铁电场效应晶体管的保持性能与负电容效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近些年来,由铁电场效应晶体管构成存储单元的铁电存储器,由于具有结构简单、非破坏性读出、不易挥发、功耗低、可多次反复读写、可高速大密度存取、良好的抗辐射性能以及与集成电路工艺兼容等优点,而被公认为下一代最具潜力的存储器之一,得到了人们的广泛关注。但是,由于铁电场效应晶体管的保持性能比较差,目前仍然没有实用化;其次,一旦铁电场效应晶体管用作铁电存储器得到实用化,铁电存储器芯片又如何克服由于集成度不断提高而带来的功耗与稳定性问题。基于此,本论文先从铁电材料及其存储器的研究进展进行综述,包括铁电体及铁电薄膜材料的分类与物理特性、铁电存储器的发展历史、研究现状以及目前存在的主要问题,然后在此基础上我们通过理论建模与数值分析相结合的方法,重点研究了铁电薄膜电容的保持性能与铁电场效应晶体管的负电容效应。具体内容和结论如下:
     1、考虑金属电极-铁电界面层效应,我们对金属-铁电-绝缘层-半导体(MFIS)结构电容的退极化场进行了理论推导,结合娄氏的极化保持性能模型,对影响MFIS结构电容保持性能的一些物理参数进行了探讨。结果表明:选择薄膜厚度相对厚一点、介电常数比较高的铁电材料有利于提高MFIS结构电容的极化保持时间,良好的电极-铁电界面质量也有利于提高MFIS结构电容的保持性能。同时,适当地提高硅衬底掺杂浓度可以通过减小退极化场来改善MFIS结构电容的保持性能。该研究结果对提高MFIS结构电容和场效应晶体管的保持性能具有重要的指导意义。
     2、基于Landau–Ginzburg–Devonshire理论、泊松方程、以及电流连续性方程,我们考虑铁电薄膜负电容效应,针对双栅铁电场效应晶体管的表面势和漏电流特性进行了研究。研究结果表明:选择合适的铁电薄膜厚度,在室温下可实现半导体硅表面势放大进而可以获得小的亚阈值摆幅(S=34<60mV/dec)。与传统的正电容铁电场效应晶体管相比,若保持开态电流在600μA/μm,它可以减小260mV的驱动电压。这对低电压、低功耗MOS场效应晶体管的设计具有非常重要的指导意义。
     3、在上一章的基础上,我们针对双栅铁电场效应晶体管发展了一个界面层模型,考虑金属电极与铁电层的界面效应,对负电容双栅铁电场效应晶体管的表面势和亚阈值特性进行了研究。研究结果表明:处于负电容状态下的铁电场效应晶体管,其硅表面势放大效应与亚阈值摆幅明显地受金属电极-铁电界面层影响,随着金属电极-铁电界面层厚度变厚,硅表面势放大效应变弱,亚阈值摆幅变大(亚阈值斜率变小)。该研究结果对低功耗新型铁电场效应晶体管的设计具有很好的指导意义。
     4、由于铁电薄膜负电容明显地依赖于温度(T),基于此,在280K~360K的温度范围,我们对负电容铁电场效应晶体管的电学性能从理论上进行了研究。研究结果表明:对于一定厚度铁电薄膜的场效应晶体管,硅表面势的放大效应可以通过温度来调节;存在一个最佳的温度使得铁电薄膜负电容效应最强,硅表面势放大效应最明显。超过这个最佳温度,晶体管的转移特性和输出特性随温度的升高(或者降低)逐渐变差,原因是当温度达到最佳值时,铁电薄膜负电容效应最明显,温度若再升高(或者降低),铁电薄膜负电容效应逐渐减弱直至消失。该研究成果抓住了环境温度这一关键因素,对低功耗场效应晶体管在特定环境温度下的设计与应用具有重要的指导意义。
     5、考虑铁电薄膜的负电容效应,我们针对环栅新型铁电场效应晶体管提出了一个理论模型,并运用该模型对其电学性能包括电容-电压(C-V)、电流-电压(I-V)进行了研究。研究结果表明:负电容环栅铁电场效应晶体管表现出比传统正电容环栅场效应晶体管优越的一些电学性能,比如栅电极能更好地控制沟道静电势、小的亚阈值摆幅(<60mV/dec)、以及大的输出电流等。该成果能很好地指导高速转换、低功耗环栅铁电场效应晶体管的设计。
In recent years, ferroelectric gate field-effect transistor (FeFET), as one type offerroelectric random access memory (FeRAM), is currently regarded as one of the mostpotential next generation memory with clear advantages such as its simple structure,nondestructive read-out operation, non-volatility, low power dissipation, high endurance, highspeed writing, high density, irradiation hardness, and compatible with the process ofintegrated circuit (IC). However, FeFETs have not been put into practical application as aresult of its relatively short retention time. Additionally, how to reduce the powerconsumption and improve the stability of the system on chip will prove to be a problem forpeople when the FeFETs are commonly used. In order to solve these two problems, firstly, inthis thesis, the advences of the ferroelectric materials and ferroelectric memory are reviewedin the introduction, including the classification and physical characteristics of the ferroelectricthin films, and the development history, current status and existing problems of theferroelectric memory. Then, on the basis of introduction, the retention propery of ferroelectricthin film capacitor and the negative capacitance effect of FeFET are mainly investigated bycombining the theoretical modeling and numerical analysis. The main contents andconclusions are as follows:
     1. Depolarization field in metal-ferroelectric-insulator-semiconductor (MFIS) capacitorswith a ferroelectric-electrode interface layer was derived theoretically in this work. Thepolarization relaxation characteristics were investigated in details based on Lou’s polarizationretention model. It is found that the retention time of MFIS capacitor can be improvedeffectively by using relatively high dielectric constant ferroelectric thin film and relativelythick ferroelectric thin film. Additionally, a good ferroelectric-electrode interface layer andrelatively high doping concentration of semiconductor silicon can help to improve theretention time of MFIS capacitor. The results may provide some insights into the design andthe retention property improvement of MFIS-FET as nonvolatile memory.
     2. Based on the Landau-Ginzburg-Devonshire theory, the Poisson’s equation, and thecurrent continuity equation, the surface potential and drain current of double-gatemetal-ferroelectric-insulator-semiconductor (MFIS) feld-effect transistor were investigatedby using the ferroelectric negative capacitance (NC). The derived results demonstrated thatthe up-converted semiconductor surface potential and low subthreshold swing S=34(<60mV/dec) can be realized with appropriate thicknesses of ferroelectric thin flm and insulatorlayer at room temperature. What’s more, a reduction of gate voltage about260mV can bereached if the ON-state current is fxed to600μA/μm. It is expected that the derived results can offer useful guidelines for the application of low power dissipation in ongoing scaling ofFETs.
     3. Based on chapter3, an interface layer model was proposed for the double-gateferroelectric feld-effect transistor (FeFET). The surface potential and subthresholdcharacteristics in negative capacitance (NC) double-gate ferroelectric field-effect transistorwere investigated by considering the metal-ferroelectric interface layer. The derived resultsindicates that the negative capacitance regime which allows for amplified surface potentialand steeper subthreshold characteristics were significantly affected by the interface layer. Thisimposes a severe limit to the step-up conversion capability and steeper subthreshold (<60mV/dec) obtainable in the device. These results may provide some insight into the design andperformance improvement for the low power dissipation FeFETs.
