连作和轮作棉田土壤微生物多样性分析及PGPR菌株筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过培养法和免培养法相结合研究棉花连作、轮作栽培体系下土壤微生物多样性的演替特点,揭示棉田连作障碍的生物因子,了解棉花连作、轮作体系中土壤微生物性状的现状和趋向。并通过筛选具防病促生功能的PGPR有益微生物菌群调节改善棉田生态环境,为探讨综合治理棉田连作障碍的有效措施,推动棉花种植结构的优化调整,保障棉花产业的健康、持续、高效发展提供科学基础和技术支持。
     研究结果表明,棉花多年连作造成土壤中可培养微生物数量减少,连作6-8a、9-12a、>13a的棉田与连作<5a的棉田相比,土壤微生物总量分别下降了40.2%、46.7%、52.4%。连作超过5a后,土壤微生物菌群结构逐渐从高肥的“细菌型”土壤向低肥的“真菌型”土壤转化,细菌/真菌(B/F)比值降低,拮抗菌减少,病原菌积累。氮素生理群氨化细菌、硝化细菌、自生固氮菌数量下降,反硝化细菌数量增加。连作还导致土壤呼吸强度、纤维素分解强度下降,微生物活性降低。经倒茬轮作后,土壤微生物数量明显增长,有益于调节菌群平衡,细菌/真菌(B/F)和放线菌/真菌(A/F)比值增加,固氮菌数量呈现显著增长,微生物活性提高。
     建立了一种提取棉田土壤微生物总DNA的方法-改良CTAB-SDS法。提取获得的DNA完整性好,得率为24.20μg/g干土。纯化后A260/A280和A260/A230分别为1.80和1.70,纯化回收率为70.1%,适用于后续的PCR分析。
     通过ARDRADGGE技术分析比较了连作、轮作棉田土壤微生物多样性的变化,结果显示棉花多年连作使土壤细菌种群数量、结构、优势菌群发生变化,多样性指数、丰富度和均匀度指数下降,连作年限越长此趋势越突出。连作>13a与<5a的相似性仅为64%,菌群结构发生复杂的改变。轮作的种群结构与连作有较大差异,群落多样性增加。番茄和草木樨对细菌群落多样性改善的效果更为明显。
     连作土壤中的一些优势菌群数量发生改变,1种未培养细菌减弱或消失,2种未培养细菌得到富集。而轮作则使富集菌群密度下降,同时还使土壤中一些非优势的菌群得到加强,增加了一些特征性菌群。
     从分离的棉花根际细菌中筛选出对棉花枯萎病菌、棉花黄萎病菌、棉花立枯病菌具有较高拮抗活性的CRB115菌株。盆栽试验结果显示该菌株接种后表现出一定的防病作用,同时还有促进发芽、增加生物量等促生效果。形态鉴定结合16S rDNA序列分析确定为枯草芽孢杆菌(Bacillus subtilis)。
Research on soil microbial diversity in cotton under continuous and rotation cropping systems have been done through the biotechnology method and culture method, the results show that the continuous cropping obstacles of the bio-factors, continuous and rotation cropping present and trend. The PGPR strains which have prevent growth-promoting effects have been used to improve the ecological condition in the cotton fields, to study the how to deal with continuous cropping obstacles, and improve the cotton growing structure of cotton strains, provide a scientific basis and technical to support cotton industry developing healthy, sustainably and effectively.
     The results showed: the continuously cropping of cotton will cause the decrease of the cultivable microorganism number, compare to cropping less than 5a continuously, 6-8a, 9-12a and more than 13a of continuously cropping will cause the decrease of the soil microbe by 40.2%, 46.7%, 52.4%, the structure of the soil microbe translated from a rich nutrition bacteria type to the low nutrition fungi type gradually after 5a, the rate of B/F have decreased, pathogenic bacteria have accumulated.With the increasing of the years of continuously cropping, the number of ammonification bacteria, nitrifying bacteria, free-living nitrogen fixing bacteria in the soil have decreased, meanwhile the number of denitrifying bacteria have increased. Respiratory intensity, cellulolytic activity have decreased in continuously cropping field. Through the rotational cropping,the number of the soil microbe has increased obviously, the rate of B/F and A/F, the number of nitrogen-fixing bacteria and microbial activity have increased.
