求解多目标问题的思维进化算法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在现实世界中,大多数优化问题都要涉及多个目标。多目标优化是近30年来迅速发展起来的一门新兴学科。多年来许多研究者的工作就是寻找一些重要技术来处理多目标优化问题。
     进化算法(Evolutionary Algorithm:EA)作为优化算法来解决复杂的多目标优化问题具有一定的优势。Schaffer在二十世纪80年代中期提出了VEGA,它是使用进化算法来解决多目标优化问题的第一次实现。现在的进化多目标算法大致可以被分为三类:(1)聚合法:这种方法是将多个目标聚合成一个目标函数来进行优化。它虽然简单且容易执行,但是当我们对问题了解较少时,就很难为各个目标产生合适的权值。(2)基于群体的非Pareto法,如VEGA;(3)基于Pareto的方法,如SPEA(Strength Pareto Evolutionary Algorithms),它是最好的进化多目标优化算法之一。
     根据对GA存在问题的思考以及对人类思维进步的分析,模仿人类社会中存在的趋同和异化现象,孙承意教授于1998年8月提出了思维进化计算(MEC)。经过几年来的理论和实验研究,目前思维进化计算在理论上已经有了很大的发展,同时也广泛应用于一些实际问题,所有这些工作已经为MEC建立了一个初步完整的体系。
     本文提出两种多目标优化算法:Pareto-MEC和SP-MEC。它们都是将Pareto理论引入到基本MEC中来解决多目标优化问题的。
     Pareto-MEC的基本思想是:(1)首先在整个解空间散布一
    
    太原理工大学硕士研究生学位论文
    些个体,选择最好的一些个体作为子群体的初始中心。(2)每个
    子群体从这些初始中心出发,每个子群体仅搜索一个局部区域
    并逐渐向Paret。前沿漂移。(3)在漂移的过程中,算法调整各子
    群体的搜索范围和方向。上述的(1)和(3)称为异化操作,(2)称为
    趋同操作。
     SP一MEC的基本思想是:(l)首先在整个解空间散布一些个
    体,根据它们的得分选择一些最好个体作为子群体的初始中心,
    该得分反映个体间的统治关系和密度信息。(2)每个子群体从这
    些初始中心出发,仅搜索一个局部区域来逐渐地向Paret。前沿
    漂移。(3)在漂移的过程中,算法会调整各子群体的搜索范围和
    前进方向。上述(1)和(3)称为异化操作,(2)称为趋同操作。
     分别将Pareto一MEC和SP一MEC与Rand,VEGA,NSGA和
    SPEA这四种算法进行了比较实验。并且在凸的,非凸的,离散
    的及分布不均匀的测试问题上进行了测试,其中SPEA是这些
    比较算法中性能较好的。实验结果表明Pareto一MEC和SP一MEC
    在所有的测试函数上都超越了Rand,VEGA和NSGA这三种算
    法:在第三个测试问题上,Pareto一MEC与SPEA具有同样优越的
    性能,SP一MEC略好于SPEA;在最后一个测试问题上,两种算
    法的结果都好于SPEA的结果。其它算法预先给定了迭代次数,
    而这里提出的两种算法可以有客观的停止准则,这样即保证了
    解的质量又提高了计算效率。
     在凸的及分布不均匀的这两个测试函数上,我们还使用了
    两个度量标准Cover和Spacing对算法进行定量的评价。实验结
    果从数学的角度上说明了Pareto一MEC和SP一MEC这两种算法与
    当前最好的算法SPEA相比,具有更好的性能。
There are many multi-objective optimization problems in the real world. The multi-objective optimization is a rising subject in the recent 30 years. Many researchers have been finding some important techniques to deal with multi-objective optimization problems.
    Evolutionary Algorithms (EA) have some advantages in the complex multi-objective optimization problems. Schaffer firstly used VEGA to optimize multi-objective problems in the mid -1980s. Most of the approaches can be put into three categories: (1) Aggregating approaches: this approach combines objectives into a single function to optimize. Although it is very simple and easy to implement, this approach may be difficult to generate a set of weights that properly scales the objectives when little is known about the problem. (2) Population-based non-Pareto approaches, e.g. Vector Evaluated Genetic Algorithms (VEGA): this approach performs the proportional selection according to each objective function. Although it modifies the selection mechanism of the GA, this approach behaves as an aggregating approach. (3) Pareto-based approaches, e.g. Strength Pareto Evolutionary Algorithm (SPEA): this approach is outstanding in the approaches to evolutionary
    
    
    
    multi-objective optimization.