     4. Based on the temperature dependence ferroelectric negative capacitance, the electricalproperties of negative capacitance (NC) ferroelectric feld-effect transistors (FeFETs) weretheoretically investigated in the temperature range from280to360K. The derived resultsindicate that for a fxed thickness of ferroelectric thin flm the amplifcation of surfacepotential can be tuned by temperature. The transfer and output characteristics degrade withincreasing temperature due to the gradual loss of ferroelectric NC effect. It is expected thatthe derived results may provide some insight into the design and performance improvementfor the low power dissipation applications of FeFETs.
     5. The electrical properties of surrounding-gate (SG) metal-ferroelectric-semiconductor(MFS) FETs were theoretically investigated by considering the ferroelectric negativecapacitance (NC) effect. The derived results demonstrated that the NC-SG-MFS-FET displayssuperior electrical properties compared with that of the traditional SG-MIS-FET, in terms ofbetter electrostatic control of the gate electrode over the channel, smaller subthreshold swing(S <60mV/dec), and bigger value of ION. It is expected that this investigation may providesome insight into the design and performance improvement for the fast switching and lowpower dissipation applications of ferroelectric FETs.
引文
[1] M. Lines, and A. Glass. Principles and Applications of Ferroelectrics and Related Materials [M]. Oxford:Clarendon Press,1977.
    [2]钟维烈,铁电体物理学[M].北京:科学出版社,1996.
    [3] K. M. Rabe, C. H. Ahn, J. M. Triscone. Physics of Ferroelectrics [M]. Springer-Verlag BerlinHeidelberg,2007:31-63.
    [4]刘梅东,许毓春.压电铁电材料与器件[M].武汉:华中科技大学出版社,1990.
    [5]许煜寰.铁电与压电材料[M].北京:科学出版社,1978.
    [6] T. C. Chen, T. Li, X. Zhang, and S. B. Desu. The effect of excess bismuth on the ferroelectric propertiesof SrBi2Ta2O9thin films [J]. Journal of Materials Research,1997,12:1569-1575.
    [7] M. De Kejiser, and G. J. M. Dormans. Chemical vapor deposition of electroceramic thin films [J]. MRSBulletin,1996,21:37-43.
    [8] O. Auciello and R. Ramesh. Laser-ablation deposition and characterization of ferroelectric capacitorsfor nonvolatile memories [J]. MRS Bulletin,1996,21:31-36.
    [9] B. H. Park, B. S. Kang, S. D. Bu, T. W. Noh, J. Lee, and W. Jo. Lanthanum-substituted bismuth titanatefor use in non-volatile memories [J]. Nature,1999,401:682-684.
    [10] H. N. Lee, D. Hesse, N. Zakharov, and U. G sele. Ferroelectric Bi3.25La0.75Ti3O12films of uniforma-Axis orientation on silicon substrates [J]. Science,2002,296:2006-2009.
    [11] U. Chon, H. M. Jang, M. G. Kim, and C. H. Chang. Layered perovskites with giant spontaneouspolarizations for nonvolatile memories [J]. Physical Review Letters,2002,89:087601(1-4).
    [12] J. H. Koh. Processing and properties of ferroelectric Ag(Ta, Nb)O3thin films [D]. Stockholm: RoyalInstitute of Technology,2002.
    [13] S. D. Bernstein, T. Y. Wong, Y. Kisler, and R. W. Tustison. Fatigue of ferrolectric PbZrxTiyO3capacitors with Ru and RuOxelecrodes [J]. Journal of Materials Research,1993,8:12-13.
    [14] D. Shi. Functional thin films and functional materials: New Concepts and Technologies [M]. NewYork: Springer,2002.
    [15] H. Muller. Properties of Rochelle salt [J]. Physical Review,1940,57:829-839.
    [16] H. Muller. Properties of Rochelle salt Ш [J]. Physical Review,1940,58:565-573.
    [17] V. L. Ginzburg. On the dielectric properties of ferroelectric (seignetteelectric) crystals and bariumtitanate [J]. Journal of Experimental and Theoretical Physics,1945,15:1945.
    [18] A. F. Devonshire. Theory of ferroelectrics [J]. Advances in physics,1954,3:85-130.
    [19] J. C. Slater. The Lorentz correction in Barium Titanate [J]. Physical Review,1950,78:748-761.
    [20] W. Cochran. Crystal stability and the theory of ferroelectricity [J]. Physical Review Letters,1959,3:412-414.
    [21] W. Cochran. Crystal stability and the theory of ferroelectricity [J]. Advances in Physics,1960,9:387-423.
    [22] R. D. King-Smith and D. Vanderbilt. First-principles investigation of ferroelectricity in perovskitecompounds [J]. Physical Review B,1994,49:5828-5844.
    [23] R. Resta, M. Posternak and A. Baldereschi. Towards a quantum theory of polarization in ferroelectrics:The case of KNbO3[J]. Physical review letters,1993,70:1010-1013.
    [24] J. F. Scott, H. M. Duiker, P. D. Beale, B. Pouligny, K. Dimmler, M. Parries, D. Butler, and S. Eaton.Properties of ceramic KNO3thin film memories [J]. Physica B+C,1988,150:160-167.
    [25] W. L. Zhong, Y. G. Wang, and P. L. Zhang. Size effects on phase transitions in ferroelectric films [J].Physics letters A,1994,189:121-126.
    [26] Y. G. Wang, W. L. Zhong, and P. L. Zhang. Size effects on the Curie temperature of ferroelectricparticles [J]. Solid state communications,1994,92:519-523.
    [27] W. L. Zhong, B. D. Qu, and P. L. Zhang. Thickness dependence of the dielectric susceptibility offerroelectric thin films [J]. Physical Review B,1994,50:12375-12380.
    [28] C. L. Wang, S. R. P. Smith, and D. R. Tilley. Ferroelectric thin films described by an Ising model in atransverse field [J]. Journal of Physics: Condensed Matter,1994,6:9633-9646.
    [29] B. D. Qu, W. L. Zhong, and P. L. Zhang. Curie temperature of a ferroelectric superlattice described bythe transverse Ising model [J]. Physics Letters A,1994,189:419-422.
    [30] K. Uchino, E. Sadanaga, and T. Hirose. Dependence of the crystal structure on particle size in bariumtitanate [J]. Journal of the American Ceramic Society,1989,72:1555-1558.
    [31] W. Zhong, P. Zhang, Y. Wang, and T. Ren. Size effect on the dielectric properties of BaTiO3[J].Ferroelectrics,1994,160:55-59.
    [32] W. G. Liu, L. B. Kong, L. Y. Zhang, and X. Yao. Study of the surface layer of lead titanate thin film byX-ray diffraction [J]. Solid state communications,1995,93:653-657.
    [33] R. Bez, and A. Pirovano. Non-volatile memory technologies: emerging concepts and new materials [J].Materials Science in Semiconductor Processing,2004,7:349-355.
    [34] H. Kohlstedt, Y. Mustafa, A. Gerber, A. Petraru, M. Fitsilis, R. Meyer, U. B ttger and R Waser.Current status and challenges of ferroelectric memory devices [J]. Microelectronic Engineering,2005,80:296-304.
    [35] C. A. P. de Araujo, G. W. Taylor. Integrated ferroelectrics [J]. Ferroelectrics,1991,116:215-228.
    [36] D. W. Chapman. Some thin-film properties of a new ferroelectric composition [J]. Journal of AppliedPhysics,1969,40:2381-2385.
    [37] M. C. Lancaster, R. J. Mytton. A thin film dielectric bolometer [J]. Thin Solid Films,1972,13:243-253.
    [38] B. S. Sharma, S. F. Vogel, and P. I. Prentky. Retention in thin ferroelectric films [J]. Ferroelectrics,1973,5:69-75.
    [39] J. B. Blum, and S. R. Gurkovich. Sol-gel-derived PbTiO3[J]. Journal of materials science,1985,20:4479-4483.