     A simple and efficient DNA extraction of the total microbial cotton method has been establishment-modified CTAB-SDS method. This method of extract DNA are integrity and also have higher rate, 24.20μg/g dry soil. The A260/A280 and A260/A230 after the purifying are 1.80 and 1.70, purification Recovery rate are 70.1%, it is totally fit for the next pcr analyzing, It provides the foundation for the study of the soil microbial diversity without culturing.
     The changes of bio-diversity in continuously and rotational cropping soil have been compared through the ARDRA and DGGE, it shows that the continuously cropping lower the number of the bacteria, diversity index, richness index and uniform index, the structure of the bacteria begin to have complicate changes after continuously cropping. 13a of continuously cropping was similar to cropping less than 5a continuously only 45 percent, There have obvious differences in the bio-structure of continuously cropping and rotational cropping, the bio-diversity has increased, and especially the tomato and melilotoides have great effects on improve the bacteria diversity in the continuously cropping field.
     The number of superiority soil bacteria have changed. One kinds of uncultured bacteria disappeared or weaked. Two kinds of uncultured bacteria be enriched. A number of nonsuperi- ority soil bacteria has been strengthened to rotational cropping fields.
     Screen out activity strains of CRB115 from rhizosphere with high antagonistic to Fusarium oxysporium f.sp. vasinfectum(Atk) Snyder et Hansen, Verticillium dahliae Kleb, Rhizoctonia solani kuhn. A pot experiment results showed it have played roles in preventing the disease, accelerating germination and increasing living weight after inoculation of the strains. Morphological identification combination with 16S rDNA sequence analysis identified as bacillus subtilis.
引文
[1]孙泽昭,黄乐珊.新疆棉花产业优势分析[J].甘肃农业,2007,09:21-23.
    [2]殷永娴.设施栽培下土壤中硝化、硝化作用的研究[J].生态学报,1996,16(3):246-250.
    [3]张淑香,高子勤.连作障碍与根际微生态研究[J].应用生态学报,2000,01:37-40.
    [4]车玉伶,王慧.微生物群落结构和多样性解析技术研究进展[J].生态环境,2005,14(1):127-133.
    [5]侯永侠,周宝利,吴晓玲.土壤灭菌对辣椒抗连作障碍效果[J].生态学杂志,2006,25(03):13-15.
    [6]胡江春,汪思龙,王书锦.森林生态系统中土壤微生物的作用与应用[J].应用生态学报,2004,15(10):1943-1946.
    [7]孔庆科,丁爱云.内生细菌作为生防因子的研究进展[J].山东农业大学学报(自然科学版),2001,32(2):256-260.
    [8] Pieterse C M J.Rhizobacteria mediated induced systemic resistance:triggering signaling and expression[J].Plant Pathology,2001,107:51-61.
    [9]姚怀应,何根立.不同土地利用方式对红壤微生物的影响[J].水土保持报,2003,17(2):51-54.
    [10]姜成林,徐丽华.微生物多样性及其保育[J].生物多样性,1997,5(4):276-280.
    [11]姚健,杨永华.农用化学品污染对土壤微生物群落DNA序列多样性影响研究[J].生态学报,20 00,20:38-41.
    [12]韩芳,邵玉琴.黄甫川流域不同土地利用方式下的土壤微生物多样性[J].内蒙古大学学报(自然科学版),2003,34(3):298-303.
    [13]马晓梅.塔里木荒漠河岸林主要建群植物根际微生物分布特点[D].新疆:新疆农业大学林学院, 2007.
