below 50%) and GY (at the Gongbo'gyamda County where the grass cover above 50%) of Mila Mountain. The four clone libraries were named ARC-MP, ARC-GY, AOA-MP and AOA-GY respectively. DNA was extracted from 10 replicate subsamples from each of the two soil samples. For each library, three replicate PCRs were conducted per soil DNA template (for a total of 30 replicate PCRs per library) using group-specific primers. To verify whether the method has the properties of good repeatability and high reliability or not, the archaea 16S rRNA and amoA gene libraries were generated for the soil of MP again.
     Phylogenetic analysis revealed that archaea in the three archaeal 16S rRNA clone libraries of Mila Mountain including the Crenarchaeota and unclassified_Archaea phyla, not found the Euryarchaeota. All the Crenarchaeota belong to the Thermoprotei. Mila Mountain belonged to the kingdom Crenarchaeota. The archaea and AOA have high similar with the sequences of protected soil.
     The sequences of archaea and AOA were divided into operational taxonomic units (OTUs) according to the 97% similarity threshold for OTU assignment was performed using the software program DOTUR. Archaea species composition from the three archaeal 16S rRNA gene clone libraries of ARC-MP, ARC-MPr and ARC-GY included 54, 51 and 51 OTUs respectively. AOA species composition from the three archaeal amoA gene clone libraries of ARC-MP, ARC-MPr and ARC-GY included 51, 44 and 23 OTUs respectively. The MP has roughly the same abundance of archaea as the GY, but the AOA abundance of MP are more than those in the GY.
     In order to compare the microbial populations present in the soil samples from two sites with statistic test, P values obtained by∫-Libshuff and TreeClimber. The P value between ARC-MP and ARC-GY clone libraries are 0.0000 (P <0.05), there have significant differences between the two libraries. The P value between AOA-MP and AOA-GY clone libraries are 0.0000 (P <0.05), there is significant differences between the two libraries. It means that the microbial populations of MP and GY are significant differences. It shows that the composition of the community of the AOA of MP and GY that related to the nitrogen cycle are significant change. The P value between ARC-MP and ARC-MPr clone libraries are above 0.05 (P >0.05), The P value between ARC-MP and ARC-MPr clone libraries are above 0.05 (P >0.05). It means that the microbial populations of the soil from same site have no significant difference. So conclude that the method used contruct libraries has the properties of good repeatability and high reliability.
     To compare the memberships and structures of two communities at a particular operational taxonomic units (OTUs) definition and implement nonparametric estimators for the fraction and richness of OTUs shared between clone libraries. Community overlap of inter and inner sample comparisons for OTUs obtained by the program SONS. For the archaeal 16S rRNA gene libraries of two samples (ARC-MP and ARC-GY), there are 36.5% overlapped community and for the archaeal amoA libraries of two samples (ARC-MP and ARC-GY), there are 31.26%overlapped community, which reconfirmed the microbial populations of MP and GY is significant differences. For the archaeal amoA libraries of two samples (ARC-MP and ARC-MPr), there are 98.29% overlapped community, and for the archaeal amoA libraries of two sites (ARC-MP and ARC-GY), there are 84.10%overlapped community. The overlapped communities between reconstruction libraries both for archaeal 16S rRNA and amoA genes are obviously large, which reconfirmed the method we used has the properties of good repeatability and high reliability.
     In a conclusion, to analysis the diversity of Archaeal 16S rRNA and amoA genes in Mila Mountain meadow soil of Tibet, the program DOTUR,∫-Libshuf, TreeClimber and SONS were used. Reconfirmed the microbial populations of MP and GY is significant differences. These findings show prolific archaeal diversity in the alp prairie soil of Mila Mountain, where they may be actively involved in nitrification.
引文
1.陈文信.细菌系统发育.微生物学报,1998,38(3):240~243.
    2.东秀珠.古菌—原核生物到真核生物的过渡?.微生物学通报,1999,26(6):426~430.
    3.范华鹏.薛燕芬,曾艳,周培瑾,马延河.西藏扎布耶茶卡盐碱湖古菌多样性的非培养技术分析.微生物学报,2003,43(4):401~408.
    4.贺纪正,张丽梅.氨氧化微生物生态学与氮循环研究进展.生态学报,2009,29(1):406~415.
    5.侯永翠,郑有良.应用RAPD标记分析黑麦属的遗传多样性.西南农业学,2002,15(4):30~34.
    6.李曙光,皮昀丹.古菌研究及其展望.中国科技法学学报,2007,37(8):830~838.