    [40] K. D. Budd, S. K. Dey, and D. A. Payne. Sol-Gel Processing of PbTiO3, PbZrO3, Pb(ZrTi)O3andPbLa(ZrTi)O3[J]. British Ceramic Proceedings.1985,36:107-121.
    [41] S. S. Eaton, D. B. Butler, M. Parris, D. Wilson, and H. McNeillie. A ferroelectric nonvolatile memory[C]. Digest of Technical Papers IEEE International Solid-State Circuits Conference,1988:130:329.
    [42] R. E. Jones, J. P. D. Maniar, R. Moazzami, P. Zurcher, J. Z. Witowski, Y. T. Lii, P. Chu, and S. J.Gillespie. Ferroelectric non-volatile memories for low-voltage, low power application [J]. Thin SolidFilms,1995,270:584-588.
    [43] B. Jiang, C. Sudhama, R. Khamankar, J. Kim, and J. Lee. Effects of nonliner storage capacitor onDRAM read/write operations [J]. IEEE Electron Device Letters,1994,15:126-128.
    [44] J. F. Scott, and C. A. Araujo. Ferroelectric Memories [J]. Science,1989,246:1400-1405.
    [45] S. Sinharoy, H. Buhay, R. R. Lampe, and M. H. Francombe. Integration of ferroelectric thin films intononvolatile memories [J]. Journal of Vacuum Science&Technology A: Vacuum, Surfaces, and Films,1992,10:1554-1561.
    [46] S. L. Miller, R. D. Nasby, J. R. Schwank, M. S. Rodgers, and P. V. Dressendorfer. Device modeling offerroelectric capacitors [J]. Journal of Applied Physics,1990,68:6463-6471.
    [47] J. F. Scott, C. A. Paz de Araujo, L. D. McMillan, H. Yoshimori, H. Watanabe, T. Mihara, M. Azuma, T.Ueda, T. Ueda, D. Ueda, and G. Kano. Ferroelectric thin films in integrated microelectronic devices [J].Ferroelectrics,1992,133:47-50.
    [48] T. Mihara, H. Watanabe, and C. A. Paz de Araujo. Polarization fatigue characteristics of sol-gelferroelectric Pb(Zr0.4Ti0.6)O3thin-film capacitors [J]. Japanese Journal of Applied Physics Part1Regular Papers Short Notes and Review Papers,1994,33,3996-4002.
    [49] G. J. Norga, L. Fe, D. J. Wouters and H. E. Maes. Effect of RuO2growth temperature on ferroelectricproperties of RuO2/Pb(Zr, Ti)O3/RuO2/Pt capacitors [J]. Applied Physics Letters,2000,76(10):1318-1320.
    [50] B. Yang, S. Aggarwal, A. M. Dhote, T. K. Song, R. Ramesh, and J. S. Lee.La0.5Sr0.5CoO3/Pb(Nb0.04Zr0.28Ti0.68)O3/La0.5Sr0.5CoO3thin film heterostructures on Si using TiN/Ptconducting barrier [J]. Applied Physics Letters,1997,71(3):356-358.
    [51] J. Yin, Z. G. Liu, and Z. C. Wu. Completely <111>-textured growth and enhanced ferroelectricproperties of Pb(Ta0.05Zr0.48Ti0.47)O3films on Pt/TiO2/SiO2/Si(001) using SrRuO3buffer layer [J].Applied Physics Letters,1999,75(21):3396-3398.
    [52] R. Ramesh, A. Inam, B. Wilkens, W. K. Chan, D. L. Hart, K. Luther and J. M. Trascon. Epitaxialcuprate superconductor/ferroelectric heterostructures [J]. Science,1991,252:944.
    [53] J. F. Scott, F. M. Ross, C. A. Paz de Araujo, M. C. Scott, and M. Huffman. Structure and devicecharacteristics of SrBi2Ta2O9-based nonvolatile random-access memories [J]. MRS Bulletin,1996,21:33-39.
    [54] C. A. Paz de Araujo, J. D. Cuchiaro, L. D. McMillan, M. C. Scott, and J. F. Scott. Fatigue-freeferroelectric capacitors with platinum electrodes [J]. Nature,1995,374:627-629.
    [55] R. A. Armstong and R. E. Newnham. Bismuth titanate solid solutions [J]. Materials Research Bulletin,1972,7(10):1025-1034.
    [56] P. C. Joshi, and S. B. Krupanidhi. Switching, fatigue, and retention in ferroelectric Bi4Ti3O12thin films[J]. Applied Physics Letters,1993,62(16):1928-1930.
    [57] S. E. Cummins, and L. E. Cross. Electrical and optical properties of ferroelectric Bi4Ti3O12singlecrystals [J]. Journal of Applied Physics,1968,39(5):2268-2274.
    [58] H. F. Kay, and J. W. Dum. Thickness dependence of nucleation field of triglycine sulphate [J].Philosophical Magazine,1962,7:2027.
    [59] H. Maiwa, N. lizawa, D. Togawa, T. Hayashi, W. Sakamato, M. Yamada, and S.I. Hirano.Electromechanical properties of Nd-doped Bi4Ti3O12films: A candidate for lead-free thin-filmpiezoelectrics [J]. Applied Physics Letters,2003,82(11):1760-1762.
    [60] U. Chon, K. B. Kim, H. M. Jang, and G. C. Yi. Fatigue-free samarium-modified bismuth titanate(Bi4-xSmxTi3O12) film capacitors having large spontaneous polarizations [J]. Applied Physics Letters,2001,79(19):3137-3139.
    [61] U. Chon, and J. S. Shim. Ferroelectric properties and crystal structure of praseodymium-modifiedbismuth titanate [J]. Journal of Applied Physics,2003,93(8):4769-4775.
    [62] K. T. Kim, C. I. Kim, D. H. Kang, and I. W. Shim. The effect of Eu substitution on the ferroelectricproperties of Bi4Ti3O12thin films prepared by metal-organic decomposition [J]. Thin Solid Films,2002,422(1-2):230-234.
    [63] Y. Noguchi, and M. Miyayama. Large remanent polarization of vanadium-doped Bi4Ti3O12[J].Applied Physics Letters,2001,78(13):1903-1905.
    [64] J. K. Kim, J. Kim, T. K. Song, and S. S. Kim. Effects of niobium doping on microstructures andferroelectric properties of bismuth titanate ferroelectric thin films [J].Thin Solid Films,2002,419(1-2):225-229.
    [65] Y. Y. Yao, C. H. Song, P. Bao, D. Su, X. M. Lu, J. S. Zhu, and Y. N. Wang. Doping effect on thedielectric property in bismuth titante [J]. Journal of Applied Physics,2004,95(6):3126-3130.
    [66] T. Sakai, T. Watanabe, M. Osada, M. Kakihana, Y. Noguchi, M. Miyayama, and H. Funakubo. Crystalstructure and ferroelectric property of tungsten-substituted Bi4Ti3O12thin films prepared bymetal-organic chemical vapor deposition [J]. Japanese Journal of Applied Physics,2003,42,2850-2852.
    [67]王龙海.用于嵌入式铁电存储器的集成铁电电容器研究[D].武汉:华中科技大学,2005.
    [68] X. B. Chen, F. Yan, C. H. Li, Z. G. Zhang, J. S. Zhu, and Y. N. Wang. Switching properties ofSrBi2Ta2O9thin films produced by metalorganic decomposition [J]. Applied Physics Letters,2000,76(3):369-371.
    [69] X. M. Lu, J. S. Zhu, X. S. Zhang, Z. G. Liu, Y. N. Wang, and X. B. Chen. Effects of poling on theswitching properties of SrBi2Ta2O9films [J]. Applied Physics Letters,2002,80(16):2961-2963.