    [14]王秀丽.重金属复合污染对土壤环境微生物群落的影响机理研究[D].浙江:浙江大学水土资源与环境研究所,2002.
    [15]王勐骋,杨永华,姚健.利用RAPD分子标记研究农用化学品污染土壤微生物群落的分子多样性[J].南京大学学报(自然科学),2000,36:518-522.
    [16]贾建丽,李广贺,张旭,等.基于PCR-DGGE技术的石油污染土壤微生物多态性[J].清华大学学报(自然科学版),2005,09:1217-l220.
    [17]赵勇,李武,周志华,等.应用PCR-RFLP及PCR-TGGE技术监测农田土壤微生物短期动态变化[J].南京农业大学学报,2005,28(3):53-57.
    [18]孙波,赵其国,张桃标,等.土壤质量与持续环境Ⅲ、土壤质量评价的生物学指标[J].土壤, 1997,29(5):225-234.
    [19] Zlles L.Fatty acid patterns of phospholipids and lipopolysaccharide in the characterizations of microbial communities in soils:a review[J].Biology soils,1999,29:111-129.
    [20]白清云.土壤微生物群落结构的化学估价方法[J].农业环境保护,1997,16(6):252-256.
    [21]张炳欣,陈晓斌,楼兵干.Biolog系统鉴定黄瓜根围促生菌的初步研究[J].微生物学报,2000,27(6):403-407.
    [22]许志刚,张世光,姬广海.植物病原细菌的Biolog系统鉴定及其多元统计初析[J].应用与环境生物报,2001,7(3):288-290.
    [23] Torsvik V,Dvress L.Microbial diversity and function in soil:from genes to ecosystems[J].Current Opinion Microbiol,2002,5:240-245.
    [24]夏北成.分子生物学方法在微生物生态学中的应用[J].中山大学学报(自然科学版),1998,37(2):97-l01.
    [25] Ji Zhong Zhou,Mary Ann Bruns,Jam Tiedje.DNA recovery from soils of Diverse Compositions[J]. Applied and Envirinment MicroBiology,1996,2:3l6-322.
    [26] Yang Y,Zeyer J.Specific detection of dehalococcoides species by fluorescence in situ hybridization with 16S rRNA targeted oligonucleotide probes[J].Environ Microbiol,2003,69:2879-2883.
    [27] Ritz K,Griffiths B S.Potential application of a community hybridization technique for assessing changes in the population structure of soil microbial communities [J].Soil Biol Biochem,1994,26:963-971.
    [28] Torsvik V,Sorheim R,Goksoyr J.Total bacterial diversity in soil and sediment communities review[J].Microbiol Biotech,1996,17:170-178.
    [29] Liu W T,Marsh T L,Cheng H,et al.Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA[J].Environ Microbiol,1997,63:4516-4522.
    [30] Marsh T L.Terminal restriction fragment length polyofmorphism (T-RFLP):An emerging method for characterizing diversity among homologous populations of amplification products[J].Current Opinion Microbiol,1999,2:323-327.
    [31]罗海峰,齐鸿雁,薛凯,等.PCR-DGGE技术在农田土壤微生物多样性研究中的应用[J].生态学报,2003,8:15-18.
    [32] Muyzer G,De Wall E C,Uitterlinden A G.Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S rRNA[J].Environ Microbiol,1993,59:695-700.
    [33]王淑彬,黄国勤.稻田水旱轮作(第3年度)的土壤微生物效应[J].江西农业大学学报(自然科学版),2002,24(3):320-323.
    [34]杨玉盛,黄宝龙.杉木连栽土壤微生物及生化特性的研究[J].生物多样性,1999,7(1):1-7.
    [35]钟文辉,蔡祖聪.土壤管理措施及环境因素对土壤微生物多样性影响研究进展[J].生物多样性,2004,12(4):456-465.
