大悬挑钢网架采用筒式粘弹性阻尼器的风振控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文阐述了筒式粘弹性阻尼器的动态力学性能、老化性能和疲劳性能的试验研究,并在此基础上,采用筒式粘弹性阻尼器对合肥奥体中心大悬挑钢网架工程进行了风振控制的理论研究和设计。该工程已建成,取得了很好的社会效益和经济效益。
     粘弹性材料具有应变滞后于应力的阻尼特性,由它构成的粘弹性阻尼器及消能支撑是一种基本上与速度相关的减振装置,可用于抗风振也可用于抗震。本文对筒式粘弹性阻尼器在不同环境温度、激励频率和应变幅值下的动力性能指标进行了试验研究。试验研究表明,筒式粘弹性阻尼器具有较为稳定的动力性能,耗能能力强,可用于建筑结构在风振或地震下的振动控制。本文还介绍了老化后粘弹性阻尼器的动态力学性能试验,试验结果表明它具有良好的老化性能。同时对筒式粘弹性阻尼器的疲劳性能进行了试验研究,试验结果表明在风振或地震下阻尼器具有较强的耐疲劳性能。众所周知,地震作用强度大、持时短,而风荷载强度相对较小、持时长。当阻尼器应用于建筑物的风振控制时,须考虑荷载循环次数的影响。本文通过试验,研究了滞回圈数对筒式粘弹性阻尼器动态力学性能的影响。
     本文研究了粘弹性阻尼器用于大悬挑钢网架结构中的风振控制理论和设计方法,对模态应变能法提出了修正,研究了阻尼器的合理布置、消能支撑的竖向控制力、阻尼器的设计和消能支撑的等效刚度和等效耗能因子等问题。
     最后结合合肥奥体中心综合体育馆大悬挑钢网架屋盖结构,对采用筒式粘弹性阻尼器的风振控制进行了研究。研究表明,在悬挑28.23m的钢网架屋盖中,设置筒式粘弹性阻尼器后能够耗散风振的输入能量,较明显地减小了风振的竖向位移反应。
This dissertation describes the studies of the dynamic behaviors, the aging behaviors and the fatigue behaviors for the circular tube viscoelastic dampers. Based on these, the theory studies and design of the wind vibration control for a large cantilevered steel spatial truss with circular tube viscoelastic dampers of the roof engineering at Hefei Olympic Center is finished and this building engineering has been set up and got a good social benefit and economic benefit..
     The VE material has the damping character that the strain is delayed to the stress, so the VE damper and the energy dissipation braces are basically velocity dependent device of reducing vibration which can be used in seismic structure and wind resistant structure. The dynamic properties of the circular tube VE dampers are tested under different environment temperature, excitation frequencies and shear strain amplitudes. The test results show that the circular tube VE dampers have stable properties and excellent capacity for energy dissipation,which can be used in the vibration control of engineering structure under earthquake or wind loads. The dynamic property tests of the aged circular tube VE dampers are also introduced in this dissertation, and the conclusion is drawn that the circular tube VE damper has good aging property. Meanwhile, the fatigue test of the circular tube VE dampers is performed. The test results indicate that the circular tube VE dampers have good fatigue properties under earthquake action or wind load. It was noted that the earthquake action is different from the wind load. The earthquake action has strong intensity and short duration, but the intensity of wind loading is weaker than that of earthquake action and its duration is longer. When VE dampers are applied to the wind-induced vibration control of buildings, the number of loading cycles must be taken into account in the design. Based on the test results, the effect of the number of hysteretic loops on the mechanical properties of the circular tube VE damper is studied in this dissertation.
     In this dissertation, the wind-induced vibration control theory and design principle for large cantilevered steel spatial truss are fully studied. Such as modal strain energy method is modified, and the reasonable arrangement of VE dampers, the calculation formula of vertical control force for energy dissipation brace, the design method of circular tube VE damper, the equivalent stiffness and the equivalent stiffness loss factor are introduced.
