外周血CD34+细胞与骨髓间充质干细胞共培养修复兔颅骨缺损的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
颅骨缺损是颅颌面外科及整形外科面临的常见问题,其形成原因有脑外伤、颅内肿瘤及脑血管意外手术等。大面积颅骨缺损的患者容易罹患一系列神经症状,如头痛、眩晕、易激惹、记忆力下降、抑郁等,临床上称之为颅骨缺损综合征,严重影响患者的生活质量。并且,失去颅骨保护的脑组织易于受到外力的伤害,缺损颅骨还会给患者带来严重的美观问题。因此,如何修复缺损的颅骨成为临床工作者必需解决的一个重要问题。
     传统的治疗颅骨缺损方法包括自体骨及同种异体骨移植等,存在明显的缺陷。组织工程骨技术的发展为颅骨缺损修复提供了新的思路。组织工程骨的概念包括了种子细胞、支架材料和细胞因子三要素。其中,遴选优秀的种子细胞是构建组织工程骨的前提和基础。骨髓来源的间充质干细胞(BM-MSC)是目前应用最为广泛的种子细胞,其成骨能力在一系列体外及体内实验研究中已得到证实。但是,BM-MSC也存在一些缺点,尤其是促进新血管发生的作用不明显,不利于修复大面积的骨缺损。
     外周血CD34+(PB-CD34+)细胞是包含造血干细胞(HSC)和内皮祖细胞(EPC)等细胞成分的混合细胞群。近年来,PB-CD34+促进新生血管发生的作用已被多个实验所证实。并且,PB-CD34+细胞还可以向成骨细胞分化并促进新骨的形成。因此我们推测,可否将PB-CD34+细胞与BM-MSC进行共培养,构建以PB-CD34+细胞为辅助细胞,BM-MSC为目的细胞的共培养体系?共培养所得细胞的生物学特性,尤其是体外及体内成骨能力如何?共培养细胞能否做为一种新的种子细胞应用于临床?为了回答这些问题,本研究首先建立PB-CD34+细胞与BM-MSC共培养体系,并通过一系列的体外、体内实验验证共培养细胞能否做为一种新型的种子细胞用于组织工程骨的构建。
     研究目的
     1.分离PB-CD34+细胞及BM-MSC,建立以PB-CD34+细胞为辅助细胞,BM-MSC为目的细胞的共培养体系。
     2.探讨共培养细胞的生物学特性,尤其是体外及体内成骨能力,并将共培养细胞与单纯BM-MSC的成骨能力做一对比。
     3.应用共培养细胞膜片复合羟基磷灰石(HA)支架材料修复兔颅骨极限缺损模型,探讨共培养细胞的临床应用前景。
     研究方法
     1.应用流式细胞仪分选兔PB-CD34+细胞;应用密度梯度离心结合贴壁培养法分离BM-MSC,并利用流式细胞技术检测所得细胞的表面分子表达,克隆集落形成、MTT法检测细胞增殖,并进行成骨、成脂及成神经诱导,从而鉴定所得细胞为BM-MSC;最后以直接接触方式对PB-CD34+细胞及BM-MSC进行共培养,建立共培养体系,并检测共培养细胞的构成。
     2.对共培养细胞的生物学特性进行分析:检测细胞周期及凋亡,检测细胞体外成骨能力,对细胞进行成膜诱导,将细胞膜片复合HA进行裸鼠体内移植,检测细胞体内成骨能力,以上检测项目均设计与单纯BM-MSC进行比较、对照。
     3.建立兔颅骨极限缺损模型。分别利用共培养细胞及单纯BM-MSC细胞膜片复合HA进行修复。术后8周处死动物,分别通过影像学、组织学及分子生物学检测手段比较两种方法的修复效果。
     实验结果
     1.应用流式细胞仪分选可以得到PB-CD34+细胞,分选率为0.8%。分离所得的BM-MSC,以流式细胞仪鉴定其高表达间充质干细胞标志物,不表达造血系干细胞标志物;通过克隆形成实验及MTT法检测细胞增殖能力,证实分离细胞具有自我更新能力;通过成骨、成脂及成神经分化实验,证实了分离细胞具有多向分化能力。共培养体系建立,该体系中既包括大量的BM-MSC,也包括贴壁生长的PB-CD34+细胞。
     2.将共培养细胞的生物学特性与单纯BM-MSC相比较:流式细胞仪检测细胞周期及凋亡发现,共培养细胞具有更高的增殖能力和相对少的早期凋亡率;体外及体内成骨能力检测发现,共培养细胞的成骨能力更强。
     3.移植共培养细胞及单纯BM-MSC细胞膜片复合HA修复兔颅骨极限缺损模型发现:活体常规CT及术后所取颅骨标本micro-CT扫描显示,共培养细胞组实验动物的修复效果较好;组织学检测及定量分析显示,共培养细胞组新生的骨小梁体积及新生骨修复缺损比率均高于单纯BM-MSC组;实时定量PCR及Westernblot检测发现,共培养细胞组缺损修复区成骨及促血管生成相关因子的表达量高于单纯BM-MSC组。
     结论
     1.通过将PB-CD34+细胞与BM-MSC以直接接触方式共培养,可以建立一种特殊的共培养细胞体系。
     2.共培养细胞具有比单纯BM-MSC更强的体外及体内成骨能力。
     3.应用共培养细胞修复兔颅骨极限缺损模型的效果优于单纯BM-MSC,共培养细胞有很好的临床应用前景。
The calvarial skull defect caused by trauma, intracranial tumors and cerebral vascularaccident surgery is a common problem in craniofacial surgery and plastic surgery.Patientswith large area skull defect are susceptible to a range of neurological deficits, such asheadaches, dizziness, memory decline, irritable, depressed, clinically referred to skulldefect syndrome, severe impacting patients' quality of life. Moreover, loss of the skullprotecting, the brain is vulnerable to external forces. Skull defects also cause seriousaesthetic problems for patients. Therefore, how to repair skull defect becomes an important issue for clinical workers.