    [36]孔维栋,刘可星.有机物料种类及腐熟水平对土壤微生物群落的影响[J].应用生态学报,2004,15(3):487-492.
    [37]章家恩,刘文高.广东省不同地区土壤微生物数量状况初步研究[J].生态科学,2002,21(3):223-225.
    [38]尹睿,张华勇.保护地菜田与稻麦轮作田土壤微生物学特征的比较[J].植物营养与肥料学报,2004,10(1):57-62.
    [39]陈灏,唐小树,林洁.不经培养的农田土壤微生物种群构成及系统分类的初步研究[J].微生物学报,2002,4:36-38.
    [40]田春杰,陈家宽,钟扬.微生物系统发育多样性及其保护生物学意义[J].应用生态学报,2003, 4:12-15.
    [41]泷岛.防止连作障碍的措施[J].日本土壤肥料杂志,1983,2:170-178.
    [42]张爱君,张明普,张洪源.果树苗圃土壤连作障碍的研究初报[J].南京农业大学学报,2002,25(1):19-22.
    [43]张春兰,张耀栋,周权锁.不同作物茬对减轻蔬菜保护地土壤盐害及连作障害的作用[J].土壤通报,1995,26(6):257-259.
    [44]童有为,陈淡飞.温室土壤次生盐渍化的形成和治理途径研究[J].园艺学报,1991,18(2):159-162.
    [45]夏立忠,杨林章,王德建.苏南设施栽培中旱作人为土养分与盐分状况的研究[J].江苏农业科学,2001,6:43-46.
    [46]史忠良.几种常见微生物肥料的施用技术[J].上海蔬菜,2005,5:78-79.
    [47] Zehnder G,Klopper J,Yao C.Inductionofsystemic resistance in cuctlrtlber against cuctlrflber beedes by plant growth promoting rhizobacteria[J].Economics Entomology,1997,90:391-396.
    [48]范延辉.根际促生菌及其在防治连作障碍中的应用[J].天津职业院校联合学报,2008,10(2):33-35.
    [49] Broedbant P.Bacteria and actinomycetes antagonistic to fungal root pathogens in Australian soil[J]. Biological Sciences,1991,24:925-944.
    [50]李成云.拮抗微生物的利用[J].云南农业科技,1996,3:41-42.
    [51]孙淑荣,吴海燕,刘春光.PGPR复合制剂对玉米增产效果的研究[J].吉林农业科学,2004,29(5):22-28.
    [52]叶喜文,焦峰,吴金花,等.PGPR促生菌肥在水稻上应用效果研究[J].黑龙江八一农垦大学学报,2005,17(1):9-11.
    [53]薛德林,胡春江,马成新.海洋防线菌MB-97生物制剂在克服大豆连作障碍中的应用[J].应用生态学报,1998,9(4):429-434.
    [54]杨海莲,孙晓璐,宋未.植物根际促生细菌和内生细菌的诱导抗病性的研究进展[J].植物病理学,2000,30(2):106-110.
    [55]阮维斌,王敬国,张福锁.连作障碍因素对大豆养分吸收和固氮作用的影响[J].生态学报,2003,23(1):22-29.
    [56]于颖,刘元英,罗盛国.重茬胁迫下硒对大豆叶绿体超微结构和叶片微量元素含量的影响[J].应用生态学报,2003,14(4):573-576.
    [57]于广武.大豆连作障碍机制初报[J].大豆科学,1993,12(3):237-242.
    [58]郑良永,胡剑非,林昌华,等.作物连作障碍的产生及防治[J].热带农业科学,2005,25(2):582-621.
    [59]李琼芳.不同连作年限麦冬根际微生物区系动态研究[J].土壤通报,2006,37(3):563-565.
    [60] Schippers Betal.Interaction of deleterious and beneficial rhizospheremicroorganisms and the effect of cropping practices[J].Phytopathel,1987,25(3):339-358.