    To overcome the problems of GA, Mind Evolutionary Computation (MEC) was proposed by Chengyi Sun in 1998, which imitates two phenomena of human society - similartaxis and dissimilation. After several years' studies on its theory and experiment, MEC has been made great progress. So far, a preliminary system has already been established for MEC.
    This paper proposes two kinds of multi-objective optimization algorithms, respectively called Pareto Mind Evolutionary Computation (Pareto-MEC) and Scored Pareto Mind Evolutionary Computation (SP-MEC). They use MEC to solve the multi-objective optimization problems.
    The principles of Pareto-MEC are: (1) A number of individuals are scattered in the whole solution space, and then some better individuals of them are selected as the initial centers for every group. (2) Each group only searches a local area and gradually shifts from its initial center to the Pareto front. (3) During the process of shift to this front, this algorithm would bound the searching region of the group and control the shifting direction of the group. Both of above function (1) and function (3) are called as dissimilation, and function (2) is called as similartaxis.
    The principles of SP-MEC are: (1) A number of individuals are scattered in the whole solution space, and then some better individuals of them are selected as the initial centers for every group according to their scores. (2) Each group only searches a local area and gradually shifts from its initial center to the Pareto front. (3) During the process of shift to this front, this algorithm would bound the searching region of the group and control the
    
    
    shifting direction of the group. Both of above function (1) and function (3) are called as dissimilation, and function (2) is called as similartaxis.
    Pareto-MEC and SP-MEC are respectively compared with the reference algorithms of Rand, VEGA, NSGA and SPEA. The test functions used in the experiment are a suit of four different test problems: convexity, non-convexity, discreteness and non-uniformity. On all test problems, both Pareto-MEC and SP-MEC outperform Rand, VEGA and NSGA; Pareto-MEC is as good as SPEA on the first three test problems, but SP-MEC is better than SPEA; They beat SPEA on the last test problem. Different from the reference algorithms that use the pre-specified generation number as their terminations, Pareto-MEC and SP-MEC have an objective termination criterion that can ensure the quality of solutions and the computational efficiency.
    Two evaluative methods: Cover and Spacing are used as the quantificational criterion for our algorithms on the test functions: convexity, non-convexity and non-uniformity. The experiment shows from the angle of arith that the performances of Pareto-MEC and SP-MEC are better than SPEA which is one of the excellenc
引文
[1] Schaffer J. D. Multiple Objective Optimization with Vector Evaluated Genetic Algorithms, Unpublished Ph. D. thesis, Vanderbilt University, Nashville, Tennessee, 1984.
    [2] Fonseca C. M., and Fleming P. J. An Overview of Evolutionary Algorithms in Multiobjective Optimization, Evolutionary Computation 3(1): 1-16, 1995.
    [3] Zitzler E., and Thiele L. An Evolutionary Algorithm for Multiobjective Optimization: The Strength Pareto Approach, Technical Report 43, Computer Engineering and Communication Networks Lab (TIK), Swiss Federal Institute of Technology (ETH), Zurich, Switzerland, 1998.
    [4] Chengyi Sun and Yan Sun, Mind-Evolution-Based Machine Learning: Framework and The Implementation of Optimization,, Proc. of IEEE Int. Conf. on Intelligent Engineering Systems (INES'98), Edts. P. Kopacek,, IEEE Inc., Sept. 17-19, 1998, Vienna, Austria, pp.355-359.
    [5] Osyczka Andrzej. Multicriteria optimization for engineering design. In John S. Gero, editor, Design Optimization, pages 193-227. Academic Press, 1985.
    [6] Zitzler E. Evolutionary Algorithm for Multiobjective Optimization: Methods and Applications, Ph. D. thesis, Swiss Federal Institute of Technology (ETH) Zurich, Switzerland. Shaker Verlag, Aachen, Germany, ISBN 3-8265-6831-1, 1999.