    7.刘志培,杨惠芳.微生物分子生态学进展.应用与环境生物学报,1999,5(Z1).
    8.刘玮琦.保护地土壤细菌和古菌群落多样性分析[硕士学位论文].北京:中国农业科学院.2008.
    9.龙章富,刘世贵.退化草地土壤农化性状与微生物区系研究.土壤学报.1996,33(2):192~200.
    10.陆俊锟,康丽华,陈俊,吕成群,黄宝灵,江业根.华南三地红树林土壤微生物及其与土壤化学性质的相关性研究.林业科学研究,2008,21(4):523~527.
    11.罗红丽,黄英,王黎明,刘志恒,谢建平,胡昌华.西藏地区土壤放线菌种群多样性及拮抗活性研究.微生物学报,2005,45(5):724~727.
    12.潘裕生.神奇的青藏高原.气象出版社,北京:2004.
    13.孙波,赵其国.土壤质量与持续环境:Ⅲ土壤质量评价的生物学指标.土壤,1997,29(5):2252~2341.
    14.石鹏君,柏映国,袁铁铮,姚斌,范云六,周志刚,孟昆.应用rpoB和16S rDNA基因的变性梯度凝胶电泳技术对山羊瘤胃细菌多样性的研究.微生物学,2007,47(2):285~289.
    15.邵玉琴,赵吉,杨劼.恢复草地和退化草地土壤微生物类群数量的分布特征.中国沙漠,2004, 24(2):223~226.
    16.尚占环,丁玲玲,龙瑞军,马玉寿,施建军,鱼小军,王长庭,丁路明.江河源区高寒草地土壤微生物数量特征.草原与草坪,2006(5):3~7.
    17.唐传红,张劲松,陈明杰,李泰辉,曹晖,谭琦,潘迎捷.利用拮抗试验和RAPD对灵芝属菌株进行分类研究.微生物学通报,2005,32(5):72~76.
    18.王会利,毕利东,张斌.退化红壤马尾松恢复林地土壤微生物生物量变化及其控制因素研究.土壤学报,2008,45(2):313~320.
    19.吴海燕,范作伟,刘春光,王海玲,周平,刘武仁.保护性耕作条件下玉米田土壤微生物区系变化与影响因素分析.玉米科学,2008,16(4):135~139.
    20.王岳坤,洪葵.红树林土壤细菌群落16S rDNA V3片段PCR产物的DGGE分析.微生物学报,2005,45(2):201~204.
    21.夏北成.植被对土壤微生物群落结构的影响.应用生态学报,1998,9(3):296~300.
    22.许飞,戴欣,陈月琴,周惠,蔡剑华,屈良鹄.南沙海区沉积物中细菌和古细菌16S rDNA多样性的研究.海洋与湖沼,2004,35(1):89~94.
    23.姚晓华.土壤微生物群落多样性研究方法及进展.广西农业生物科学,2008,27(B06):84~88.
    24.许学伟,吴敏,吴月红,张会斌.新疆阿牙克库木湖可培养嗜盐古菌的种群结构.生态学报,2007,27(8):3119~3123.
    25.尹燕妮,陈永芳,李师默,郭坚华.植物病原棒形细菌的RAPD分析.微生物学报,2005,45(6):837~841.
    26.张海燕,肖延华,张旭东,李军,席联敏.土壤微生物量作为土壤肥力指标的探讨.土壤通报,2006,37(3):422~425.
    27.赵吉,廖仰南.草原生态系统的土壤微生物生态.中国草地,1999,(3):57~67.
    28.张平究,李恋卿,潘根兴,张俊伟.长期不同施肥下太湖地区黄泥土表土微生物碳氮量及基因多样性变化.生态学报,2004,24(12):2818~2824.
    29.张文婷,来航线,王延平,张海,杨婷,吕家珑.黄土高原不同植被坡地土壤微生物区系特征.生态学报,2008,28(9):4228~4234.
    30.赵兴青,杨柳燕,陈灿,肖琳,蒋丽娟,马喆.PCR-DGGE技术用于湖泊沉积物中微生物群落结构多样性研究.生态学报,2006,26(11):3610~3616.
    31.周才平,欧阳华.温度和湿度对暖温带落叶阔叶林土壤氮矿化的影响.植物生态学报,2001,25(2):204~209.
    32.周桔,雷霆.土壤微生物多样性影响因素及研究方法的现状与展望.生物多样性,2007,15(3):306~311.