     Traditional methods of treatment of skull defects, including bone autograft andallograft bone transplantation, held obvious shortcomings. Development of bone tissueengineering provided a new way for repairing skull defect. Bone tissue engineeringincluded the seed cells, scaffold and cell factor. The selection of excellent seed cells fortissue engineering was the premise and basis. Bone marrow-derived mesenchymal stemcells (BM-MSC) was the most widely used as seed cells and its osteogenic ability wereconfirmed by a series of in vitro and in vivo studies. However, BM-MSC also held anumber of disadvantages, in particular failure to promote new blood vessels, in case of thedetriment of repairing large bone defects.
     Peripheral blood CD34+(PB-CD34+) cell contained hematopoietic stem cells (HSC)and endothelial progenitor cells (EPC). In recent years, the PB-CD34+cells' role inpromoting neovascularization had been confirmed by multiple experiments. PB-CD34+cells could also provide the osteoblast differentiation and promote the formation of newbone. Therefore, we assumed, will the PB-CD34+cells co-cultured with the BM-MSC asa co-culture system? What is the biological characteristics of co-cultured cells, particularlythe in vitro and in vivo osteogenetic ability? Can co-cultured cells serve as a new seedcells for clinical use? In order to answer these questions, this study established PB-CD34+cells together with BM-MSC co-culture systems, and through a series of in vitro and invivo experimental verification the capability of co-cultured cells as a new type of seedcells for bone tissue engineering.
     Objectives
     1. To separate PB-CD34+cells and BM-MSC, establishment of a PB-CD34+cells andBM-MSC co-culture system.
     2. To explore all the biological characteristics of co-cultured cells, in particular in vitroand in vivo osteogenic ability, and do comparison between co-cultured cells andBM-MSC.
     3. To explore the prospects of clinical application of co-cultured cells, co-cultured cellsheet composite with hydroxyapatite (HA) scaffold was used to repair a rabbitcalvarial critical-size defect model.
     Methods
     1. Application flow cytometry points selected rabbit PB-CD34+cell; application densitygradient centrifugal combined posted wall training law separation BM-MSC, and usesflow cytometry technology detection proceeds cell of surface molecular expression,clone set falls formed, and MTT law detection cell proliferation, and for osteogenesisand adipogenesis differentiation induced, to identification proceeds cell for BM-MSC;finally to directly contact way on PB-CD34+cell and the BM-MSC for co-culture,establish co-culture system, and detect the constitute of co-culture cells.
     2. Analysis of biological characteristics of cultured cells: detect cell cycle and apoptosis,cells osteogenic differentiation in vitro, induce cell sheet, transplant cell sheetcomposited with HA in nude mice, to detect osteogenic differentiation in vivo, moretest items are designed to compare, in contrast to simple BM-MSC.
     3. A rabbit calvarial critical-size defect model was established. Respectively the use ofco-cultured cells and BM-MSC cell sheet composite to repair the skull defect. Afterthe execution of animals, respectively by radiographic, histological and molecularbiology test were made to compare the two methods.
     Results
     1. PB-CD34+cells were separated using flow cytometry, and the separation rates was0.8%. The separated the BM-MSC, using flow cytometry to identify their highexpression of mesenchymal stem cell markers, without expression of hematopoieticstem cell markers. Through clone experiments and MTT assay for detection offorming cell proliferation, we confirmed the separated cells with self-renewalcapacity; by osteoblasts, adipogenic differentiation experiment we confirmed theisolation cells had multipotent differentiation of capacity. Establishment of co-culture system, the system includes a large number of BM-MSC, including adherentPB-CD34+cells.
     2. All biological characteristics of cultured cells compared with BM-MSC: flowcytometry cell cycle and apoptosis of found, a total of proliferation of co-culturedcells had a higher capacity and a relatively small rate of early apoptotic; and the invitro and in vivo osteogenic ability and osteogenic potential of co-cultured cells werestronger than BM-MSC.
     3. Transplantation co-culture cell and BM-MSC cell sheet composited with HA repair arabbit calvarial critical-size defect model: Live general CT and the micro-CT scandisplayed, co-cultured cell group experimental animal of repair effect was better;histological detection and the quantitative analysis displayed, co-cultured cell groupof new bone volume and bone repair ratio were better than BM-MSC group; real-timequantitative PCR and the Western blot detection found, co-cultured cells stimulatedand upregulated the expression of osteogenic and angiogenesis-related factors betterthan BM-MSC group.
     Conclusion
     1. Co-cultured PB-CD34+cells with BM-MSC by direct contact, we can establish aspecial cell culture system.
     2. Co-cultured cells demonstrated higher osteogenic differentiation capacity thanBM-MSC in vitro and in vivo.
     3. Co-cultured cells improve bone formation in a rabbit calvarial defect model betterthan BM-MSC, holding an promising clinical application in future.
引文
[1] Friedenstein, A. J., Chailakhjan, R. K., Lalykina, K. S. The development offibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleencells. Cell Tissue Kinet3:393-403,1970.
    [2] Pittenger, M. F., Mackay, A. M., Beck, S. C., et al. Multilineage potential of adulthuman mesenchymal stem cells. Science284:143-147,1999.
    [3] Bartholomew, A., Sturgeon, C., Siatskas, M., et al. Mesenchymal stem cellssuppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo.Exp Hematol30:42-48,2002.
    [4] Langer, R., Vacanti, J. P. Tissue engineering. Science260:920-926,1993.
    [5] Burger, E. H., Van der Meer, J. W., van de Gevel, J. S., et al. In vitro formation ofosteoclasts from long-term cultures of bone marrow mononuclear phagocytes. J ExpMed156:1604-1614,1982.
    [6] Owen, M., Friedenstein, A. J. Stromal stem cells: marrow-derived osteogenicprecursors. Ciba Found Symp136:42-60,1988.