    [7] Zitzler, E. and Thiele, L. and Laumanns, M. Performance Assessment of Multiobjective Optimizers: An Analysis and Review. IEEE Transactions on Evolutionary Computation. Vol. 7, No. 2, April, 2003.
    [8] Edgeworth F. Y. Mathematical Physics. P. Keagan, London, England, 1881.
    [9] Vilfredo Pareto. Cours D'Economie Politique, volume Ⅰ and Ⅱ. F. Rouge, Lausanne, 1896.
    [10] Cohon, J. L. Multiobjective Programming and Planning. New York: Academic Press. 1978.
    [11] Steuer, R. E. Multiple Criteria Optimization: Theory, Computation, and Application. New York: Wiley, 1986.
    [12] Koski, J. Multicriterion optimization in structural design. In E. Atrek, R. H. Gallagher, K. M. Ragsdell, and O. C. Zienkiewicz (Eds.), New Directions in Optimum Structural
    
    Design, Wiley, 1984, pp. 483-503.
    [13] Rosenberg R. S. Simulation of genetic population with bicochemical properties. PhD thesis, University of Michigan, Ann Harbor, Michigan, 1967.
    [14] Fonseca, V. G. and Fonseca, C. M. and Hall, A. O. Inferential performance assessment of stochastic optimizers and the attainment function, in Evolutionary Multi-Criterion Optimization (EMO2001), E. Zitzler et al., Eds. Berlin, Germany: Springer, 2001, pp. 213-225.
    [15] Veldhuizen D. A. V., and Lamont G. B. Evolutionary Computation and Convergence to a Pareto Front. In John R. Koza, editor, Late Breaking Papers at the Genetic Programming 1998 Conference, Stanford University, California. Stanford University Bookstore, pp. 221-228.
    [16] Schott J. R., Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization. Master's thesis. Department of Aeronautics and Astronautics, Masschusetts Institute of Technology, Canbridge Masschusetts, 1995.
    [17] Fonseca, C. M. and P. J. Fleming. On the performance assessment and comparison of stochastic multiobjective optimizers. In H.-M. Voigt, W. Ebeling, I. Rechenberg, and H.-P. Schwefel (Eds.), Fourth International Conference on Parallel Problem Soving from Nature (PPSN-Ⅳ), Berlin, Germany, 1996, Springer, pp. 584-593.
    [18] Zitzler, E. and Thiele, E. Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study, Parallel Problem Solving from Nature - PPSN Ⅴ, Amsterdam, The Netherlands, September 1998, pages 292 - 301.
    [19] Knowles J. D. and Corne D. W. Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy. Evolution Computation, 8(2): 149-172, 2000.
    [20] De Jong K. A., An analysis of the behavior of a class of genetic adaptive systems (Doctoral dissertation, University of Michigan), Dissertation Abstracts International, 36(10), 5140B, (University Microfilms No. 76-9381), 1975.
    [21] Fitzpatrick J. M., Grefenstette, J. J. and Van Gucht, D., Image registration by genetic search, Proceedings of IEEE Southeast Conference, 1984, pp. 460-464.
    [22] Goldberg D. E., Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, Reading, MA, 1989.
    [23] Davis L. (Ed.), Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York, 1991.
    
    
    [24] H. G. Beyer, Towards a theory of evolution strategies: Some asymptotical results from (1 +, λ)-theory, Evolutionary Computation 1(2), 165-188, 1993.
    [25] H. G. Beyer, Towards a theory of evolution strategies: on the benefits of sex - the ( μ /μ, λ)-theory, Evolutionary Computation 3(1), 81-111, 1995.
    [26] Beyer, H.-G, Toward a Theory of Evolution Strategies: Self-Adaption. Evolutionary Computation 3(3):311-347, 1996.
    [27] Beyer, H.-G, On the Asymptotic Behavior of Multirecombinant Evolution Strategies. in Voigt et al.[VERS96], 1996, pp. 122-133.
    [28] Oyman, A.I., Beyer, H.-G. and Schwefel, H.-P., Analysis of a Simple ES on the Parabolic Ridge. Technical Report SYS-2/97, Department of Computer Science, Systems Analysis Research Group, University of Dortmund, Dortmund, Germany. 1997.