    33.周贤轩,杨波,陈新华.几种分子生物学方法在菌种鉴定中的应用.生物技术,2004,14(6):35~38.
    34. Amann R.I., Ludwig E., Schleifer K.H. . Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Review, 1995, 59(1): 143~169.
    35. Amann R., Ludwig W. . Ribosomal RNA-targeted nucleic acid probes for studies in microbial ecology. FEMS Microbiology Reviews, 2000, 24(5): 555~565.
    36. Beja O., Koonin E.V., Aravind L., Taylor L.T., Seitz H., Seitn J.L., Bensen D.C., Feldman R.A., Swanson R.V., DeLong E.F. . Comparative genomic analysis of archaeal genotypic variants in a single population and in two different oceanic provinces. Applied and Environmental Microbiology, 2002, 68(1): 335~345.
    37. Bell S.D., Jackson S.P. . Mechanism and regulation of transcription in archaea. Current opinion in microbiology, 2001, 4(2): 208~213.
    38. Beman J.M., Francis C.A. . Diversity of ammonia-oxidizing archaea and bacteria in the sediments of a hypernutrified subtropical estuary: Bahía del Tóbari, Mexico. Applied and Environmental Microbiology, 2006, 72: 7767~7777.
    39. Boetius A., Ravenschlag K., Schubert C.J., Rickert D., Widdel F., Gieseke A., Amann R., J?rgensen B.B., Witte U., Pfannkuche O. . A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 2000, 407: 623~626.
    40. Yan B., Hong K., Yu Z.N. . Archaeal communities in mangrove soil characterized by 16S rRNA gene clones. The Journal of Microbiology, 2006, 44(5): 566~571.
    41. Bintrim S.B., Donohue T.J., Handelsman J., Roberts G.P., Goodman R.M. . Molecular phylogeny of archaea from soil. Proceedings of the National Academy of Sciences of the United States of America. 1997, 94(1): 277~282.
    42. Chao A. . Nonparametric estimation of the number of classes in a population. Scandinavian Journal of Statistics, 1984, 11(4): 265~270.
    43. Chiarini L., Bevivino A., Dalmastri C., Nacamulli C. . Influence of plant development, cultivar and soil type on microbial colonization of maize roots. Applied Soil Ecology, 1998, 8(1): 11~18.
    44. Christopher A.F., Kathryn J.R. . Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. The National Academy of Sciences of the USA, 2005, 102(41): 14683~14688.
    45. Clement B.G., Kehl L.E., DeBord K.L., Kitts C.K. . Terminal restriction fragment patterns (TRFPs), a rapid PCR-based method for the comparison of complex bacterial communities. Journal of microbiological methods, 1998, 31(3): 134~142.
    46. DeLong E.F. . Archaea in coastal marine environments. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(12): 5685~5689.
    47. DeLong E.F. . Diversity of naturally occurring prokaryotes. Microbial Diversity in Time and Space, 1996, 125~133.
    48. Delong E.F., Wickham G.S., Pace N.R. . Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science, 1989, 243(4896): 1360~1363.
    49. Dunbar J., Ticknor L.O., Kuske C.R. . Phylogenetic specificity and reproducibility and new method for analysis of terminal restriction fragment prodiles of 16S rRNA genes from bacterial communities. Applied and Environmental Microbiology, 2001, 67(1): 190~197.
    50. Elliott E.T., Coleman D.C. . Let the soil work for us. Ecological bulletins, 1988, 23~32.
    51. Fierer N., Breitbart M., Nulton J., Salamon P., Lozupone C., Jones R., Robeson M., Edwards R.A., Felts B., Rayhawk S., Knight R., Rohwer F., Jackson R.B. . Metagenomic and Small-Subunit rRNA analyses reveal the genetic diversity of Bacteria, Archaea, Fungi, and Viruses in soil. Applied and Environmental Microbiology, 2007, 73(21): 7059~7066.
    52. Francis C.A., Roberts K.J., Beman J.M., Santoro A.E., Oakley B.B. . Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(41): 14683~14688.
    53. Galand P.E., Lovejoy C., Vincent W.F. . Remarkably diverse and contrasting archaeal communities in a large arctic river and the coastal Arctic Ocean. Aquatic Microbial Ecology, 2006, 44: 115~126.
    54. Gelsomino A., Keijzer-Wolters A.C., Cacco G., Elsas J.D. . Assessment of bacterial community structure in soil by polymerase chain reaction and denaturing gradient gel electrophoresis. Journal of Microbiological Methods, 1999, 38(1-2): 1~15.