     At last it is involved in that the circular tube VE dampers are applied to the large cantilevered steel spatial truss at Hefei Olympic Sports Center to reduce the wind-induced dynamic response. The analytic results show that the vertical displacements of the 28.23m cantilevered steel spatial truss roof are obviously reduced after installing the circular tube VE dampers.
引文
[1] 李湘洲.城市建筑的防灾与减灾[J].南方建筑,2002 (4):16~18
    [2] Cook N J.The designer’s guide to wind loading of building strucures[M].1985
    [3] Kolouse V,Pirner M, Fischer O.Wind Effects on Civil Engineering Structures[M].Elsevier Press, 1984
    [4] 曹国锋,林颖儒. 上海八万人体育馆抗风分析[A]. 第八届全国结构风效应会议论文集[C],1997
    [5] Aiken I D, Kelly J M, Mahmoodi P. The Application of Viscoelastic Dampers to Seismically Resistant Structures[C], 4th U.S. NCEE, 1990, 20~24.
    [6] Lee G G, Chang K C, Yao G C, et al.Dynamic Bchavior of a Prototype and a 2/5 Scale Steel Frame structure[J].Proc. Of 4th U.S.Nat. Conf. On Earthq.Engrg.,1990,2:605~613
    [7] Lin R C, Liang Z, Soong T T, et al. An Experimental Study on Seismic Behavior of Viscoelastically Damped Structures[J], Engineering Structure, No.12, 1991: 75~84
    [8] Bracci J M, Reinhorn A M. deterministic Model for Seismic Damage Evaluationn of R/C Structures[J], Report NCEER 89~003,1989.
    [9] Foutch D A, Wood S L, Brady P A. Seismic Retrofit of Nonductile Reinforced Concrete Frames using Viscoelastic Dampers[J], ATC~17~1 on Seismic Isolation, Passive Energy and Active Control, 1993, 2, 605~616.
    [10] Chang K C, Shen K L,Soong, T T, et al. Seismic Retrofit of A Concrete Frame with Added Viscoelastic Dampers[J], 5th National Conference on Earthquake Engineering,1994,3,707~716.
    [11] Chang K C, Lai M L. Aplication of Viscoelastic dampers in Military-related Structure[J]s. Proc. of the 4th Conference on Military Engineering, Taiwan,May.
    [12] 欧进萍, 邹向阳. 高层钢结构粘弹性耗能减振试验与分析[J]. 哈尔滨建筑大学学报, 1999, 32(4):1~6.
    [13] 徐赵东, 郭宁, 赵鸿铁等. 装有粘弹性阻尼器的钢筋混凝土结构振动台试验[J]. 世界地震工程, 2001(6):70~72.
    [14] Ross D, Ungar E E , Kerwin, E W. Damping of Plate Flexural Vibrations by Means of Viscoelastic Laminar. Structural Damping[J], ASME, 1959.
    [15] Nielsen E J, Lai M L, Soong T T et al. Viscoelastic damper overview for seismic and wind applications(C). Proc. SPIE, 1996,138.
    [16] Aiken I D, Kelly J M, Mahmoodi P. The Application of Viscoelastic Dampers to Seismically Resistant Structures[C], 4th U.S. NCEE, 1990, 20~24.
    [17] Oh S T, Chang K C, Lai M L, et al. Seismic Response of Viscoelastically Damped Structure Under Strong Earthquake Ground Motions[C], 10WCEE, 1992, 19~24.
    [18] Chang K C, Soong T T, Lai M L, et al. Development of a Design Procedure for Structures withAdded Viscoelastic Dampers[J], Proc. ATC~17~1 on Seismic Isolation, Energy Dissipation and Active Control, 1993, 2, 473~484.
    [19] Chang K C, Soong T T, Lai M L, et al. Seismic Behavior and Design Guidelines for Steel Frame Structures with Added Viscoelastic Dampers[J], NCEER 93~0009, National Center for Earthquake Engineering Research, Buffalo, NY,1993.
    [20] Blondet M, Dynamic Response of Two Viscoelastic Dampers[P], Project NO. ES~2046, Dept. of Civil Engineering, University of California at Berkeley, 1993.