    [29] Oyman, A.I., Beyer, H.-G. and Schwefel, H.-P., Convergence Behavior of the (1,+ lambda) Evolution Strategy on the Ridge Functions, Technical Report SYS-1/98, University of Dortmund, Department of Computer Science, Systems Analysis Research Group, February 1998.
    [30] Oyman, A.I., Beyer, H.-G. and Schwefel, H.-P., Analysis of the (1,lambda)-ES on the Parabolic Ridge. Evolutionary Computation 8(3), 2000, pp.249-265.
    [31] Oyman, A.I., Beyer, H.-G. and Schwefel, H.-P., Analysis of the (μ/μ, lambda)-ES on the Parabolic Ridge. Evolutionary Computation 8(3), 2000, pp.267-289.
    [32] Fogel L. J., Owens A. J. and Walsh M. J., Artificial Intelligence through Simulated Evolution. John Wiley, New York. 1966.
    [33] Koza J. R., Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge, 1992.
    [34] Koza J. R., Genetic Programming Ⅱ: Automatic Discovery of reusable programs. MIT Press, Cambridge, 1994.
    [35] Garis H. D., An artificial brain: ATR's CAM-Brain project aims to build / Evolve an artificial brain with a million neural net modules inside a trillion cell cellular automata machine, New Generation Computing, 12,215-221, 1994.
    [36] Valenzuela-Rend'on, M. and E. Uresti-Charre. A non-generational genetic algorithm for multiobjective optimization. In T. B"ack (Ed.), Proceedings of the Seventh International Conference on Genetic Algorithms, San Francisco, California, Morgan
    
    Kaufmann, 1997, pp. 658-665.
    [37] Wolpert, D. H. and W. G. Macready. No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 1(1), 67-82, April, 1997.
    [38] Horn, J. F1.9 multicriteria decision making. In T. B"ack, D. B. Fogel, and Z.Michalewicz (Eds.), Handbook of Evolutionary Computation. Bristol (UK): Institute of Physics Publishing, 1997.
    [39] Knowles J. D., and Come D. W. The Pareto Archived Evolution Strategy: A New Baseline Algorithm for Multiobjective Optimisation. In 1999 Congress on Evolutionary Computation, Washington, D.C., IEEE Service Center, 1999, pages 98-105.
    [40] Schaffer J. D. Multiple Objective Optimization with Vector Evaluated Genetic Algorithms. In Genetic Algorithms and their Applications: Proceedings of the First International Conference on Genetic Algorithms, Lawrence Erlbaum, 1985, pages 93-100.
    [41] Calos A. Fonseca and Peter J. Fleming. An Overview of Evolutionary Algorithms in Multiobjective Optimization. Technical report, Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, U. K., 1994.
    [42] Scott E. Cieniawski, J. W. Eheart, and S. Ranjithan. Using Genetic Algorithms to Solve a Multiobjective Groundwater Monitoring Problem. Water Resources Reasearch, 31(2): 399-409, February 1995.
    [43] Calos A. Coello Coello, Arturo Hemandez Aguirre, and Bill P. Buckles. Evolutionary Multiobjective Design of Combinaional Logic Circuits. In Jason Lohn, Adrian Stoica, Didier Keymeulen, and Silvano Colombano, editors, Proceedings of the Second NASA/DoD Workshop on Evolvable Hardware. Los Alamitors, California, July 2000. IEEE Computer Society, pages 161-170.
    [44] Wilson P. B. and Macleod M. D. Low Implementation Cost ⅡR Digital Filter Desgin Using Genetic Algorithms. In IEE/IEEE Workshop on Natural Algorithms in Signal Processing. Pages 4/1-4/8, Chelmsford, U. K., 1993.
    [45] Fonseca C. M., and Fleming P. J. Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization. In Stephanie Forrest, editor, Proceedings of the Fifth International conference on Genetic Algorithms, pages 416-423, san Mateo, California. University of Illinois at Urbana-Champaign, Morgan Kauffman Publishers, 1993.
    
    
    [46] Marcu T. A Multiobjective Evolutionary Approach to Pattern Recognition for Robust Diagnosis of Process Faults. In R. J. Patton and J. Chen, editors, IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes: SAFEPROCESS'97, Kington Upon Hull, United Kingdom, August 1997, pages 1183-1188.