    [61]许光辉,郑洪元.土壤微生物分析方法手册[M].北京:农业出版社,l986.
    [62]胡开辉.微生物学试验[M].北京:中国林业出版社,2004.
    [63]姚拓,龙瑞军,师尚礼,等.高寒草地不同扰动生境土壤微生物氮素生理群数量特征研究[J].土壤学报,2007,44(1):122-129.
    [64]邹莉,袁晓颖.连作对大豆根部土壤微生物的影响研究[J].微生物学杂志,2005,25(2):27-30.
    [65]马云华,魏珉,王秀峰.日光温室连作黄瓜根区微生物区系及酶活性的变化[J].应用生态学报,2004,15(6):1005-1008.
    [66]严昶升.土壤肥力研究方法[M].北京:农业出版社,1985.
    [67]封海胜,万书波,左学青,等.花生连作土壤根际主要微生物类群的变化及与产量的相关[J].花生科技,1999,增刊:277-283.
    [68]罗明,文启凯,陈全家,等.不同用量的氮磷化肥对棉田土壤微生物区系及活性的影响[J].土壤通报,2000,31(2):66-72.
    [69]杨建霞.日光温室黄瓜连作障碍研究及防治对策[J].甘肃农业,2005,11:13-16.
    [70]盘莫谊,张杨珠,肖嫩群.烟草连作对旱地土壤微生物及酶活性的影响[J].世界科技研究与发展,2008,03:295-297.
    [71]顾美英,徐万里,茆军.连作对新疆绿洲棉田土壤微生物数量及酶活性的影响[J].干旱地区农业研究,2009,01:1-5.
    [72]刘洪升,宋秋华,李凤民.根分泌物对根际矿物营养及根际微生物的效应[J].西北植物学报,2002,03:251-260.
    [73]朱海平,姚槐应,张勇勇,等.不同培肥管理措施对土壤微生物生态特征的影响[J].土壤通报,2003,34(2):140-142.
    [74]蓝希钳,周泽扬.未培养的微生物研究进展[J].微生物学通报,2005,32(6):116-119.
    [75] Hart M C,Elliott G N,Osborn A M.Diversity amongst bacillus meragenes amplified frommercury resistant isolates and directly from mercury polluted soil[J].FEMS Microbiol,1998,27:73-84.
    [76]姚晓华.土壤微生物群落多样性研究方法及进展[J].广西农业生物科学,2008,27(S1):84-88.
    [77] Sharma N,Sudarsan Y,Sharma R.RAPD analysis of soil microbial diversity in western rajasthan [J].Current Science,2008,94(8):1058-1061.
    [78] Bridge Paul,Brian Spoonerl.Soil fungi:Diversity and detection[J].Plant and Soil,2001,232:147-151.
    [79]徐晓宇,闵航,刘和.土壤微生物总DNA提取方法的比较[J].农业生物技术学报,2005,13 (3):377-381.
    [80]顾华杰,李玉祥,赵明文.几种水稻田土壤微生物总DNA提取方法的比较[J].江苏大学学报,2005,15(4):300-305.
    [81] Sagova Mareckova,M Cermak,L Novotna.Innovative methods for soil DNA purification tested in soils with widely differing characteristics[J].Applied and Environmental MicroBiology,2008,74(9) :2902-2907.
    [82]赵勇,周志华,李武,等.土壤微生物分子生态学研究中总DNA的提取[J].农业环境科学学报,2005,24(5):854-860.
    [83] Di Cello F,Bevivino A,Chiarini L.Biodiversity of a burkholderia cepacia population isolated from the maize rhizosphere at different plant growth stages[J].Environment Microbiol,1997,63:4485-4493.
    [84] Muyzer G.DGGE/TGGE a method for identifying genes from natural ecosystems[J].Microbiol,1999,2:317-322.
    [85] Ogram A.Discussion soil molecular microbial ecology at age 20:methodological challenges for the future[J].Soil Biology & Biochemistry,2000,32(11):1499-1504.