    55. Govannoni S., Britschgi T., Moyer C. . Genetic diversity in Sargasso Sea bacteriop lankton. Nature, 1990, 345: 60~63.
    56. Grabowski B., Kelman Z. . Archeal DNA replication: eukaryal proteins in a bacterial context.Annual Reviews in Microbiology, 2003, 57(1): 487~516.
    57. Heck K.L., Belle G.V., Simberloff D. . Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size. Ecology, 1975, 56(6): 1459~1461.
    58. Herfort L., Kim J.H., Coolen M.J.L., Abbas B., Schouten S., Herndl G.J., DamstéJ.S.S. . Diversity of Archaea and detection of crenarchaeotal amoA genes in the rivers Rhine and Têt. Aquatic Microbial Ecology, 2009, 55: 189~201.
    59. Herndl G.J., Reinthaler T., Teira E., van Aken H., Veth C., Pernthaler A., Pernthaler J. . Contribution of Archaea to total prokaryotic production in the deep Atlantic Ocean. Applied and Environmental Microbiology, 2005, 71: 2303~2309.
    60. Hooper A.B., Vannelli T., Bergmann D.J. . Enzymology of the oxidation of ammonia to nitrite by bacteria. Antonie van Leeuwenhoek, 1997, 71(1): 59~67.
    61. Huber H., Hohn M.J., Rachel R., Fuchs T., Wimmer V.C., Stetter K.O. . A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature, 2002, 417: 63~67.
    62. Inagaki F., Sakihama Y., Inoue A. . Molecular phylogenetic analyses of reverse-transcribed bacterial rRNA obtained from deep-sea cold seep sediments. Environ Microbiology, 2002, 4(5): 277~286.
    63. Jurgens G., Saano A. . Diversity of soil archaea in boreal forest before, and after clear-cutting and prescribed burning. FEMS Microbiology Ecology, 1999, 29(2): 205~213.
    64. Kates M., Kushner D.J., Matheson A.T. . The Biochemistry of archaea(archaebacteria). 1993.
    65. Karner M.B., DeLong E.F., Karl D.M. . Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature, 2001, 409: 507~510.
    66. Kashefi K., Lovley D.R. . Extending the upper temperature limit for life. Science, 2003, 301(5635): 934~934.
    67. Keough B.P., Schmidt T.M., Hicks R.E. . Archaeal nucleic acid in picoplankton from great lakes on three continents. Microbial Ecology, 2003, 46(2): 238~248.
    68. Klotz M.G., Alzerreca J., Norton J.M. . A gene encoding a membrane protein exists upstream of the amoA/amoB genes in ammonia oxidizing bacteria: a third member of the amo operon?. FEMS Microbiology Letters, 1997, 150(1): 65~73.
    69. Knief C., Lipski A., Dunfield P.F. . Diversity and activity of methanotrophic bacteria in different upland soils. Applied and Environment Microbiology, 2003, 69(11): 6703~6714.
    70. Kowalchuk G.A., Stephen J.R. . A mmonia-oxidizing bacteria: A model for molecular microbial ecology. Annual Reviews in Microbiology, 2001, 55(1): 485~529.
    71. Leininger S., Urich T., Schloter M., Schwark L., Qi J., Nicol G.W., Prosser J.I., Schuster S.C., Schleper C. . Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature, 2006, 442: 806~809.
    72. Lipson D.A., Schmidt S.K. . Seasonal changes in an alpine soil bacterial community in the colorado rocky Mountain. Applied and Environmental Microbiology, 2004, 70(5), 2867~2879.
    73. Liu W.T., Marsh T.L., Cheng H. . Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Applied and EnvironmentMicrobiology, 1997, 63(11): 4516~4522.
    74. Liu X.Y., Lindemann W.C., Whitford W.G., Steiner R.L. . Microbial diversity and activity of disturbed soil in the northern Chihuahuan desert. Biology and Fertility of Soils, 2000, 32(3): 243~249.
    75. Londei P. . Evolution of translational initiation: new insights from the archaea. FEMS Microbiology reviews, 2005, 29(2): 185~200.
    76. Lukow T., Dunfield P.F., Leisack W. . Use of the T-RFLP technique to assess spatial and temporal changes in the bacterial community structure within an agricultural soil planted with transgenic and non-transgenic potato plants. FEMS Microbiology Ecology, 2000, 32(3): 241~247.