    [70] Y. N. Huang, Y. N. Wang and H. M. Shen. Internal friction and dielectric loss related to domain walls[J]. Physical Review B,1992,46(6):3290-3295.
    [71] Y. N. Wang, Y. N. Huang, and H. M. Shen. Dielectric and mechanical loss and mobility of domainwalls [J]. Ferroelectrics,1997,197:75-80.
    [72] G. Arlt, and N. A. Pertsev. Force constant and effective mass of90°domain walls in ferroelectricceramics [J]. Journal of Applied Physics,1991,70(4):2283-2289.
    [73] J. F. Araujo, J. M. Filho, F. E. A. Melo, F. V. Letelier, and A. S. Chaves. Low-frequency dielectricdispersion in ferroelectric crystals [J]. Physical Review B,1998,57(2):783-788.
    [74] M. Okuyama, Y. Ishibashi. Ferroelectric Thin Films [M]. Springer-Verlag Berlin Heidelberg,2005:219-236.
    [75] A. Laha and S. B. Krupanidhi. Leakage current conduction of pulsed excimer laser ablatedBaBi2Nb2O9thin films [J]. Journal of Applied Physics,2002,92(1):415-420.
    [76] M. Takahashi, Y. Noguchi, and M. Miyayama. Electrical conduction mechanism in Bi4Ti3O12singlecrystal [J]. Japanese Journal of Applied Physics,2002,41:7053-7056.
    [77] H. Yang, K. Tao, B. Chen, X. G. Qiu, B.Xu, and B. R. Zhao. Leakage mechanism of (Ba0.7Sr0.3)TiO3thin films in the low-temperature range [J]. Applied Physics Letters,2002,81(25),4817-4819.
    [78] M. Grossmann, O. Lohse, D. Bolten, U. Boettger, R. Waser, W. Hartner, M. Kastner, and G. Schindler.Lifetime estimation due to imprint failure in ferroelectric SrBi2Ta2O9thin films [J]. Applied PhysicsLetters,2000,76(3):363-365.
    [79]吴迪.湿化学制备Bi系层状钙钛矿铁电薄膜及其性能研究[D].南京:南京大学,2000.
    [80] J. F. Scott. Ferroelectric Memories [M]. Springer Press (2000);[译]朱劲松,吕笑梅,朱旻.铁电存储器[M].北京:清华大学出版社,2004.
    [81] E. L. Colla, D. V. Taylor, A. K. Tagatsev, and N. Setter. Discrimination between bulk and interfacescenarios for the suppression of the switchable polarization (fatigue) in Pb(Zr, Ti)O3thin filmscapacitors with Pt electrodes [J]. Applied Physics Letters,1998,72(19):2478-2480.
    [82] I. Yoo and S. Desu. Mechanism of fatigue in ferroelectric thin films [J]. Physica Status Solidi (A),1992,133:565-573.
    [83] M. Dawber and J. F. Scott. A model for fatigue in ferroelectric perovskite thin films [J]. AppliedPhysics Letters,2000,76(8):1060-1062.
    [84] J. F. Scott, C. A. Paz de Araujo, B. M. Melnick, L. D. McMillan, and R. Zuleeg. Quantitativemeasurement of space-charge effects in lead zirconate-titanate memories [J]. Journal of AppliedPhysics,1991,70(1):382-388.
    [85] C. Brennan. Model of ferroelectric fatigue due to defect/domain interactions [J]. Ferroelectrics,1993,150(1-2):199-208.
    [86] I. Stolichnov, A. Tagantsev, E. Colla, S. Gentil, S. Hiboux, J. Baborowski, P. Muralt, and N. Setter.Downscaling of Pb(Zr, Ti)O3film thickness for low-voltage ferroelectric capacitors: effect of chargerelaxation at the interfaces [J]. Journal of Applied Physics,2000,88(4),2154-2156.
    [87] A. K. Tagantsev and I. A. Stolichnov. Injection-controlled size effect on switching of ferroelectric thinfilms [J]. Applied Physics Letters,1999,74(9):1326-1328.
    [88] X. Du and I. W Chen. Fatigue of Pb(Zr0.53Ti0.47)O3ferroelectric thin films [J]. Journal of AppliedPhysics,1998,83:7789-7798.
    [89] H. N. Al-Shareef, D. Dimos, T. J. Boyle, W. L. Warren and B. A. Tuttle. Qualitative model for thefatigue-free behavior of SrBi2Ta2O9[J]. Applied Physics Letters,1996,68(5):690-692.
    [90] H. Irie, M. Miyayama, and T. Kudo. Domain motion in bismuth-layer-structured ferroelectrics byapplying electric fields [J]. Japanese Journal of Applied Physics,1999, Part1,38:5958-5963.
    [91] R. Herbeit, H. Tenbrock, and G. Arlt. The aging hehaviour of the complex material parameters epsilon,d and s in ferroelectric PZT ceramics [J]. Ferroelectrics,1987,76:319-326.
    [92] K. Carl, and K. H. Haerdtl. Electrical after-effects in Pb(Ti, Zr)O3ceramics [J]. Ferroelectrics,1978,17:473-486.
    [93] G. Arlt and H. Neumann. Internal bias in ferroelectric ceramics: origin and time dependence [J].Ferroelectrics,1988,87:109-120.
    [94] U. Robels and G. Arlt. Domain wall clamping in ferroelectrics by orientation of defects [J]. Journal ofApplied Physics,1993,73(7):3454-3460.
    [95] W. L. Warren, G. E. Pike, K. Banheusden, D. Dimos, B. A. Tuttle, and J. Robertson. Defect-dipolealignment and tetragonal strain in ferroelectrics [J]. Journal of Applied Physics,1996,79(12):9250-9257.
    [96] M. Dawber, K. M. Rabe, and J. F. Scott. Physics of thin-film ferroelectric oxides [J]. Reviews ofModern Physics,2005,77:1083-1130.
    [97] M. Grossmann, O. Lohse, D. Bolten, U. Boettger, T. Schneller, and R. Waser. The interface screeningmodel as origin of imprint in PbZrxTi1-xO3thin films. I. Dopant, illumination, and bias dependence [J].Journal of Applied Physics,2002,92:2680-2687.
    [98] Z. Ye, M. H. Tang, Y. C. Zhou, X. J. Zheng, C. P. Cheng, Z. S. Hu, and H. P. Hu. Modeling of imprintin hysteresis loop of ferroelectric thin films with top and bottom interface layers [J]. Applied PhysicsLetters,2007,90:042902.
    [99] C. M. Othon, F. B. Bateman, and S. Ducharme. Effects of electron irradiation on the ferroelectricproperties of Langmuir-Blodgett copolymer films [J]. Journal of applied physics,2005,98(1):014106(1-6).
    [100] L. Courtade, C. Muller, G. Andreoli, C. Turquat, L. Goux and D. J. Wouters. Radiation effects onswitching kinetics of three-dimensional ferroelectric capacitor arrays [J]. Applied physics letters,2006,89(11):113501(1-3).
    [101] S. Vanishri, J. N. Babu Reddy, and H. L. Bhat. Irradiation effects on domain dynamics in ferroelectricglycine phosphate [J]. Journal of Applied Physics,2007,101(5):054106(1-5).
    [102] M. Zanata, N. Wrachien, and A. Cester. Ionizing radiation effect on ferroelectric nonvolatilememories and its dependence on the irradiation temperature [J]. IEEE Transactions on NuclearScience,2008,55(6):3237-3245.