    [47] Whidborne J. F., Gu. D. -W. and Postlethwaite. Algorithms for the method of inequalities - a comparative study. In Proceedings of the 1995 American Control Conference, Seattle, Washington, 1995, pages 3393-3397.
    [48] Obayashi S., Takahashi S., and Takeguchi Y. Niching and Elitist Models for MOGAs. In A. E. Eiben, M. Schoenauer, and H.-P. Schwefel, editors, Parallel Problem Solving From Nature _ PPSN Ⅴ, Amsterdam, Holland, 1998. Springer- Verlag, pages 260-269.
    [49] Weile D. S., Michielssen E. and Goldberg D. E. Genetic Algorithm Desgin of Pareto Optimal Broad-Band Microwave Absorbers. Technical Report CCEM-4-96, Electrical and Computer Engineering Department, Center for Computational Electromagnetics, University of Illinois at Urbana-Champaign, May, 1996.
    [50] Srinivas N., and Deb K. Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms. Evolutionary Computation, 2(3): 221-248, 1994.
    [51] Mkinen R., Nèittaanmki P., Pèriaux J. and Toivanen. A Genetic Algorithm for Multiobjective Design Optimization in Areodynamics and Electromagnetics. In K. D. Papailiou et al., editor, Computational Fluid Dynamics'98, Proceedings of the ECCOMAS 98 Conference, volume 2, Athens, Greece, September 1998. Wiley, pages 418-422.
    [52] Tapan P. Bagchi. Multiobjective Scheduling by Genetic Algorithms. Kluwer Academic Publishers, Boston, 1999.
    [53] Zhou Gengui and Gen Mitsuo. Genetic Algorithm Approach on Multi-Criteria Minimum Spanning Tree Problem. European Journal of Operational Research, 114(1), April 1999.
    [54] Horn J., Nafpliotis N., and Goldberg D. E. A Niched Pareto Genetic Algorithm for Multiobjective Optimization. In Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, volume 1, Piscataway, New Jersey. IEEE Service Center, 1994, pages 82-87.
    [55] Horn J., Nafpliotis N. Multiobjective Optimization using the Niched Pareto Genetic
    
    Algorithm Technical Report IlliGAL Report 93005, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA, 1993.
    [56] Enrique H. Ruspini and Igor S. Zwir. Automated Qualitative Description of Measurements. In Proceedings of the 16th IEEE Instrumentation and Measyrement Technology Conference, Venice, Italy, 1999.
    [57] Thomas M. K. A Pareto Frontier for Full Stern Submarines via Genetic Algorithm. PhD thesis, Ocean Engineering Department, Massachusetts Institute of Technology, Cambridge, MA, june 1998.
    [58] Zitzler E. and Thiele L. Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Transactions on Evolutionary Computation, 3(4): 257-271, November 1999.
    [59] Deb, K. Multi-objective genetic algorithms: Problem difficulties and construction of test functions. Technical Report No. CI-49/98, Department of Computer Science/Ⅺ, University of Dortmund, Germany. 1998.
    [60] Jaszkiewicz A. On the Performance of Multiple Objective Genetic Local Search On the 0/1 Knapsack Problem: A Comparative Experiment. Technical Report RA-002/2000, Institute of Computing Science, Poznan University of Technology, Poznan, Poland, July 2000.
    [61] Schaffer J. D. Some Experiments in Machine Learning Using Vector Evaluated Genetic Algorithms. Ph.D. Thesis, Nashville, TN: Vanderbilt, University.
    [62] Kursawe, F. A variant of evolution strategies for vector optimization. In Parallel Problem Solving from Nature 1 (PPSN-Ⅰ), 1990, pp: 193 -197.
    [64] Viennet, R. Multicriteria optimization using a genetic algorithm for determining the Pareto set. International Journal of Systems Science 27(2), 1996, pp: 255-260.
    [63] Poloni, C., Giurgevich, A., Onesti, L. and Pediroda, V. Hybridization of a multiobjective genetic algorithm, a neural network and a classical optimizer for complex design problem in fluid dynamics. Computer Methods in Applied Mechanics and Engineering 186(2{4}, 2000, pp: 403-420.