    [86] Cui Zhongli,Li Shunpeng,Fu Guoping.Isolation of methyl parathion degrading strain M6 and clon- ing of the methyl parathion hydrolase gene[J].Environ Microbiol,2001,67(10):4922-4925.
    [87] Laurag G L , James R , Dana J.Comparison of methods of DNA extraction from stream sediments[J].Environ Microbiol,1995,59:l141-l143.
    [88] Tsai Y L,Olson B H.Rapid method for separation of bacterial DNA from humic substances in sediments for polymerase chain reaction[J].Environ Microbiol,1991,57:1070-1074.
    [89] Jacobsen C S,Rasmussen F.Development and application of a new method to extract bacterial DNAfrom soil based on separation of bacteria from soil with cation exchange resin[J].Environ Microbiol,1992,58:2458-2462.
    [90]焦晓丹,吴凤芝.土壤微生物多样性研究方法的进展[J].土壤通报,2004,35(6):789-792.
    [91] Nathalie F,Danielle B,Kenncth L.Soil washing improves the recovery of total community DNA from polluted and higorganic sediments[J].Mirobiol Method,2004,56:181-183.
    [92] Zhou J,Davey M E,Figueras J B.Phylogenetic diversity of a bacterial community determined from siberian tundra soil DNA[J].Microbiol Biology,1997,143:3913-3919.
    [93] Florent A,Beltran R B,David B.Phaccs an online tool for estimating the structure and diversity of uncultured viral communities using metagenomic information[J].BMC Bioinformatics,2005,41( 6):1-9.
    [94] Porteous L A,Seidler R J,Watrudl S.An improved method for purifying DNA from soil for polymerase chain reaction amplification and molecular ecology applications[J]. Microbiol Ecology,1997,6:787-791.
    [95] Wechter P,Williamion J,Robertson A.A rapid cost effective procedure for the extraction of microbial DNA from soil[J].World Journal of Microbiology & Biotechnology,2003,19:85-91.
    [96] Yang C H,Menge J A,Cooksey D A.Role of copper resistance in competitive survival of pseudomonas fluorescens in soil[J].Environ Microbiol,1993,59:580-584.
    [97] Roane T M,Pepper I L.Microbial responses to environmentally toxic cadmium[J].Microbiol Ecology,2000,38:358-364.
    [98] Stach J E,Bathe S,Clapp J P.PCR-SSCP comparison of 16S rDNA sequence diversity in soil DNA obtained using different isolation and purification methods[J].FEMS Microbiol Ecology,2001,36(3):139-151.
    [99] Fortina N,Beaumiera D,Leeb K.Soil washing improves the recovery of total community DNA from polluted and high organic content sediments[J].Journal of MicroBiological Methods,2004,56:181-191.
    [100]孙泽昭,黄乐珊.新疆棉花产业高速发展中的问题及其发展潜力分析[J].新疆农业职业技术学院学报,2006,1:55-56.
    [101]刘期松,齐恩山,张春桂,等.石油污水灌区的微生物生态及其降解石油的研究[J].环境科学,1981,2:161-166.
    [102] Amann R I,Ludwig W.Ribosomal RNA-targeted nucleic acid probes for studies in microbial ecology[J].FEMS Microbiol Ecology,2000,24:555-565.
    [103] Torsvik V.Microbial Diversity and community Structure in Two Different Agricultural Soil Comm- unity[J]. Microbial Ecology,1998,36:303-315.
    [104]张瑞福,崔中利,李顺鹏.土壤微生物群落结构研究方法进展[J].土壤,2004,36(5):476-480.
    [105]滕应,骆永明,赵祥伟,等.重金属复合污染农田土壤DNA的快速提取及其PCR-DGGE分析[J].土壤学报,2004,41(3):343-347.