    [21] Chang K C. Dynamic Response of Two Viscoelastic Dampers for Taipei Station R18A MRT-Roof[J]. The Chinese Society of Structural Engineering, Project No. CSSE 82~04 Taipei, Taiwan, October 1993
    [22] Mahmoodi P , Robertson L E, Yontar M, et al. Performance of Viscoelastic Dampers in World Trade Center Towers[J], Dynamic of Structures, Structures Congress '87, Orlando,1987.
    [23] Mahmoodi P, Keel C J. Performance of Structural Dampers for the Columbia Center Building[J], Building Motion in Wind, ASCE, NY, 1986,83~106.
    [24] Zhang R H, Soong T T. Seismic Response of Steel Frame Structures With Added Viscoelastic Dampers[J]. Earthquake Engineering and Structural Dynamics.1989,8:389~396.
    [25] Zhang R H, Soong T T. Seismic Design of Viscoelastic Dampers for Structural Application[J]. Journal of Structural Engineering,ASCE. 1992,118(5).
    [26] Inaudi J A. Time~domain Analysis of Linear Hysteretic Damping. Earthquake Engineering and Structure Dynamics, 1996, (25):529~545.
    [27] Inaudi J A, Blondet M, Kelly J M. Heat Generation Effects on Viscoelastic Dampers in Structure[J]. 11th World Conference on Earthquake Engineering, 1996.
    [28] 徐赵东, 周洲.,赵鸿铁等. 粘弹性阻尼器的计算模型[J]. 工程力学, 2001,18(12):88~93.
    [29] Tsai C S. Temperature Effect of Viscoelastic Dampers during Earthquakes[J]. Journal of Structural Engineering, 1994, 120(2):394~409.
    [30] Tsai C S, Lee H H. Application of Viscoelastic Dampers to High-Rise Buildings[J]. Journal of Structural Engineering, 1993, 119(4):1222~1233.
    [31] Shen K L, Soong T T, Chang K C, et al. Seismic Behavior of Reinforced Concrete Frame with Added Viscoelastic Dampers[J]. Engineering Structures, 1995, 17(5):372~380.
    [32] Kasai K, Munshi J A, Lai M L, et al. Viscoelastic Damper Hysteretic Model: Theory, Experiment and Application[J]. Proc. ATC-17-1 on Seismic Isolation, Energy Dissipation, and Active Control, 1993, 2:521~532.
    [33] Chang K C, Soong T T, Oh S T, et al. Seismic Response of a 2/5 Scale Steel Structure with Added Viscoelastic Dampers[J]. NCEER Report 91~0012, State University of New York at Buffalo, N.Y.,1991
    [34] 徐赵东, 赵鸿铁, 周云. 粘弹性阻尼器的等效标准固体模型[J]. 建筑结构, 2001, 3.
    [35] Markis N. Complex~parameter Kelvin model for elastic foundations[J]. Earthquake Engineering and Structural Dynamics. 1994, 23:251~264.
    [36] 隋杰英. 粘弹性阻尼器及消能支撑的试验研究与工程应用[D]. 东南大学博士学位论文, 2002, 3
    [37] Johnson C D, Kienholz D A. Finite Element Prediction of Damping in Structures with Constrained Viscoelastic Layers[J]. AIAA Journal, 1982, 20(9):1284~1290.
    [38] Ungar E E, Kerwin E M. Loss Factor of Viscoelastic Systems in Terms of Energy Concepts[J]. Journal of American Acoustic Society, 1962, 34:954~957.
    [39] Soong T T, Lai M L. Correlation of Experimental Results with Predictions of Viscoelastic Damping for a Model Structure[J]. Proc. Damping '91, San Diego, CA, 1991.
    [40] 周云,徐赵东,赵鸿铁.粘弹性阻尼结构的性能、分析方法及工程应用[J]. 地震工程与工程振动,1998,18(3):96~107.
    [41] Chris P, Shy R T. Hybrid Control Using Viscoelastic Dampers and Active Controls for Seismic Structure[J]. First World Conference on Structural Control, 1994, Los. Angeles.