    [65] 孙承意,谢克明,程明琦,基于思维进化机器学习的框架及新进展,太原理工大学学报,vol.30,No.5,1999年9月,pp.453-457.
    [66] Sun Chengyi, Sun Yan and Xie Keming., Mind-evolution-based machine learning and applications, Proc. 3rd World Congress on Intelligent Control and Automation
    
    (WCICA2000), June 28-July 2, 2000, Hefei, P. R. China. Press of University of Science and Technology of China, IEEE Catalog Number: 00EX393, ISBN: 0-7803-5995-Ⅹ, pp. 129-131.
    [67] 孙承意,王皖贞,贾鸿雁,思维进化计算的产生与进展,2001年中国智能自动化会议(CIAC2001),2001年8月13-16,昆明,pp.80-86.
    [68] Sun Chengyi, Zhang Jianqing and Wang Junli, The analysis of efficiency of similartaxis searching,Joint 9th IFAS World Congress and 20th NAFIPS International Conference, July 25-28, 2001, Canada, pp.35-40.
    [69] Fogel D. B., An introduction to simulated evolutionary optimization, IEEE Trans. on Neural Networks, 5(1): 3-14, 1994.
    [70] Eiben A. E. and Schippers C. A., On evolutionary exploration and exploitation, In Fundamenta Informaticae, Volume 35(1-4), ISSN 0169-2968, IOS Press, August 1998.
    [71] Qi X. F. and F. Palmieri, The diversification role of crossover in the genetic algorithms. In Proceedings of the Third International Conference on Genetic Algorithms, J. D. Schaffer (Eds.), Morgan Kaufman, San Mateo, CA, 1989.
    [72] Eshelman L. J. and J. D. Schaffer, Crossover's niche, In Proceedings of the Fifth International Conference on Genetic Algorithms, Morgan Kaufman, Stephanie Forrest (Eds), San Mateo, CA, 1993, pp. 9-14.
    [73] De Jong, K. A. and W. M. Spears, A formal analysis of the role of multi-point crossover in genetic algorithms, Annals of Mathematics and Artificial Intelligence, 5:1-26, 1992.
    [74] Eshelman L. J., R. A. Caruana and J. D. Schaffer, Biases in the crossover landscape. In Proceedings of the Third International Conference on Genetic Algorithms, J. D. Schaffer (Eds.), Morgan Kaufman, San Mateo, CA, 1989, pp. 10-19,
    [75] Tsutsui S., Ghosh A., Corne D. and Fujimoto Y., 1997, A Real Coded Genetic Algorithm with an Explorer and an Exploiter Populations, Proceeding of The Seventh International Conference on Genetic Algorithms, 238-245, 1997, San Francisco, Morgan Kaufmann.
    [76] 曾建潮,基于思维进化机器学习的自适应趋同策略,《计算机工程与科学》,Vol.22.,No.4,2000,pp.95-96.
    [77] Lijun Wei, Yan Sun and Chengyi Sun, A more efficient similartaxis strategy of MEBML, in Proc. of IASTED Inter. Conf. on Modeling and Simulation (IASTED
    
    MS'99), May 5-8, 1999, Pittsburgh, Pennsylvania, USA, pp.1-5.
    [78] Chengyi Sun, Lijun Wei and Yan Sun, The performance of a modified MEBML system in noisy environment, Proc. of 1999 IEEE Int. Conf. on Systems, Man, and Cybernetics (SMC'99), vol. 5, Oct. 12-15, 1999, Tokyo, Japan, pp. 613-617.
    [79] A. N. Aizawa, B. W. Wah, Dynamic control of genetic algorithms in a noisy environment, Proceedings of the Fifth International Conference on Genetic Algorithms (ICGA'93), July 1993, Urbana-Champaign, IL, USA, pp.48-55.
    [80] Chengyi Sun, Junli Wang and Yan Sun, A prediction based similartaxis strategy, in Proceedings of Sixth IASTED International Conference on Artificial Intelligence & Soft Computing, ASC2002, Edt: H. Leung, Banff, Alberta, Canada July 17-19, 2002, pp. 140-145.