    [7] Maniatopoulos, C., Sodek, J., Melcher, A. H. Bone formation in vitro by stromalcells obtained from bone marrow of young adult rats. Cell Tissue Res254:317-330,1988.
    [8] Bruder, S. P., Kurth, A. A., Shea, M., et al. Bone regeneration by implantation ofpurified, culture-expanded human mesenchymal stem cells. J Orthop Res16:155-162,1998.
    [9] Gazit, D., Turgeman, G., Kelley, P., et al. Engineered pluripotent mesenchymal cellsintegrate and differentiate in regenerating bone: a novel cell-mediated gene therapy.J Gene Med1:121-133,1999.
    [10] Kon, E., Muraglia, A., Corsi, A., et al. Autologous bone marrow stromal cells loadedonto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects ofsheep long bones. J Biomed Mater Res49:328-337,2000.
    [11] Muraglia, A., Martin, I., Cancedda, R., et al. A nude mouse model for human boneformation in unloaded conditions. Bone22:131S-134S,1998.
    [12] Bianco, P., Riminucci, M., Gronthos, S., et al. Bone marrow stromal stem cells:nature, biology, and potential applications. Stem Cells19:180-192,2001.
    [13] Abramovitch-Gottlib, L., Gross, T., Naveh, D., et al. Low level laser irradiationstimulates osteogenic phenotype of mesenchymal stem cells seeded on athree-dimensional biomatrix. Lasers Med Sci20:138-146,2005.
    [14] Reddy, S., Wasnik, S., Guha, A., et al. Evaluation of nano-biphasic calciumphosphate ceramics for bone tissue engineering applications: in vitro andpreliminary in vivo studies. J Biomater Appl27:565-575,2013.
    [15] Sawada, Y., Hokugo, A., Yang, Y., et al. A novel hydroxyapatite ceramic bonesubstitute transformed by ostrich cancellous bone: Characterization and evaluationsof bone regeneration activity. Journal of Biomedical Materials Research Part B:Applied Biomaterials98B:217-222,2011.
    [16] Gurevitch, O., Kurkalli, B. G., Prigozhina, T., et al. Reconstruction of cartilage,bone, and hematopoietic microenvironment with demineralized bone matrix andbone marrow cells. Stem Cells21:588-597,2003.
    [17] Piersanti, S., Sacchetti, B., Funari, A., et al. Lentiviral transduction of humanpostnatal skeletal (stromal, mesenchymal) stem cells: in vivo transplantation andgene silencing. Calcif Tissue Int78:372-384,2006.
    [18]曹谊林.组织工程学研究进展.上海交通大学学报28:763-766,2008.
    [19] Rodbell, M. The role of hormone receptors and GTP-regulatory proteins inmembrane transduction. Nature284:17-22,1980.
    [20] De Boer, J., Wang, H. J., Van Blitterswijk, C. Effects of Wnt signaling onproliferation and differentiation of human mesenchymal stem cells. Tissue Eng10:393-401,2004.
    [21] Etheridge, S. L., Spencer, G. J., Heath, D. J., et al. Expression profiling andfunctional analysis of wnt signaling mechanisms in mesenchymal stem cells. StemCells22:849-860,2004.
    [22] Augello, A., De Bari, C. The regulation of differentiation in mesenchymal stem cells.Hum Gene Ther21:1226-1238,2010.
    [23] Westendorf, J. J., Kahler, R. A., Schroeder, T. M. Wnt signaling in osteoblasts andbone diseases. Gene341:19-39,2004.
    [24] Koob, S., Torio-Padron, N., Stark, G. B., et al. Bone formation andneovascularization mediated by mesenchymal stem cells and endothelial cells incritical-sized calvarial defects. Tissue Eng Part A17:311-321,2011.
    [25] Shieh, S. J., Vacanti, J. P. State-of-the-art tissue engineering: from tissue engineeringto organ building. Surgery137:1-7,2005.
    [26] Baumgartner, I., Pieczek, A., Manor, O., et al. Constitutive expression ofphVEGF165after intramuscular gene transfer promotes collateral vesseldevelopment in patients with critical limb ischemia. Circulation97:1114-1123,1998.
    [27] Henry, T. D., Rocha-Singh, K., Isner, J. M., et al. Intracoronary administration ofrecombinant human vascular endothelial growth factor to patients with coronaryartery disease. Am Heart J142:872-880,2001.
    [28] Huang, Y. C., Kaigler, D., Rice, K. G., et al. Combined angiogenic and osteogenicfactor delivery enhances bone marrow stromal cell-driven bone regeneration. J BoneMiner Res20:848-857,2005.
    [29] Enis, D. R., Shepherd, B. R., Wang, Y., et al. Induction, differentiation, andremodeling of blood vessels after transplantation of Bcl-2-transduced endothelialcells. Proc Natl Acad Sci U S A102:425-430,2005.
    [30] Alajati, A., Laib, A. M., Weber, H., et al. Spheroid-based engineering of a humanvasculature in mice. Nat Methods5:439-445,2008.
    [31] Steffens, L., Wenger, A., Stark, G. B., et al. In vivo engineering of a humanvasculature for bone tissue engineering applications. J Cell Mol Med13:3380-3386,2009.
    [32] Vogel, W., Scheding, S., Kanz, L., et al. Clinical applications of CD34(+) peripheralblood progenitor cells (PBPC). Stem Cells18:87-92,2000.
    [33] Baldomero, H., Gratwohl, M., Gratwohl, A., et al. The EBMT activity survey2009:trends over the past5years. Bone Marrow Transplant46:485-501,2011.
    [34] Mifune, Y., Matsumoto, T., Kawamoto, A., et al. Local delivery of granulocytecolony stimulating factor-mobilized CD34-positive progenitor cells usingbioscaffold for modality of unhealing bone fracture. Stem Cells26:1395-1405,2008.