    [103] P. K. Petrov, N. McN Alford, A. Kozyrev, M. Gaidukov, A. Altynnikov, A. Vasilevskiy, G. Konoplev,A. Tumarkin, and A. Gagarin. Effect of ultraviolet radiation on slow-relaxation processes inferroelectric capacitance structures [J]. Journal of Applied Physics,2010,107(8):084102(1-6).
    [104] S. S. Fu, H. Yu, X. Y. Luo, Y. L.Jiang, and G. D. Zhu. The influence of ultraviolet irradiation onpolarization fatigue in ferroelectric polymer films [J]. IEEE Electron Device Letters,2012,33(1):95-97.
    [105]王耘波,李东,郭冬云.几种新型非易失性存储器[J].电子产品世界,2004,3:75-77.
    [106] T. P. Ma, and J. P. Han. Why is nonvolatile ferroelectric memory field-effect transistor still elusive?[J]. IEEE Electron Device Letters,2002,23(7):386-388.
    [107] A. Sheikholeslami, and P. G. Gulak. A survey of circuit innovations in ferroelectric random-accessmemories [J]. Proceedings of the IEEE,2000,88:667-689.
    [108] D. Takashima. Overview and trend of chain FERAM architecture [J]. IEICE transactions onelectronics,2001,84(6):747-756.
    [109] S. L. Miller and P. J. McWhorter. Physics of the ferroelectric nonvolatile memory field effecttransistor [J]. Journal of Applied Physics,1992,72(12):5999-6010.
    [110] G. R. Fox, R. Bailey, W. B. Kraus, F. Chu, S. Sun, and T. Davenport. The Current Status of FeRAM[M]. Springer Berlin Heidelberg,2004:139-148.
    [111] http://www.ITRS.com.
    [112] R. Zambrano. Applications and issues for ferroelectric NVMs [J]. Materials Science inSemiconductor Processing,2002,5(2):305-310.
    [113] S. Y. Wu. A new ferroelectric memory device, metal-ferroelectric-semiconductor transistor [J]. IEEETransactions on Electron Devices,1974,21(8):499-504.
    [114] M. Fitsilis. Scaling of the ferroelectric field effect transistor and programming concepts fornon-volatile memory applications [D]. aus Karditsa, Griechenland: thesis (PHD),2005.
    [115]杨锋.铁电薄膜与隧道结存储器件性能模拟及失效机理研究[D].湘潭大学博士论文,2010.
    [116] S. T. Hsu, T. Li, and J. J. Lee. Semiconductive metal oxide thin film ferroelectric memory transistor:U.S. Patent7,378,286[P].2008.
    [117] C. M. Lin, W. Shih, I. Y. Chang, P. C. Juan, and J. Y. M. Lee. Metal-ferroelectric (BiFeO3)-insulator(Y2O3)-semiconductor capacitors and field effect transistors for nonvolatile memory applications [J].Applied Physics Letters,2009,94:142905(1-3).
    [118] A. Rusu, G. Salvatore, and A. Ionescu. An experimental investigation of the surface potential inferroelectric P(VDF-TrFE) FETs [J]. Microelectronic Engineering,2010,87:1607-1609.
    [119] S. Das and J. Appenzeller. FETRAM. An organic ferroelectric material based novel random accessmemory cell [J]. Nano Letters,2011,11:4003-4007.
    [120] C. Mitchell, C. Laws, T. C. Macleod, and F. D. Ho. Characteristics of a nonvolatile SRAM cellutilizing a ferroelectric transistor [J]. Integrated Ferroelectrics,2012,132:82-87.
    [121] D. J. Jung, H. H. Kim, and K. Kim. Key integration technologies for nanoscale FRAMs [J]. IEEETransactions on Ultrasonics, Ferroelectrics and Frequency Control,2007,54(12):2535-2540.
    [122] H. Shiga, D. Takashima, S. Shiratake, et al. A1.6GB/s DDR2128Mb chain FeRAM with scalableoctal bitline and sensing schemes [J]. IEEE Journal of Solid-State Circuits,2010,45(1):142-152.
    [123] V. Garcia, S. Fusil, K. Bouzehouane, S. Enouz-Vedrenne, N. D. Mathur, A. Barthelemy, M. Bibes.Giant tunnel electroresistance for non-destructive readout of ferroelectric states [J]. Nature,2009,460:81-84.
    [124] M. Gajek, M. Bibes, S. Fusil, K. Bouzehouane, J. Fontcuberta, A. Barthelemy, A. Fert. Tunneljunctions with multiferroic barriers [J]. Nature Materials,2007,6:296-302.
    [125] D. Lee, S. M. Yang, T. H. Kim, B. C. Jeon, Y. S. Kim, J. G. Yoon, H. N. Lee, S. H. Baek, C. B. Eom,and T. W. Noh. Multilevel data storage memory using deterministic polarization control [J]. AdvancedMaterials,2012,24(3):402-406.
    [126] J. F. Scott. Data storage: Multiferroic memories [J]. Nature Materials,2007,6:256-257.
    [127] M. Bibes, and A. Barthélémy. Multiferroics: towards a magnetoelectric memory [J]. Nature Materials,2008,7:425-426.
    [128] F. Yang, M. H. Tang, Z. Ye, Y. C. Zhou, X. J. Zheng, J. X. Tang, J. J. Zhang, J. He. Eight logic statesof tunneling magnetoelectroresistance in multiferroic tunnel junctions [J]. Journal of Applied Physics,2007,102:044504(1-5).
    [129] M. Takahashi and S. Sakai. Self-aligned-gate metal/ferroelectric/insulator/semiconductor field-effecttransistors with long memory retention [J]. Japanese journal of applied physics,2005,44: L800-L802.
    [130] H. Ishiwara, M. Okuyama, and Y. Arimoto (Eds.). Ferroelectric Random Access Memories [M].Topics in Applied Physics,2004,93:73-76.
    [131] X. J. Lou, M. Zhang, S. A. T. Redfern, and J. F. Scott. Local phase decomposition as a cause ofpolarization fatigue in ferroelectric thin films [J]. Physical Review Letters,2006,97:177601(1-4).
    [132] W. L. Warren, B. A. Tuttle, D. Dimos, G. E. Pike, H. N. Al-Shareef, R. Ramesh, and J. T. Evavs.Imprint in ferroelectric capacitors [J]. Japanese Journal of Applied Physics,1996,35:1521-1524.
    [133] T. Mihara, H. Watanabe, and A. P. D. A. Carlos. Evaluation of imprint properties in sol-gelferroelectric Pb(Zr, Ti)O3thin-film capacitors [J]. Japanese Journal of Applied Physics,1993,32:4168-4174.
    [134] K. Takahashi, K. Aizawa, B. E. Park, and H. Ishiwara. Thirty-day-long data retention inferroelectric-gate field-effect transistors with HfO2buffer layers [J]. Japanese Journal of AppliedPhysics,2005,44(8):6218-6220.
    [135] J. F. Scott. Applications of modern ferroelectrics [J]. Science,2007,315(5814):954-959.
    [136] D. Xie, Y. Y. Zang, Y. F. Luo, T. L. Ren, and L. T. Liu. Fabrication and properties ofPt/Bi3.15Nd0.85Ti3O12/HfO2/Si structure for ferroelectric DRAM (FEDRAM) FET [J]. IEEE ElectronDevice Letters,2009,30(5):463-465.
    [137] M. H. Tang, Z. H. Sun, Y. C. Zhou, Y. Sugiyama, and H. Ishiwara. Capacitance-voltage and retentioncharacteristics of Pt/SrBi2Ta2O9/HfO2/Si structures with various buffer layer thickness [J]. AppliedPhysics Letters,2009,94(21):212907(1-3).
    [138] X. Pan and T. P. Ma. Retention mechanism study of the ferroelectric field effect transistor. AppliedPhysics Letters,2011,99(1):013505(1-3).