    77. MacGregor B.J., Moser D.P., Alm E.W., Nealson K.H., Stahl D.A. . Crenarchaeota in Lake Michigan sediment. Applied and Environmental Microbiololgy, 1997, 63(3): 1178~1181.
    78. Maidak B.L., Cole J.R., Lilburn T.G., Parker C.T., Saxman P.R., Farris R.J., Garrity G.M., Olsen G.J., Schmid T.M., Tiedje J.M. . The RDP-II (Ribosomal Database Project). Nucleic Acids Research, 2001, 29(1): 173~174.
    79. McCaig A.E., Glover L.A., Prosser J.I. . Molecular analysis of bacterial community structure and diversity in unimproved and improved upland grass pastures. Applied and Environmental Microbiology, 1999, 65(4): 1721~1730.
    80. McTavish H., Fuchs J.A., Hooper A.B. . Sequence of the gene coding for ammonia monooxygenase in Nitrosomonas europaea. Journal of Bacteriology, 1993, 175(8): 2436~2444.
    81. Michael B.J., Francis C.A. . Diversity of ammonia-oxidizing archaea and bacteria in the sediments of a hypernutrified subtropical estuary: Bah?′a del To′bari, Mexico. Applied and Environmental Microbiololgy, 2006, 72(12): 7767~7777.
    82. Miller D.N., Bryant J.E., Madsen E.L., Ghiorse W.C. . Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Applied and Environment Microbiology, 1999, 65(11): 4715~4724.
    83. Muyzer G., Smalla K. . Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Applied and Environmental Microbiology, 1998, 73(1): 127~141.
    84. Myllykallio H., Lopez P., Lopez-Garcia P., Heilig R., Saurin W., Zivanovic Y., Philippe H., Forterre P. . Bacterial mode of replication with eukaryotic-like machinery in a hyperthermophilic archaeon. Science, 2000, 288(5474), 2212~2215.
    85. Muyzer G., Waal E.C., Uitterlinden A.G. . Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reactionamplified genes encoding for 16S rRNA. Applied Environmental Microbiology, 1993, 59(3): 695~700.
    86. Nemergut D.R., Costello E.K., Meyer A.F., Pescador M.Y., Weintraub M.N., Schmidt S.K. . Structure and function of alpine and arctic soil microbial communities. Research in Microbiology, 2005, 156(7): 775~784.
    87. Ochsenreiter T., Selezi D., Quaiser A., Bonch-Osmolovskaya L., Schleper C. . Diversity andabundance of Crenarchaeota in terrestrial habitats studied by 16S rRNA surveys and real time PCR. Environmental Microbiology, 2003, 5(9): 787~797.
    88. Ogram A., Sayler G.S., Barkay T. . The extraction and purification of microbial DNA from sediments. Journal Microbiology Methods, 1987, 7(2): 57~66.
    89. Olsen G.J., Woese C.R. . Lessons from an Archaeal genome: what are we learning from Methanococcus jannaschii?. Trends in Genetics, 1996, 12(10): 377~379.
    90. Powlson D.S., Brookes P.C., Christensen B.T. . Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil biology and biochemistry, 1987, 19(2): 159~164.
    91. Prosser J.I., Martin Embley T. . Cultivation-based and molecular approaches to characterisation of terrestrial and aquatic nitrifiers. Antonie van Leeuwenhoek, 2002, 81(1): 165~179.
    92. Riesner D., Henco K., Steger G. . Temperature-gradient gel electrophoresis: a method for the analysis of conformational transitions and mutations in nucleic acids and proteins. Advances in Electrophoresis, 1991, 4: 169~250.
    93. Rothschild L.J., Mancinelli R.L. . Life in extreme environments. Nature, 2001, 409(6823): 1092~1101.
    94. Schleper C., Jurgens G., Jonuscheit M. . Genomic studies of uncultivated archaea. Nature Reviews Microbiology, 2005, 3(6), 479~488.
    95. Schloss P.D., Handelsman J. . Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Applied and Environmental Microbiology, 2005, 71(3): 1501~1506.
    96. Schloss P.D., Handelsman J. . Introducing SONS, a tool for operational taxonomic unit-based comparisons of microbial community memberships and structures. Applied and Environmental Microbiology, 2006, 72(10): 6773~6779.
    97. Schloss P.D., Larget B.R., Handelsman J. . Integration of microbial ecology and statistics: a test to compare gene libraries. Applied and Environmental Microbiology, 2004, 70(9): 5485~5492.