    [35] Ferrari, G., Cusella-De Angelis, G., Coletta, M., et al. Muscle regeneration by bonemarrow-derived myogenic progenitors. Science279:1528-1530,1998.
    [36] Krause, D. S. Plasticity of marrow-derived stem cells. Gene Ther9:754-758,2002.
    [37] Bryder, D., Sasaki, Y., Borge, O. J., et al. Deceptive multilineage reconstitutionanalysis of mice transplanted with hemopoietic stem cells, and implications forassessment of stem cell numbers and lineage potentials. J Immunol172:1548-1552,2004.
    [38] To, L. B., Haylock, D. N., Simmons, P. J., et al. The biology and clinical uses ofblood stem cells. Blood89:2233-2258,1997.
    [39] Pettengell, R. Autologous stem cell transplantation in follicular non-Hodgkin'slymphoma. Bone Marrow Transplant29Suppl1: S1-4,2002.
    [40] Bonig, H., Priestley, G. V., Oehler, V., et al. Hematopoietic progenitor cells (HPC)from mobilized peripheral blood display enhanced migration and marrow homingcompared to steady-state bone marrow HPC. Exp Hematol35:326-334,2007.
    [41] Secondino, S., Pedrazzoli, P., Giannetta, L., et al. Evidence of graft-versus-tumoureffect following allogeneic haematopoietic stem cell transplantation in renal cancerother than clear cell type. Bone Marrow Transplant34:917-918,2004.
    [42]Lotz, J. P., Cure, H., Janvier, M., et al. High-dose chemotherapy with haematopoieticstem cell transplantation for metastatic breast cancer patients: final results of theFrench multicentric randomised CMA/PEGASE04protocol. Eur J Cancer41:71-80,2005.
    [43] Jenq, R. R., van den Brink, M. R. Allogeneic haematopoietic stem celltransplantation: individualized stem cell and immune therapy of cancer. Nat RevCancer10:213-221,2010.
    [44] Vanikar, A. V., Trivedi, H. L., Patel, R. D., et al. Allogenic hematopoietic stem celltransplantation in pemphigus vulgaris: a single-center experience. Indian JDermatol57:9-11,2012.
    [45] Marmont du Haut Champ, A. M. Hematopoietic stem cell transplantation forsystemic lupus erythematosus. Clin Dev Immunol2012:380391,2012.
    [46] Nash, R. A., Bowen, J. D., McSweeney, P. A., et al. High-dose immunosuppressivetherapy and autologous peripheral blood stem cell transplantation for severemultiple sclerosis. Blood102:2364-2372,2003.
    [47] Marmont, A. M. Stem cell transplantation for severe autoimmune disorders, withspecial reference to rheumatic diseases. J Rheumatol Suppl48:13-18,1997.
    [48] Tyndall, A., Musso, M. Haematopoietic stem cell transplantation in the treatment ofautoimmune diseases: current experience from an international data base. Int J ArtifOrgans23:665-667,2000.
    [49] Burt, R. K., Slavin, S., Burns, W. H., et al. Induction of tolerance in autoimmunediseases by hematopoietic stem cell transplantation: getting closer to a cure? Blood99:768-784,2002.
    [50] Brenner, M. K. Haematopoietic stem cell transplantation for autoimmune disease:limits and future potential. Best Pract Res Clin Haematol17:359-374,2004.
    [51] Koenecke, C., Hertenstein, B., Schetelig, J., et al. Solid organ transplantation afterallogeneic hematopoietic stem cell transplantation: a retrospective, multicenterstudy of the EBMT. Am J Transplant10:1897-1906,2010.
    [52] Schechter, T., Gassas, A., Weitzman, S., et al. Hematopoietic stem-celltransplantation following solid-organ transplantation in children. Bone MarrowTransplant46:1321-1325,2011.
    [53] Li, F., Linton, G. F., Sekhsaria, S., et al. CD34+peripheral blood progenitors as atarget for genetic correction of the two flavocytochrome b558defective forms ofchronic granulomatous disease. Blood84:53-58,1994.
    [54] Goussetis, E., Konialis, C. P., Peristeri, I., et al. Successful hematopoietic stem celltransplantation in2children with X-linked chronic granulomatous disease fromtheir unaffected HLA-identical siblings selected using preimplantation geneticdiagnosis combined with HLA typing. Biol Blood Marrow Transplant16:344-349,2010.
    [55] Simona, B., Cristina, R., Luca, N., et al. A single dose of Pegfilgrastim versus dailyFilgrastim to evaluate the mobilization and the engraftment of autologous peripheralhematopoietic progenitors in malignant lymphoma patients candidate for high-dosechemotherapy. Transfusion and Apheresis Science43:321-326,2010.
    [56] Murray, J. M., Fanning, G. C., Macpherson, J. L., et al. Mathematical modelling ofthe impact of haematopoietic stem cell-delivered gene therapy for HIV. J Gene Med11:1077-1086,2009.
    [57] Anthony, D. D., Umbleja, T., Aberg, J. A., et al. Lower peripheral blood CD14+monocyte frequency and higher CD34+progenitor cell frequency are associatedwith HBV vaccine induced response in HIV infected individuals. Vaccine29:3558-3563,2011.
    [58] Chen, J. L., Hunt, P., McElvain, M., et al. Osteoblast precursor cells are found inCD34+cells from human bone marrow. Stem Cells15:368-377,1997.
    [59]吴成如,董英海,高学纯, et al.自体外周血及自体红骨髓干细胞与脱钙骨复合移植治疗骨缺损的比较研究.临床骨科杂志4:1-4,2001.
    [60] Tondreau, T., Meuleman, N., Delforge, A., et al. Mesenchymal stem cells derivedfrom CD133-positive cells in mobilized peripheral blood and cord blood:proliferation, Oct4expression, and plasticity. Stem Cells23:1105-1112,2005.