    [81] Chengyi Sun, Junli Wang and Jianqing Zhang, MEC Dissimilation Strategy by Rejected Regions. Proc. of 2001 IEEE International Conference on System, Man and Cybernetics, (SMC2001), Oct. 7-10, 2001, Tucson, Arizona, USA, pp. 274-279.
    [82] Zeng Jianchao and Zha Kai, Research of the dissimilation strategy for MEBML,, Proc. 3rd World Congress on Intelligent Control and Automation (WCICA2000), June 28-July 2, 2000, Hefei, P. R. China. Press of University of Science and Technology of China, IEEE Catalog Number: 00EX393, ISBN: 0-7803-5995-Ⅹ, pp.129-131.
    [83] Wang Chuan-long and Zhang Jianguo, A study of the convergence of MEBML algorithms, Proc. 3rd World Congress on Intelligent Control and Automation (WCICA2000), P. R. China. Press of University of Science and Technology of China, IEEE Catalog Number: 00EX393, ISBN: 0-7803-5995-Ⅹ, June 28-July 2, 2000, Hefei, pp.122-125.
    [84] 王川龙,孙承意,基于思维进化的智能算法的收敛性研究,《计算机研究与发展》,vol.37.,No.7,2000年7月,pp.838-842.
    [85] Xiuling Zhou and Chengyi Sun. An Analysis of Convergence of MEC by the Properties of Operations, in Proceedings of 2003 IEEE International Conference on Systems, Man and Cybernatics, IEEE SMC2003, Oct. 5-8, Hyatt Regency, Washington, DC, USA, pp. 329-334.
    [86] Junli Wang, Yan Sun and Chengyi Sun, Comparison of Performance of Basic MEC and DC Niching GAs., Proc. 4th World Congress on Intelligent Control and Automation(WCICA2002)., vol. 3, June 10-14, 2002,
    
    Shanghai, China, pp.2297-2303.
    [87] Chengyi Sun, Yah Sun and Wanzhen Wang, A Survey of MEC:1998-2001, 2002 IEEE International Conference on Systems, Man and Cybernatic, v. 6, IEEE SMC2002, Hammamet, Tunisia. October 6-9, 2002, pp. 445-453.
    [88] Chengyi Sun, Jianqing Zhang, Junli Wang and Hongyan Jia, The Influence of the Probability Density Function on Similartaxis in MEC, Proc. of The 10th IEEE International Conference on Fuzzy Systems (FUZZY-IEEE2001), December 2-5, 2001, Australia, pp. 211-215.
    [89] 孙承意,张建卿,王俊丽,求解数值最优化问题的MEC收敛性能分析,《智能计算机研究进展》863计划智能计算机主题学术会议论文集,2001年3月8-9日,清华大学出版社,北京,pp.491-500.
    [90] 张建卿,孙承意,王皖贞,用于解决多峰优化问题的MEC,《中国人工智能进展2001》—第九届中国人工智能学会学术年会(CAAI-9)论文集,2001年12月1-3日,北京邮电大学出版社,北京,pp.162-167.
    [91] 王丽爱,孙承意.采用双层MEC研究MEC的多峰优化性能.2003年中国智能自动化会议(CIAC2003),2003年12月15-17,中国自动化学会智能自动化专业委员会,香港中文大学,香港,pp.1031-1037.
    [92] 查凯,曾建潮.求解TSP问题的思维进化算法.《计算机工程与应用》,vol.38 No.4,2004,pp.102-104。
    [93] 查凯,曾建潮.求解Job-shop调度问题的思维进化算法.《小型微型计算机系统》,vol.23 No.8,2002,pp.1000-1002。
    [94] 查凯,曾建潮.机遇思维进化算法的常微分方程组演化建模.《系统仿真学报》,Vol.14 No.2,2002,pp.539-543.