    [139] R. Gysel, I. Stolichnov, A. K. Tagantsev, S. W. E. Riester, N. Setter, G. A. Salvatore, D. Bouvet, and A.M. Ionescu. Retention in nonvolatile silicon transistors with an organic ferroelectric gate [J]. AppliedPhysics Letters,2009,94(26):263507(1-3).
    [140] X. J. Lou. Polarization retention on short, intermediate, and long time scales in ferroelectric thin films[J]. Journal of Applied Physics,2009,105(9):094107(1-5).
    [141] C. T. Black, C. Farrell, and T. J. Licata. Suppression of ferroelectric polarization by an adjustabledepolarization field [J]. Applied Physics Letters,1997,71(14):2041-2043.
    [142] D. J. Kim, J. Y. Jo, Y. S. Kim, Y. J. Chang, J. S. Lee, J. G. Yoon, T. K. Song, and T. W. Noh.Polarization relaxation induced by a depolarization field in ultrathin ferroelectric BaTiO3capacitors [J].Physical Review Letters,2005,95(23):237602(1-4).
    [143] J. Y. Jo, D. J. Kim, Y. S. Kim, S. B. Choe, T. K. Song, J. G. Yoon, and T. W. Noh. Polarizationswitching dynamics governed by the thermodynamic nucleation process in ultrathin ferroelectric films[J]. Physical Review Letters,2006,97(24):247602(1-4).
    [144] J. M. Benedetto, R. A. Moore, and F. B. McLean. Effects of operating conditions on the fast-decaycomponent of the retained polarization in lead zirconate titanate thin films [J]. Journal of AppliedPhysics,1994,75(1):460-466.
    [145] J. W. Hong, W. Jo, D. C. Kim, S. M. Cho, H. J. Nam, H. M. Lee, and J. U. Bu. Nanoscaleinvestigation of domain retention in preferentially oriented PbZr0.53Ti0.47O3thin films on Pt and onLaNiO3[J]. Applied Physics Letters,1999,75(20):3183-3185.
    [146] W. Jo, D. C. Kim, and J. W. Hong. Reverse-poling effects on charge retention inPb(Zr,Ti)O3(001)LaNiO3(001) heterostructures [J]. Applied Physics Letters,2000,76(3):390-392.
    [147] B. S. Kang, J. G. Yoon, T. W. Noh, T. K. Song, S. Seo, Y. K. Lee, and J. K. Lee. Polarizationdynamics and retention loss in fatigued PbZr0.4Ti0.6O3ferroelectric capacitors [J]. Applied PhysicsLetters,2003,82(2):248-250.
    [148] A. Gruverman, H. Tokumoto, A. S. Prakash, S. Aggarwal, B. Yang, M. Wuttig, R. Ramesh, O.Auciello, and T. Venkatesan. Nanoscale imaging of domain dynamics and retention in ferroelectricthin films [J]. Applied Physics Letters,1997,71(24):3492-3494.
    [149] A. Gruverman, and M. Tanaka. Polarization retention in SrBiTaO9thin films investigated atnanoscale [J]. Journal of Applied Physics,2001,89(3):1836-1843.
    [150] I. Stolichnov, L. Malin, E. Colla, A. K. Tagantsev, and N. Setter. Microscopic aspects of theregion-by-rigion polarization reversal kinetics of polycrystalline ferroelectric Pb(Zr, Ti)O3[J]. AppliedPhysics Letters,2005,86(1):012902(1-3).
    [151] W. Li and M. Alexe. Investigation on switching kinetics in epitaxial Pb(Zr0.2Ti0.8)O3ferroelectric thinfilms: Role of the900domain walls [J]. Applied Physics Letters,2007,91(26):262903(1-3).
    [152] S. Hong, E. L. Colla, E. Kim, D. V. Taylor, A. K. Tagantsev, P. Muralt, K. No, and N. Setter. Highresolution study of domain nucleation and growth during polarization switching in Pb(Zr, Ti)O3ferroelectric thin film capacitors [J]. Journal of Applied Physics,1999,86(1):607-613.
    [153] W. J. Merz. Switching time in ferroelectric BaTiO3and its dependence on crystal thichness [J].Journal of Applied Physics,1956,27(8):938-943.
    [154] J. F. Scott, L. Kammerdiner, M. Parris, S. Traynor, V. Ottenbacher, A. Shawabkeh, and W. F. Oliver.Switching kinetics of lead zirconate titanate submicron thin-film memories [J]. Journal of AppliedPhysics,1988,64(2):787-792.
    [155] T. K. Song, S. Aggarwal, Y. Gallais, B. Nagaraj, R. Ramesh, and J. T. Evans. Activation fields inferroelectric thin film capacitors: Area dependence [J]. Applied Physics Letters,1998,73(23):3366-3368.
    [156] Y. W. So, D. J. Kim, T. W. Noh, J. G. Yoon, and T. K. Song. Polarization switching kinetics ofepitaxial Pb(Zr0.4Ti0.6)O3thin films [J]. Applied Physics Letters,2005,86(9):092905(1-3).
    [157] J. Li, B. Nagaraj, H. Liang, W. Cao, C. H. Lee, and R. Ramesh. Ultrafast polarization switching inthin-film ferroelectrics [J]. Applied Physics Letters,2004,84(7):1174-1176.
    [158] S. M. Sze, Physics of semiconductor devices [M],2nd ed., Wiley, New York,1981.
    [159] S. Salahuddin and S. Datta, Use of negative capacitance to provide voltage amplification for lowpower nanoscale devices [J]. Nano Letters,2008,8:405-410.
    [160] Q. Chen, E. M. Harrell, and J. D. Meindl, A physical short-channel threshold voltage model forundoped symmetric double-gate MOSFETs [J]. IEEE Transactions on Electron Devices,2003,50:1631-1637.
    [161] Y. Li and H. M. Chou, A comparative study of electrical characteristic on sub-10-nm double-gateMOSFETs [J]. IEEE Transactions on Nanotechnology,2005,4(5):645-647.
    [162] H. A. El Hamid, J. R. Guitar, and B. Iniguez, Two-dimensional analytical threshold voltage andsubthreshold swings of undoped symmetric double-gate MOSFETs [J]. IEEE Transactions on ElectronDevices,2007,54:1402-1408.
    [163] Y. Taur, An analytical solution to a double-gate MOSFET with undoped body [J]. IEEE ElectronDevice Letters,2000,21:245-247.
    [164] D. Jimenez, E. Miranda, and A. Godoy, Analytic model for the surface potential and drain current innegative capacitance field-effect transistors [J]. IEEE Transactions on Electron Devices,2010,57:2405-2409.
    [165] K. M. Rabe, C. H. Ahn, and J. M. Triscone, Physics of Ferroelectrics: A Modern Perspective [M].Berlin, Germany: Springer,2007.
    [166] G. A. Salvatore, D. Bouvet, and A. M. Ionescu. Demonstration of subthrehold swing smaller than60mV/decade in Fe-FET with P(VDF-TrFE)/SiO2gate stack [C]. IEEE Electron Devices Meeting,2008,1-4.
    [167] A. Cano and D. Jimenez, Multidomain ferroelectricity as a limiting factor for voltage amplification inferroelectric field-effect transistors [J]. Applied Physics Letters,2010,97:133509(1-3).
    [168] A. K. Tagantsev and G. Gerra. Interface-induced phenomena in polarization response of ferroelectricthin films [J]. Journal of Applied Physics,2006,100:051607(1-28).