    [61] Taguchi, A., Soma, T., Tanaka, H., et al. Administration of CD34+cells after strokeenhances neurogenesis via angiogenesis in a mouse model. J Clin Invest114:330-338,2004.
    [62] Iwasaki, H., Kawamoto, A., Ishikawa, M., et al. Dose-dependent contribution ofCD34-positive cell transplantation to concurrent vasculogenesis andcardiomyogenesis for functional regenerative recovery after myocardial infarction.Circulation113:1311-1325,2006.
    [63] Matsumoto, T., Kawamoto, A., Kuroda, R., et al. Therapeutic potential ofvasculogenesis and osteogenesis promoted by peripheral blood CD34-positive cellsfor functional bone healing. Am J Pathol169:1440-1457,2006.
    [64] Kuroda, R., Matsumoto, T., Miwa, M., et al. Local transplantation ofG-CSF-mobilized CD34(+) cells in a patient with tibial nonunion: a case report.Cell transplantation20:1491-1496,2011.
    [65] Kawakami, Y., Ii, M., Alev, C., et al. Local transplantation of ex vivo expanded bonemarrow-derived CD34-positive cells accelerates fracture healing. Celltransplantation21:2689-2709,2012.
    [66] Yamaura, A., Makino, H. Neurological deficits in the presence of the sinking skinflap following decompressive craniectomy. Neurol Med Chir (Tokyo)17:43-53,1977.
    [67] Leivy, D. M., Tovi, D. Autogenous bone cranioplasty. Acta Chir Scand136:385-387,1970.
    [68] Blake, G. B., MacFarlane, M. R., Hinton, J. W. Titanium in reconstructive surgery ofthe skull and face. Br J Plast Surg43:528-535,1990.
    [69] Shapiro, S. A. Cranioplasty, vertebral body replacement, and spinal fusion withtobramycin-impregnated methylmethacrylate. Neurosurgery28:789-791,1991.
    [70] Hayward, R. D. Cranioplasty: don't forget the patient's own bone is cheaper thantitanium. Br J Neurosurg13:490-491,1999.
    [71] Flannery, T., McConnell, R. S. Cranioplasty: why throw the bone flap out? Br JNeurosurg15:518-520,2001.
    [72] Lee, C., Antonyshyn, O. M., Forrest, C. R. Cranioplasty: indications, technique, andearly results of autogenous split skull cranial vault reconstruction. JCraniomaxillofac Surg23:133-142,1995.
    [73] Prolo, D. J., Burres, K. P., McLaughlin, W. T., et al. Autogenous skull cranioplasty:fresh and preserved (frozen), with consideration of the cellular response.Neurosurgery4:18-29,1979.
    [74] Osawa, M., Hara, H., Ichinose, Y., et al. Cranioplasty with a frozen and autoclavedbone flap. Acta Neurochir (Wien)102:38-41,1990.
    [75] Sanan, A., Haines, S. J. Repairing holes in the head: a history of cranioplasty.Neurosurgery40:588-603,1997.
    [76] Pasaoglu, A., Kurtsoy, A., Koc, R. K., et al. Cranioplasty with bone flaps preservedunder the scalp. Neurosurg Rev19:153-156,1996.
    [77] Matsumoto, K., Kohmura, E., Kato, A., et al. Restoration of small bone defects atcraniotomy using autologous bone dust and fibrin glue. Surg Neurol50:344-346,1998.
    [78]吴江,黄振林,姜鹏起.自体颅骨粉EC胶混合物重建外伤后颅底缺损.中华创伤杂志15:94,1999.
    [79]谭翱,韦春婵,谢宝君, et al.自体颅骨粉一期修复颅骨缺损的临床应用.中国修复重建外科杂志18:31-33,2004.
    [80] Hollinger, J. O., Winn, S. R. Tissue engineering of bone in the craniofacial complex.Ann N Y Acad Sci875:379-385,1999.
    [81] Simpson, D. Titanium in Cranioplasty. J Neurosurg22:292-293,1965.
    [82] Pou, A. M. Update on new biomaterials and their use in reconstructive surgery. CurrOpin Otolaryngol Head Neck Surg11:240-244,2003.
    [83] Matsuno, A., Tanaka, H., Iwamuro, H., et al. Analyses of the factors influencingbone graft infection after delayed cranioplasty. Acta Neurochir (Wien)148:535-540;discussion540,2006.
    [84] Marbacher, S., Andres, R. H., Fathi, A. R., et al. Primary reconstruction of opendepressed skull fractures with titanium mesh. J Craniofac Surg19:490-495,2008.
    [85] Martin, M. P., Olson, S. Post-operative complications with titanium mesh. J ClinNeurosci16:1080-1081,2009.
    [86] Chen, N., Guo, J. L., Zhang, S. Y., et al.[Experimental study of the shaped titaniummesh combined with autogenous particulate bone graft and simultaneous implantfor reconstructing segmental mandibular defect]. Zhonghua Kou Qiang Yi Xue ZaZhi44:360-364,2009.
    [87] Krebsbach, P. H., Mankani, M. H., Satomura, K., et al. Repair of craniotomy defectsusing bone marrow stromal cells. Transplantation66:1272-1278,1998.
    [88] Breitbart, A. S., Grande, D. A., Kessler, R., et al. Tissue engineered bone repair ofcalvarial defects using cultured periosteal cells. Plast Reconstr Surg101:567-574;discussion575-566,1998.
    [89] Dumas, A., Moreau, M. F., Gherardi, R. K., et al. Bone grafts cultured with bonemarrow stromal cells for the repair of critical bone defects: an experimental study inmice. J Biomed Mater Res A90:1218-1229,2009.
    [90] Xia, Y., Mei, F., Duan, Y., et al. Bone tissue engineering using bone marrow stromalcells and an injectable sodium alginate/gelatin scaffold. J Biomed Mater Res A100:1044-1050,2012.