    [106] Hill G T,Mitkowski N A,Wolfe L,et al.Methods for assessing the composition and diversity of soil microbial communities[J].Applied Soil Ecology,2000,15(1):25-36.
    [107] Di Cello F,Bevivino A,Chiarini L.Biodiversity of a burkholderia cepacia population isolated from the maize rhizosphere at different plant growth stages[J].Environment Microbiol,1997,63:4485-4493.
    [108]傅占江,刘宝文,刘体全.DNA聚丙烯酰胺凝胶电泳三种银染方法比较[J].临床军医杂志,200 2,30(4):71-73.
    [109] Luo H F,Qi H Y,Zhang H X.Assessment of the bacterialdiversity in fenvalerate treated soil[J].World Journal of Microbiology Biology & Biotechnology,2004,20:509-515.
    [110]李慧,张颖,苏振成.沈抚石油污水灌区稻田土壤细菌遗传多样性[J].土壤学报,2006,43(0 6):972-980.
    [111]李延茂,胡江春,张晶.杉木连栽土壤微生物多样性的比较研究[J].应用生态学报,2005,07:94-97.
    [112]黄益,吕淑霞,马镝.产壳聚糖酶菌株的筛选及酶解产物壳寡糖性质的研究[J].食品科技,2008,3:17-20.
    [113]杜国坚,张庆荣,洪利兴,等.杉木连栽林地土壤微生物区系及其生化特性和理化性质的研究[J].浙江林业科技,1995(5):14-19.
    [114]高子勤.连作障碍与根际微生态研究I.根系分泌物及其生态效应[J].应用生态学报,1998,9 (5):549-554.
    [115]龚明福,贺江舟,孙晓棠.土壤微生物与土壤抑病性形成关系研究进展[J].新疆农业科学,2007,44(6):814-819.
    [116]张东秋,石培礼,张宪洲.土壤呼吸主要影响因素的研究进展[J].地球科学进展,2005,20(7):778-785.
    [117]黄秀梨.微生物学实验指导[M].北京:高等教育出版社,2008.
    [118]闫巍,张宪洲,石培礼.西藏高原草原化小嵩草草甸生长季土壤微生物呼吸测定[J].自然资源学报,21(3):458-464.
    [119]黎宁,李新华.菜园土壤微生物生态特征与土壤理化性质关系[J].应用生态学报,2006,17(2) :285-290.
    [120]李凤,刘淑娟,耿伟.长期连作对棉田土壤酶活性的影响[J].中国棉花,2008,35(06):23-25.
    [121]陈晓斌,张炳欣.植物根围促生细菌(PGPR)作用机制的研究进展[J].微生物学杂志,2000,20(1):38-41.
    [122]葛诚.微生物肥料的生产应用及其发展[M].北京:中国农业科技出版社,1996.
    [123] Mccully M E.Niches for bacterial endophytes in crop plants:a plant Biologist’s view[J].Plant Physiology,2001,28:983-990.
    [124]李长松.拮抗性细菌生物防治植物土传病害的研究进展[J].生物防治通报,1992,8(4):168- 182.
    [125]宗兆锋,康振生.普通植物病理学[M].北京:中国农业出版社,2002.
    [126]郭坚华,王玉菊,李谨,等.抑菌圈一定殖力双重测定法筛选青枯病生防细菌[J].植物病理学报,1996,26(1):49-54.
    [127]胡江春,薛德林,马成新,等.植物根际促生菌(PGPR)的研究与应用前景[J].应用生态学报,2004,15(10):1963-1966.
    [128]陈晓斌,顾振芳,周杭英.PGPR生防作用的不稳定性及可能的改进策略[J].上海交通大学学报(农业科学版),2002,12:89-96.
    [129] Marjan deboer,Peter bom,et al.Control of fusarium wilt of radish by combining pseudomonas putida strains that have different disease suppreswive mechanisms[J].Phytopathology,2000,93:626-632.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700