    [169] J. Y. Jo, Y. S. Kim, D. H. Kim, J. D. Kim, Y. J. Chang, J. H. Kong, Y. D. Park, T. K. Song, J. G. Yoon,J. S. Jung, and T. W. Noh. Thickness-dependent ferroelectric properties in full-strainedSrRuO3/BaTiO3/SrRuO3ultra-thin capacitors [J]. Thin Solid Films,2005,486:149-152.
    [170] Y. S. Kim, J. Y. Jo, D. J. Kim, Y. J. Chang, J. H. Lee, T. W. Noh, T. K. Song, J. G. Yoon, J. S. Chung,S. I. Baik, Y. W. Kim, and C. U. Jung. Ferroelectric properties of SrRuO3/BaTiO3/SrRuO3ultrathinfilm capacitors free from passive layers [J]. Applied Physics Letters,2006,88(7):072909(1-3).
    [171] J. Junquera and P. Ghosez. Critical thickness for ferroelectricity in perovskite ultrathin films [J].Nature,2003,422:506-509.
    [172] M. Stengel and N. A. Spaldin. Origin of the dielectric dead layer in nanoscale capacitors [J]. Nature,2006,443:679-682.
    [173] M. Grossmann, O. Lohse, D. Bolten, U. Boettger, and T. Schneller. The interface screening model asorigin of imprint in PbZrxTi1-xO3thin films. I. Dopant, illumination, and bias dependence [J]. Journalof Applied Physics,2002,92(5):2680-2687.
    [174] M. Grossmann, O. Lohse, D. Bolten, U. Boettger, and T. Schneller. The interface screening model asorigin of imprint in PbZrxTi1-xO3thin films. II. Numerical simulation and verification [J]. Journal ofApplied Physics,2002,92(5):2688-2696.
    [175] J. J. Lee, C. L. Thio, and S. B. Desu. Electrode contacts on ferroelectric Pb(ZrxTi1-x)O3andSrBi2Ta2O9thin films and their influence on fatigue properties [J]. Journal of Applied Physics,1995,78(8):5073-5078.
    [176] H. Z. Jin and J. Zhu. Size effect and fatigue mechanism in ferroelectric thin films [J]. Journal ofApplied Physics,2002,92(8):4594-4598.
    [177] S. Regnery, P. Ehrhart, F. Fitsilis, R. Waser, Y. Ding, C. L. Jia, M. Schumacher, F. Schienle, and H.Juergensen.(Ba, Sr)TiO3thin film growth in a batch processing MOCVD reactor [J]. Journal of theEuropean Ceramic Society,2004,24:271-276.
    [178] M. Tyunina and J. Levoska. Application of the interface capacitance model to thin-film relaxors andferroelecgtrics [J]. Applied Physics Letters,2006,88(26):262904.
    [179] W. Y. Park and C. S. Hwang. Film-thickness-dependent Curie-Weiss behaviour of (Ba, Sr)TiO3thin-film capacitors having Pt electrodes [J]. Applied Physics Letters,2004,85(22):5313-5315.
    [180] B. Chen, H. Yang, L. Zhao, J. Miao, B. Xu, X. G. Qiu, B. R. Zhao, X. Y. Qi, and X. F. Duan.Thickness and dielectric constant of dead layer in Pt/(Ba0.7Sr0.3)TiO3/YBa2Cu2O7-x[J]. Applied PhysicsLetters,2004,84(4):583-585.
    [181] H. Yang, N. A. Suvorova, M. Jain, B. S. Kang, Y. Li, M. E. Hawley, P. C. Dowden, R. F. DePaula, Q.X. Jia, and C. J. Lu. Effective thickness and dielectric constant of interfacial layers ofPt/Bi3.15Nd0.85Ti3O12/SrRuO3capacitors [J]. Applied Physics Letters,2007,90(23):232909.
    [182] B. T. Lee and C. S. Hwang. Influence of interfacial intrinsic low-dielectric layers on the dielectricproperties of sputtered (Ba, Sr)TiO3thin films [J]. Applied Physics Letters,2000,77(1):124-126.
    [183] Y. Xiao, V. B. Shenoy, and K. Bhattacharya. Depletion layers and domain walls in semiconductingferroelectric thin films [J]. Physical Review Letters,2005,95(24):247603(1-4).
    [184] Y. Zheng, B. Wang, and C. H. Woo. Simulation of interface dislocation effect on polarizationdistribution of ferroelectric thin films [J]. Applied Physics Letters,2006,88(9):092903(1-3).
    [185] Y. Zheng, B. Wang, and C. H. Woo. Effects of interface dislocations on properties of ferroelectric thinfilms [J]. Journal of the Mechanics and Physics of Solids,2007,55:1661-1676.
    [186] S. P. Alpay, I. B. Misirlioglu, V. Nagarajan, and R. Ramesh. Can interface dislocations degradeferroelectric properties?[J] Applied Physics Letters,2004,85(11):2044-2046.
    [187] V. Nagarajan, C. L. Jia, H. Kohlstedt, R. Waser, I. B. Misirlioglu, S. P. Alpay, and R. Ramesh. Misfitdislocations in nanoscale ferroelectric heterostructures [J]. Applied Physics Letters,2005,86(19):192910(1-3).
    [188] Y. Masuda and T. Nozaka. Investigation into electrical conduction mechanisms of Pb(Zr, Ti)O3thinfilm capacitors with Pt, IrO2and SrRuO3top electrodes [J]. Japanese Journal of Applied Physics,2004,43(9B):6576-6580.
    [189] M. Dawber and J. F. Scott. Calculation of schottky barrier height of platinum/lead zirconate titanateinterface [J]. Integrated Ferroelectrics,2001,38:161-169.
    [190] T. Nozaka and Y. Masuda. Interface effects of Pb(Zr, Ti)O3thin film capacitors with Pt, IrO2andSrRuO3top electrodes [J]. Ferroelectrics,2007,357:276-282.
    [191] C. S. Hwang, B. T. Lee, C. S. Kang, K. H. Lee, H. J. Cho, H. Hideki, W. D. Kim, S. I. Lee, and M. Y.Lee. Depletion layer thickness and Schottky type carrier injection at the interface between Ptelectrodes and (Ba, Sr)TiO3thin films [J]. Journal of Applied Physics,1999,85(1):287-295.
    [192] J. Q. He, E. Vasco, C. L. Jia, and R. H. Wang. Direct observation of a fully strained dead layer atBa0.7Sr0.3TiO3/SrRuO3interface [J]. Applied Physics Letters,2005,87(6):062901(1-3).
    [193] M. Dawber, N. Stucki, C. Lichtensteiger, S. Gariglio, and J. M. Triscone. New phenomena at theinterfaces of very thin ferroelectric oxides [J]. Journal of Physics: Condensed Matter,2008,20:264015(1-6).
    [194] M. Dawber and J. F. Scott, Models of electrode-dielectric interfaces in ferroelectric thin-film devices[J]. Japanese Journal of Applied Physics,2002,41(11B):6848-6851.
    [195] C. K. Wong and F. G. Shin. A possible mechanism of anomalous shift and sysmmetric hysteresisbehavior of ferroelectric thin films [J]. Applied Physics Letters,2005,86(4):042901(1-3).
    [196] D. Bolten, U. B ttger, and R. Waser. Effect of interfaces in Monte Carlo computer simulations offerroelectric materials [J]. Applied Physics Letters,2004,84(13):2379-2381.
    [197] Y. W. Cho, S. K. Choi, and G. V. Rao. The influence of an extrinsic interfacial layer on thepolarization of sputtered BaTiO3film [J]. Applied Physics Letters,2005,86(20):202905(1-3).