    [91] Alexander, D. I., Manson, N. A., Mitchell, M. J. Efficacy of calcium sulfate plusdecompression bone in lumbar and lumbosacral spinal fusion: preliminary results in40patients. Can J Surg44:262-266,2001.
    [92] Yamaguchi, A., Ishizuya, T., Kintou, N., et al. Effects of BMP-2, BMP-4, andBMP-6on osteoblastic differentiation of bone marrow-derived stromal cell lines,ST2and MC3T3-G2/PA6. Biochem Biophys Res Commun220:366-371,1996.
    [93] Rifas, L. T-cell cytokine induction of BMP-2regulates human mesenchymal stromalcell differentiation and mineralization. J Cell Biochem98:706-714,2006.
    [94] Watabe, T., Miyazono, K. Roles of TGF-beta family signaling in stem cell renewaland differentiation. Cell Res19:103-115,2009.
    [95] Wiltfang, J., Merten, H. A. Ectopic bone formation with the help of growth factorbFGF. J Craniomaxillofac Surg24:300-304,1996.
    [96] McCarthy, T. L., Centrella, M. Local IGF-I expression and bone formation. GrowthHorm IGF Res11:213-219,2001.
    [97] Wang, L., Huang, Y., Pan, K., et al. Osteogenic responses to differentconcentrations/ratios of BMP-2and bFGF in bone formation. Ann Biomed Eng38:77-87,2010.
    [98] Oue, Y., Kanatani, H., Kiyoki, M., et al. Effect of local injection of activin A onbone formation in newborn rats. Bone15:361-366,1994.
    [99] Kato, T., Kawaguchi, H., Hanada, K., et al. Single local injection of recombinantfibroblast growth factor-2stimulates healing of segmental bone defects in rabbits. JOrthop Res16:654-659,1998.
    [100] Lee, Y. M., Nam, S. H., Seol, Y. J., et al. Enhanced bone augmentation by controlledrelease of recombinant human bone morphogenetic protein-2from bioabsorbablemembranes. J Periodontol74:865-872,2003.
    [101] Hokugo, A., Sawada, Y., Hokugo, R., et al. Controlled release of platelet growthfactors enhances bone regeneration at rabbit calvaria. Oral Surg Oral Med OralPathol Oral Radiol Endod104:44-48,2007.
    [102] Patterson, J., Siew, R., Herring, S. W., et al. Hyaluronic acid hydrogels withcontrolled degradation properties for oriented bone regeneration. Biomaterials31:6772-6781,2010.
    [103] Rahman, C. V., Ben-David, D., Dhillon, A., et al. Controlled release of BMP-2froma sintered polymer scaffold enhances bone repair in a mouse calvarial defect model.J Tissue Eng Regen Med,2012.
    [104] Jo, S., Kim, S., Cho, T. H., et al. Effects of recombinant human bone morphogenicprotein-2and human bone marrow-derived stromal cells on in vivo boneregeneration of chitosan-poly(ethylene oxide) hydrogel. J Biomed Mater Res A101:892-901,2013.
    [105] Sugiyama, O., Orimo, H., Suzuki, S., et al. Bone formation followingtransplantation of genetically modified primary bone marrow stromal cells. JOrthop Res21:630-637,2003.
    [106] Steinert, A. F., Palmer, G. D., Capito, R., et al. Genetically enhanced engineering ofmeniscus tissue using ex vivo delivery of transforming growth factor-beta1complementary deoxyribonucleic acid. Tissue Eng13:2227-2237,2007.
    [107] Zhao, Z., Wang, Z., Ge, C., et al. Healing cranial defects with AdRunx2-transducedmarrow stromal cells. J Dent Res86:1207-1211,2007.
    [108] Ilizarov, G. A., Khelimskii, A. M., Helimskii, A. M., et al.[Relationship of thecourse of reparative osteogenesis in experimental elongating arthrodesis of the kneejoint to the time of the start of distraction]. Ortop Travmatol Protez:23-28,1977.
    [109] Bouletreau, P. J., Warren, S. M., Paccione, M. F., et al. Transport distractionosteogenesis: a new method to heal adult calvarial defects. Plast Reconstr Surg109:1074-1084,2002.
    [110] Hong, J. W., Song, S. Y., Woo, D. G., et al. Transport disc distraction osteogenesisfor the reconstruction of a calvarial defect. J Craniofac Surg20:790-796,2009.
    [111] Yun, I. S., Mun, H. Y., Hong, J. W., et al. Transport disc distraction osteogenesis forthe reconstruction of a calvarial defect. J Craniofac Surg22:690-693,2011.
    [112] Cao, Y., Liu, Y., Liu, W., et al. Bridging tendon defects using autologous tenocyteengineered tendon in a hen model. Plast Reconstr Surg110:1280-1289,2002.
    [113] Liu, Y., Chen, F., Liu, W., et al. Repairing large porcine full-thickness defects ofarticular cartilage using autologous chondrocyte-engineered cartilage. Tissue Eng8:709-721,2002.
    [114] Notoya, K., Tsukuda, R., Yoshida, K., et al. Stimulatory effect of ipriflavone onformation of bone-like tissue in rat bone marrow stromal cell culture. Calcif TissueInt51Suppl1: S16-20,1992.
    [115] Anselme, K., Broux, O., Noel, B., et al. In vitro control of human bone marrowstromal cells for bone tissue engineering. Tissue Eng8:941-953,2002.
    [116] Kudo, F. A., Nishibe, T., Nishibe, M., et al. Autologous transplantation of peripheralblood endothelial progenitor cells (CD34+) for therapeutic angiogenesis in patientswith critical limb ischemia. Int Angiol22:344-348,2003.
    [117] Pomyje, J., Zivny, J., Sefc, L., et al. Expression of genes regulating angiogenesis inhuman circulating hematopoietic cord blood CD34+/CD133+cells. Eur J Haematol70:143-150,2003.