    [95] 周旭东,孙承意,李文娟.采用MEC求解最大团问题.《中国人工智能进展(2003)》中国人工智能学会2003年全国学术大会(CAAI-10)论文集,广州,2003年11月19-21日,pp.119-124。
    [96] 孙承意,贾美丽。MEC的主从式并行方案,计算机工程与应用,第38卷,增刊,2002,pp.150-152。
    [97] 贾美丽,弓剑军,孙承意。PMEC在集群计算机上的实现,2003年中国智能自动化会议(CIAC2003),pp.994-999,2003年12月15-17日,中国自动化学会智能自动化专业委员会,香港中文大学,香港。
    [98] 弓剑军,贾美丽,孙承意。并行MEC的实现与分析,第十三届中国神经网络学术会议,2003年11月12-15日,青岛,人民邮电出版社,pp.657-661。
    
    
    [99] Yan Sun, Yu Sun and Chengyi Sun, Clustering and reconstruction of color images using MEBML, Proc. of Inter. Conf. on Neural Nertworks & Brain (ICNN&B'98), Oct. 27-30, 1998, Beijing, China, pp. 361-365.
    [100] Chengyi Sun, Yan Sun, Jianzheng Wang and Keming Xie, Shape matching of small objects using MEBML, Proceeding of 1999 IEEE Int. Conf. on Intelligent Engineering Systems (INES'99), Poprad, High Tatras, Stara Lesna, Slovakia, Nov.1-3, 1999, pp.99-104.
    [101] Sun Yah, Sun Chengyi and Wang Wanzhen, Color images segmentation by using new definition for connected components, in: Proc. of 5th Int. Conf. On Signal Processing (WCC2000-ICSP2000), Edited by: Baozong Yuan & Xiaofang Tang, IEEE Press, Aug. 21-25, 2000, pp.863-868.
    [102] Chengyi Sun, Yan Sun, and Xiaohong Guo, Perceptually uniform color models for tasks in computer vision, Journal of Image and Graphics, vol. 5, Supplement, Proceeding of ICIG'2000, Edited by: Y. J. Zhang, 1st Int. Conf. on Image and Graphics, 2000, pp.74-78.
    [103] Cheng Mingqi., Gray image segmentation on MEBML frame, Proc. 3rd World Congress on Intelligent Control and Automation (WCICA2000), pp.135-137, June 28-July 2, 2000, Hefei, P. R. China. Press of University of Science and Technology of China, IEEE Catalog Number: 00EX393, ISBN: 0-7803-5995-Ⅹ.
    [104] Chengyi Sun, Yan Sun and Yu Sun, Model-selection-based economic Prediction system using MEBML, Proc. of 1999 IEEE Int. Conf. on Systems, Man, and Cybernetics (SMC'99), Oct. 12-15, 1999, Tokyo, Japan.
    [105] Chengyi Sun, Yan Sun and Yu Sun, Economic prediction system using double models, Proc. of 2000 IEEE Int. Conf. on Systems, Man, and Cybernetics (SMC'00), Oct. 8-11, 2000, pp, 1978-1983.
    [106] Xie Keming, Du Yonggui and Sun Chengyi, Application of the Mind-evolution-based machine learning in mixture-ratio calculation of raw materials cement, Proc. 3rd World Congress on Intelligent Control and Automation (WCICA2000), P. R. China. Press of University of Science and Technology of China, IEEE Catalog Number: 00EX393, ISBN: 0-7803-5995-Ⅹ, June 28-July 2, 2000, pp.132-134.
    [107] Keming Xie, Changhua Mou, Gang Xie and Chengyi Sun, A new MEBML-based algorithm for adjusting parameters on-line, in: Proc. of 5th Int. Conf. On Signal Processing (WCC2000-ICSP2000). Edited by: Baozong Yuan & Xiaofang Tang, IEEE Press, 2000.8, pp.1714-1717.
    [108] Keming Xie, Changhua Mou and Gang Xie, A MEBML-based adaptive fuzzy logic
    
    controller, 2000 IEEE International Conference on Industrial Electronics, Control and Instrumentation (IECON2000), Oct. 2000.
    [109] Keming Xie, Changhua Mou and Gang Xie, The multi-parameter combination mind-evolutionary-based machine learning and its application, 2000 IEEE International Conference on Systems, Man, and Cybernetics (SMC2000), Oct. 2000.
    [110] Eckart Zitzler, Marco Laumanns, and Lothar Thiele, "SPEA2: Improving the Strength Pareto Evolutionary Algorithm", In K. Giannakoglou, D. Tsahalis, J. Periaux, P. Papailou, and T. Fogarty, editors, EUROGEN 2001. Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, Athens, Greece, September 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700