    [198] J. Lee, R. Ramesh, V. G. Keramidas, W. L. Warren, G. E. Pike, and J. T. Evans. Imprint and oxygendeficiency in (Pb, La)(Zr, Ti)O3thin-film capacitors with La-Sr-Co-O electrodes [J]. Applied PhysicsLetters,1995,66(11):1337-1339.
    [199] L. Hong, A. K. Soh, Y. C. Song, and L. C. Lim. Interface and surface effects on ferroelectricnano-thin films [J]. Acta Materialia,2008,56:2966-2974.
    [200] C. Zhou and D. M. Newns. Intrinsic dead layer effect and the performance of ferroelectric thin filmcapacitors [J]. Journal of Applied Physics,1997,82:3081-3088.
    [201] K. Natori, D. Otani, and N. Sano. Thickness dependence of the effective dielectric constant in a thinfilm capacitor [J]. Applied Physics Letters,1998,73:632.
    [202] A. I. Khan, D. Bhowmik, P. Yu, S. J. Kim, X. Q. Pan, R. Ramesh, and S. Salahuddin. Experimentalevidence of ferroelectric negative capacitance in nanoscale heterostructures [J]. Applied PhysicsLetters,2011,99(11):113501(1-3).
    [203] F. Parlaktürk,. Alt ndal, A. Tataro lu, M. Parlak, and A. Agasiev. On the profile of frequencydependent series resistance and surface states in Au/Bi4Ti3O12/SiO2/n-Si(MFIS) structures [J].Microelectronic Engineering,2008,85(1):81-88.
    [204] J. Zhang, M. H. Tang, J. X. Tang, F. Yang, H. Y. Xu, W. F. Zhao, and Y. C. Zhou. Influence of theferroelectric-electrode interface on the characteristics of MFIS-FETs [J]. Solid-State Electronics,2009,53(6):563-566.
    [205] G. A. Salvatore, A. Rusu, and A. M. Ionescu. Experimental confirmation of temperature dependentnegative capacitance in ferroelectric field effect transistor [J]. Applied Physics Letters,2012,100(16):163504(1-4).
    [206] L. D. Landau and I. M. Khalatnikov. On the anomalous absorption of sound near a second-orderphase transition point [C]. Dokl. Akad. Nauk SSSR,1954,96:469-472.
    [207] V. C. Lo. Simulation of thickness effect in thin ferroelectric films using Landau-Khalatnikov theory[J]. Journal of applied physics,2003,94(5):3353-3359.
    [208] W. Zhang and K. A. Bhattacharya. A computational model of ferroelectric domains. Part I: modelformulation and domain switching [J]. Acta Materialia,2005,53(1):185-198.
    [209] G. A. Salvatore, Ferroelectric field effect transistor for memory and switch applications [D]. ThèseEPFL,2011.
    [210] Y. Taur, X. Liang, W. Wang, and H. Lu. A continuous, analytic drain-current model for DGMOSFETs [J]. IEEE Electron Device Letters,2004,25(2):107-109.
    [211] J.-P. Colinge. Multiple-gate SOI MOSFETs [J]. Solid-State Electronics,2004,48(6):897-905.
    [212] D. Jiménez, B. I iguez, J. Su é, L. F. Marsal, J. Pallarès, J. Roig, and D. Flores. Continuous analyticIV model for surrounding-gate MOSFETs [J]. IEEE Electron Device Letters,2004,25(8):571-573.
    [213] B. I íguez, D. Jiménez, J. Roig, H. A. Hamid, L. F. Marsal, and J. Pallares. Explicit continuousmodel for long-channel undoped surrounding gate MOSFETs [J]. IEEE Transactions on ElectronDevices,2005,52(8):1868-1873.
    [214] O. Moldovan, B. I iguez, D. Jiménez, and J. Roig. Analytical charge and capacitance models ofundoped cylindrical surrounding-gate MOSFETs [J]. IEEE Transactions on Electron Devices,2007,54(1):162-165.
    [215] B. Yu, W. Y. Lu, H. X. Lu, and Y. Taur. Analytic charge model for surrounding-gate MOSFETs [J].IEEE Transactions on Electron Devices,2007,54(3):492-496.
    [216] B. Yu, H. X. Lu, M. J. Liu, and Y. Taur. Explicit continuous models for double-gate andsurrounding-gate MOSFETs [J]. IEEE Transactions on Electron Devices,2007,54(10):2715-2722.
    [217] K. H. Cho, K. H. Yeo, Y. Y. Yeoh, S. D. Suk, M. Li, J. M. Lee, M. S. Kim, D. W. Kim, D. Park, B. H.Hong, Y. C. Jung, and S. W. Hwang. Experimental evidence of ballistic transport in cylindricalgate-all-around twin silicon nanowire metal-oxide-semiconductor field-effect transistors [J]. AppliedPhysics Letters,2008,92(5):052102(1-3).
    [218] F. Liu, J. He, L. Zhang, J. Zhang, J. Hu, C. Ma, and M. Chan. A charge-based model for long-channelcylindrical surrounding-gate MOSFETs from intrinsic channel to heavily doped body [J]. IEEETransactions on Electron Devices,2008,55(8):2187-2194.
    [219] I. Ferain, C. A. Colinge, and J.-P. Colinge. Multigate transistors as the future of classicalmetal-oxide-semiconductor field-effect transistors [J]. Nature,2011,479(7373):310-316.
    [220] D. Jiménez, B. Iniguez, J. Su é, L. F. Marsal, J. Pallarès, J. Roig, and D. Flores. Continuous analyticIV model for surrounding-gate MOSFETs [J]. IEEE Electron Device Letters,2004,25(8):571-573.
    [221] B. I íguez, D. Jiménez, J. Roig, H. A. Hamid, L. F. Marsal, and J. Pallarès. Explicit continuousmodel for long-channel undoped surrounding gate MOSFETs [J]. IEEE Transactions on ElectronDevices,2005,52(8):1868-1873.
    [222] J. He, X. Zhang, G. G. Zhang, M. S. Chan, and Y. Y. Wang. A carrier-based analytic DCIV model forlong channel undoped cylindrical surrounding-gate MOSFETs [J]. Solid-state electronics,2006,50(3):416-421.
    [223] B. Yu, W. Y. Lu, H. X. Lu, and Y. Taur. Analytic charge model for surrounding-gate MOSFETs [J].IEEE Transactions on Electron Devices,2007,54(3):492-496.
    [224] O. Moldovan, B. I iguez, D. Jiménez, and J. Roig. Analytical charge and capacitance models ofundoped cylindrical surrounding-gate MOSFETs [J]. IEEE Transactions on Electron Devices,2007,54(1):162-165.
    [225] F. Liu, J. He, L. N. Zhang, J. Zhang, J. H. Hu, C. Y. Ma, and M. S. Chan. A charge-based model forlong-channel cylindrical surrounding-gate MOSFETs from intrinsic channel to heavily doped body [J].IEEE Transactions on Electron Devices,2008,55(8):2187-2194.
    [226] A. Tsormpatzoglou, D. H. Tassis1, C. A. Dimitriadis, G. Ghibaudo, G. Pananakakis, and R. Clerc. Acompact drain current model of short-channel cylindrical gate-all-around MOSFETs [J].Semiconductor Science Technology,2009,24:075017(1-8).
    [227] M. Cheralathan, A. Cerdeira, and B. I iguez. Compact model for long-channel cylindricalsurrounding-gate MOSFETs valid from low to high doping concentrations [J]. Solid-State Electronics,2011,55:13-18.
    [228] Y. G. Xiao, M. H. Tang, J. C. Li, B. Jiang, and J. He. The influence of ferroelectric-electrode interfacelayer on the electrical characteristics of negative-capacitance ferroelectric double-gate field-effecttransistors [J]. Microelectronics Reliability,2012,52(4):757-760.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700