    [118] Popa, E. R., Harmsen, M. C., Tio, R. A., et al. Circulating CD34+progenitor cellsmodulate host angiogenesis and inflammation in vivo. J Mol Cell Cardiol41:86-96,2006.
    [119] Guo, X., Liu, L., Zhang, M., et al. Correlation of CD34+cells with tissueangiogenesis after traumatic brain injury in a rat model. J Neurotrauma26:1337-1344,2009.
    [120] Gagne, A., Lacouture, S., Broes, A., et al. Development of an immunomagneticmethod for selective isolation of Actinobacillus pleuropneumoniae serotype1fromtonsils. J Clin Microbiol36:251-254,1998.
    [121] Jiang, Y., Jahagirdar, B. N., Reinhardt, R. L., et al. Pluripotency of mesenchymalstem cells derived from adult marrow. Nature418:41-49,2002.
    [122] D'Ippolito, G., Diabira, S., Howard, G. A., et al. Marrow-isolated adult multilineageinducible (MIAMI) cells, a unique population of postnatal young and old humancells with extensive expansion and differentiation potential. J Cell Sci117:2971-2981,2004.
    [123] Kucia, M., Reca, R., Campbell, F. R., et al. A population of very smallembryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+stem cells identified in adultbone marrow. Leukemia20:857-869,2006.
    [124] Bhandari, R. N., Riccalton, L. A., Lewis, A. L., et al. Liver tissue engineering: a rolefor co-culture systems in modifying hepatocyte function and viability. Tissue Eng7:345-357,2001.
    [125] Sorrell, J. M., Baber, M. A., Caplan, A. I. Human dermal fibroblast subpopulations;differential interactions with vascular endothelial cells in coculture: nonsolublefactors in the extracellular matrix influence interactions. Wound Repair Regen16:300-309,2008.
    [126] Choong, C. S., Hutmacher, D. W., Triffitt, J. T. Co-culture of bone marrowfibroblasts and endothelial cells on modified polycaprolactone substrates forenhanced potentials in bone tissue engineering. Tissue Eng12:2521-2531,2006.
    [127] Rauch, M. F., Michaud, M., Xu, H., et al. Co-culture of primary neural progenitorand endothelial cells in a macroporous gel promotes stable vascular networks invivo. J Biomater Sci Polym Ed19:1469-1485,2008.
    [128] Kato, T., Heike, T., Okawa, K., et al. A neurosphere-derived factor, cystatin C,supports differentiation of ES cells into neural stem cells. Proc Natl Acad Sci U S A103:6019-6024,2006.
    [129] Kamolz, L. P., Kolbus, A., Wick, N., et al. Cultured human epithelium: humanumbilical cord blood stem cells differentiate into keratinocytes under in vitroconditions. Burns32:16-19,2006.
    [130] Dimai, H. P., Linkhart, T. A., Linkhart, S. G., et al. Alkaline phosphatase levels andosteoprogenitor cell numbers suggest bone formation may contribute to peak bonedensity differences between two inbred strains of mice. Bone22:211-216,1998.
    [131] Leskela, H. V., Risteli, J., Niskanen, S., et al. Osteoblast recruitment from stem cellsdoes not decrease by age at late adulthood. Biochem Biophys Res Commun311:1008-1013,2003.
    [132] Okano, T., Yamada, N., Sakai, H., et al. A novel recovery system for cultured cellsusing plasma-treated polystyrene dishes grafted with poly(N-isopropylacrylamide).J Biomed Mater Res27:1243-1251,1993.
    [133] Han, D., Sun, X., Zhang, X., et al. Ectopic osteogenesis by ex vivo gene therapyusing beta tricalcium phosphate as a carrier. Connect Tissue Res49:343-350,2008.
    [134] Nishida, K., Yamato, M., Hayashida, Y., et al. Corneal reconstruction withtissue-engineered cell sheets composed of autologous oral mucosal epithelium. NEngl J Med351:1187-1196,2004.
    [135] Yang, J., Yamato, M., Shimizu, T., et al. Reconstruction of functional tissues withcell sheet engineering. Biomaterials28:5033-5043,2007.
    [136] Rouwkema, J., de Boer, J., Van Blitterswijk, C. A. Endothelial cells assemble into a3-dimensional prevascular network in a bone tissue engineering construct. TissueEng12:2685-2693,2006.
    [137] Scherberich, A., Galli, R., Jaquiery, C., et al. Three-dimensional perfusion culture ofhuman adipose tissue-derived endothelial and osteoblastic progenitors generatesosteogenic constructs with intrinsic vascularization capacity. Stem Cells25:1823-1829,2007.
    [138] Davidson, E. H., Sultan, S. M., Butala, P., et al. Augmenting neovascularizationaccelerates distraction osteogenesis. Plast Reconstr Surg128:406-414,2011.
    [139] Greenwald, A. S., Boden, S. D., Goldberg, V. M., et al. Bone-graft substitutes: facts,fictions, and applications. J Bone Joint Surg Am83-A Suppl2Pt2:98-103,2001.
    [140] Clokie, C. M., Moghadam, H., Jackson, M. T., et al. Closure of critical sized defectswith allogenic and alloplastic bone substitutes. J Craniofac Surg13:111-121;discussion122-113,2002.
    [141] Schantz, J. T., Hutmacher, D. W., Lam, C. X., et al. Repair of calvarial defects withcustomised tissue-engineered bone grafts II. Evaluation of cellular efficiency andefficacy in vivo. Tissue Eng9Suppl1: S127-139,2003.
    [142] Lin, L., Shen, Q., Wei, X., et al. Comparison of Osteogenic Potentials of BMP4Transduced Stem Cells from Autologous Bone Marrow and Fat Tissue in a RabbitModel of Calvarial Defects. Calcified Tissue International85:55-65,2009.