    98. Sokal R.R., Rohlf F.J. . Biometry. Freeman New Yock., 1984.
    99. Solbrig O.T. . From genes to ecosystems: a research agenda for biodiversity. Report of a IUBS-SCOPEUNESCO workshop. The International Union of Biological Sciences. Paris France: 51 Boulevar dole Montmorenny, 1991.
    100. Stackebrandt E., Goebel B.M. .Taxonomic Note: A Place for DNA-DNA Reassociation and 16S rRNA Sequence Analysis in the Present Species Definition in Bacteriology. International Journal of Systematic and Evolutionary Microbiology, 1994, 44: 846~849.
    101. Stein L.Y., Jones G., Alexander B., Elmund K., Wright-Jones C., Nealson K.H. . Intriguing microbial diversity associated with metal-rich particles from a freshwater reservoir. FEMS Microbiology Ecology, 2002, 42(3): 431~440.
    102. Tamura K., Dudley J., Nei M., Kumar S. . MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4, 2007, 24(8): 1596~1599.
    103. Tebbe C.C., Vahjen W. . Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast. Applied and Environment Microbiology, 1993, 59(8): 2657~2665.
    104. Treusch A.H., Leininger S., Kletzin A., Schuster S.C., Klenk H., Schleper C. . Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environmental Microbiology, 2005, 7(12): 1985~1995.
    105. Vallaeys T., Topp E., Muyzer G., Macheret V., Laguerre G., Rigaud A., Soulas G. . Evaluation of denaturing gradient gel electrophoresis in the detection of 16S rDNA sequence variation in rhizobia and methanotrophs. FEMS Microbiology Ecology, 1997, 24(3): 279~285.
    106. Vaneechoutte M., Rossau R., DeVos P., Gillis M., Janssens D., Paepe N., DeRouck A., Fiers T., Claeys G., Kersters K. . Rapid identification of bacteria of the Comamonadaceae with amplified ribosomal DNA-restriction analysis (ARDRA). FEMS Microbiology Letter, 1992, 93(3): 227~233.
    107. Venter J.C., Remington K., Heidelberg J.F., Halpern A.L., Rusch D., Eisen J.A., Wu D.Y., Paulsen L., Nelson K.E., Nelson W., Fouts D.E., Levy S., Knap A.H., Lomas M.W., Nealson K., White O., Peterson J., Hoffman J., Parsons R., Baden-Tillson H., Pfannkoch C., Rogers Y.H., Smith H.O. . Environmental genome shotgun sequencing of the Sargasso Sea. Science, 2004, 304(5667): 66~74.
    108. Vetriani C., Jannasch H.W., MacGregor B.J., Stahl D.A., Reysenbach A.L. . Population structure and phylogenetic characterization of marine benthic archaea in deep-sea sediments. Applied and Environmental Microbiology, 1999, 65(10): 4375~4384.
    109. Volkl P., Huber R., Drobner E., Rachel R., Burggraf S., Trincone A., Stetter K.O. . Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic archaeum. Applied and Environment Microbiology, 1993, 59(9): 2918~2926.
    110. Volossiouk T., Robb E.J., Nazar R.N. . Direct DNA Extraction for PCR-Mediated Assays of Soil Organisms. Applied and Environment Microbiology, 1995, 61(11): 3972~3976.
    111. Woese C.R. . Endosymbionts and mitochondrial origins. Proceedings of the National Academy of Sciences, 1977, 10(2): 93~96.
    112. Woese C.R., Kandler O., Wheelis M.L. . Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences, 1990, 87(12): 4576~4579.
    113. Wuchter C., Abbas B., Coolen M.J.L., Herfort L., Bleijswijk J.V., Timmers P., Strous M., Teira E., Herndl G.J., Middelburg J.J., Schouten S., Sinninghe DamstéJ.S. . Archaeal nitrification in the ocean. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(33): 12317-12322.
    114. Xia B.C., Treves D.S., Zhou J.Z., Wu L.Y., Marsh T.L., O’Neill R.V., Palumbo A.V., Tiedje J.M. . Soil microbial community diversity and driving mechanisms. Applied and Environmental Microbiology, 2001, 68(1): 326~334.
    115. Young I.M., Crawford J.W. . Interactions and self-organization in the soil-microbe complex. Science, 2004, 304(5677): 1634~1637.
    116. Zhou J.Z., Bruns M.A., Tiedje J.M. . DNA recovery from soils of diverse composition. Applied and Environmental Microbiology, 1996, 62(2): 316~322.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700