    [143] Djasim, U. M., Wolvius, E. B., van Neck, J. W., et al. Recommendations for optimaldistraction protocols for various animal models on the basis of a systematic reviewof the literature. International Journal of Oral and Maxillofacial Surgery36:877-883,2007.
    [144] Schmitz, J. P., Hollinger, J. O. The critical size defect as an experimental model forcraniomandibulofacial nonunions. Clin Orthop Relat Res:299-308,1986.
    [145] Hou, R., Chen, F., Yang, Y., et al. Comparative study between coral-mesenchymalstem cells-rhBMP-2composite and auto-bone-graft in rabbit critical-sized cranialdefect model. J Biomed Mater Res A80:85-93,2007.
    [146] Liu, Y., Lu, Y., Tian, X., et al. Segmental bone regeneration using anrhBMP-2-loaded gelatin/nanohydroxyapatite/fibrin scaffold in a rabbit model.Biomaterials30:6276-6285,2009.
    [147] Hollinger, J. O., Kleinschmidt, J. C. The critical size defect as an experimentalmodel to test bone repair materials. J Craniofac Surg1:60-68,1990.
    [148] Haddad, A. J., Peel, S. A., Clokie, C. M., et al. Closure of rabbit calvarialcritical-sized defects using protective composite allogeneic and alloplastic bonesubstitutes. J Craniofac Surg17:926-934,2006.
    [149] Wada, N., Nohno, T., Noji, S.[Roles of the BMP family in pattern formation of thevertebrate limb]. Clin Calcium16:773-780,2006.
    [150] Kugimiya, F., Kawaguchi, H., Chung, U. I.[BMP and bone formation]. ClinCalcium14:173-179,2004.
    [151] Duprez, D., Bell, E. J., Richardson, M. K., et al. Overexpression of BMP-2andBMP-4alters the size and shape of developing skeletal elements in the chick limb.Mech Dev57:145-157,1996.
    [152] Farhadieh, R. D., Gianoutsos, M. P., Yu, Y., et al. The role of bone morphogeneticproteins BMP-2and BMP-4and their related postreceptor signaling system (Smads)in distraction osteogenesis of the mandible. J Craniofac Surg15:714-718,2004.
    [153] Urist, M. R., Lietze, A., Mizutani, H., et al. A bovine low molecular weight bonemorphogenetic protein (BMP) fraction. Clin Orthop Relat Res:219-232,1982.
    [154] Urist, M. R., Nilsson, O., Rasmussen, J., et al. Bone regeneration under theinfluence of a bone morphogenetic protein (BMP) beta tricalcium phosphate (TCP)composite in skull trephine defects in dogs. Clin Orthop Relat Res:295-304,1987.
    [155] Lieberman, J. R., Le, L. Q., Wu, L., et al. Regional gene therapy with aBMP-2-producing murine stromal cell line induces heterotopic and orthotopic boneformation in rodents. J Orthop Res16:330-339,1998.
    [156] Matsuo, T., Sugita, T., Kubo, T., et al. Injectable magnetic liposomes as a novelcarrier of recombinant human BMP-2for bone formation in a rat bone-defect model.J Biomed Mater Res A66:747-754,2003.
    [157] Kawai, M., Bessho, K., Maruyama, H., et al. Simultaneous gene transfer of bonemorphogenetic protein (BMP)-2and BMP-7by in vivo electroporation inducesrapid bone formation and BMP-4expression. BMC Musculoskelet Disord7:62,2006.
    [158] Pelissier, P., Villars, F., Mathoulin-Pelissier, S., et al. Influences of vascularizationand osteogenic cells on heterotopic bone formation within a madreporic ceramic inrats. Plast Reconstr Surg111:1932-1941,2003.
    [159] Lienau, J., Schmidt-Bleek, K., Peters, A., et al. Differential regulation of bloodvessel formation between standard and delayed bone healing. J Orthop Res27:1133-1140,2009.
    [160] Ferrara, N. Molecular and biological properties of vascular endothelial growthfactor. J Mol Med (Berl)77:527-543,1999.
    [161] Coultas, L., Chawengsaksophak, K., Rossant, J. Endothelial cells and VEGF invascular development. Nature438:937-945,2005.
    [162] Kinnunen, K., Korpisalo, P., Rissanen, T. T., et al. Overexpression of VEGF-Ainduces neovascularization and increased vascular leakage in rabbit eye afterintravitreal adenoviral gene transfer. Acta Physiol (Oxf)187:447-457,2006.
    [163] Golocheikine, A., Tiriveedhi, V., Angaswamy, N., et al. Cooperative signaling forangiogenesis and neovascularization by VEGF and HGF following islettransplantation. Transplantation90:725-731,2010.
    [164] Deckers, M. M., Karperien, M., van der Bent, C., et al. Expression of vascularendothelial growth factors and their receptors during osteoblast differentiation.Endocrinology141:1667-1674,2000.
    [165] Zelzer, E., McLean, W., Ng, Y. S., et al. Skeletal defects in VEGF(120/120) micereveal multiple roles for VEGF in skeletogenesis. Development129:1893-1904,2002.
    [166] Rabie, A. B., Shum, L., Chayanupatkul, A. VEGF and bone formation in the glenoidfossa during forward mandibular positioning. Am J Orthod Dentofacial Orthop122:202-209,2002.
    [167] Rabie, A. B., Leung, F. Y., Chayanupatkul, A., et al. The correlation betweenneovascularization and bone formation in the condyle during forward mandibularpositioning. Angle Orthod72:431-438,2002.
    [168] Rabie, A. B., Hagg, U. Factors regulating mandibular condylar growth. Am J OrthodDentofacial Orthop122:401-409,2002.
    [169].Suzuki, Y., Montagne, K., Nishihara, A., et al. BMPs promote proliferation andmigration of endothelial cells via stimulation of VEGF-A/VEGFR2andangiopoietin-1/Tie2signalling. J Biochem143:199-206,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700