    [42] D.G. Lee, S. Hong, J. Kim, Efficient seismic analysis of building structures with added viscoelastic dampers, Eng. Struct.2002, 24:1217–1227.
    [43] Lobo R F, Bracci J M, Shen K L, et al. Inelastic Response of R/C Structures with Viscoelastic Braces[J]. Earthquake Spectra. 1993, 9(3):419~446.
    [44] Zhang R H, Soong T T. Seismic Design of Viscoelastic Dampers for Structural Applications[J], ASCE Journal of Structural Engineering, 1992, 118(5),:1375~1392.
    [45] Hurty W C, Rubinstein M F. Dynamics of Structures[M]. Prentice-Hall,Englewoods Cliffs, NJ, 1964, pp. 313–337.
    [46] Adhikari S. Optimal complex modes and an index in damping nonproportionality[J]. Mech. Sys. Signal Process. 2004, 18:1–27.
    [47] 瞿伟廉, 毛增达, 张学俭. 设置粘弹性阻尼器钢结构高层建筑抗震抗风设计的实用方法[J]. 建筑结构学. 1998, 3:42~49.
    [48] 隋杰英, 袁涌, 程文瀼. 底层商用六层住宅楼采用粘弹性阻尼器的设计研究[J]. 建筑结构, 2001, 7:
    [49] 程文瀼, 隋杰英, 陈月明. 宿迁市交通大厦采用粘弹性阻尼器的减震设计与研究[J]. 建筑结构学报, 2000, 3:30~35.
    [50] 沈世钊, 徐祟宝, 赵臣. 悬索结构设计[M]. 北京:中国建筑工业出版社, 1997.
    [51] 顾明, 杨伟, 傅钦华等. 上海铁路南站屋盖结构平均风荷载的数值模拟[J]. 同济大学学报. 2004, 32(2):141~146.
    [52] 傅继阳, 谢壮宁, 倪振华. 大跨悬挑平屋盖结构风荷载特性的试验研究[J]. 土木工程学报. 2003, 36(10):7~14.
    [53] 谢壮宁, 倪振华, 石碧青. 大跨屋盖风荷载特性的风洞试验研究[J]. 建筑结构学报.2001,22(2):23~28.
    [54] 陆 锋, 楼文娟, 孙炳楠. 大跨度平屋面结构风洞试验研究[J]. 建筑结构学报. 2001, 22(6):87~94.
    [55] 薛素铎.隔震与消能减振技术在大跨屋盖中的应用[J]. 建筑结构, 2005, 35(3):51~53.
    [56] 薛素铎,董军辉,卞晓芳. 新型 SMA 阻尼器在体育场挑篷结构中的减振效果分析[J]. 空间结构.2004,10(2):3~7.
    [57] Yukio T. Application of damping devices to suppress wind-induced responses of buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics. 1998, 74~76: 49~72.
    [58] Hong-Nan Li, Yong-Wei Yin, Su-Yan Wang. Design of dampers for structures based on optimal control theory[J]. Earthquake Engineering & Structural Dynamics. Volume 32, Issue 14, Date: 25 November 2003, Pages: 2143-2160
    [59] Kareem A, Kijewski T. 7th US national conference on wind engineering: A summary of papers[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1996, 62(2-3):81~129
    [60] Nashif A D, Jones D I, Henderson J P. Vibration Damping[M]. John wiley and sons, 1985, New York.
    [61] FEDERAL EMERGENCY MANAGEMENT AGENCY. NEHRP GUIDELINES FOR THE SEISMIC REHABILITATION OF BUILDINGS(FEMA 273)[M]. 1997. Washington.
    [62] 许斌, 唐家祥. 基础隔震叠层橡胶支座耐久性试验研究[J]. 工程抗震, 1995, (4)
    [63] 《橡胶工业手册》编写小组. 《橡胶工业手册》第六分册(下册)《实验方法》[M]. 化学工业出版社.
    [64] 中华人民共和国国家标准. 建筑减振粘弹性阻尼器(报批稿)[C]. 中国建筑工业出版社. 2006.
    [65] Mahmoodi P. Design and Analysis of Viscoelastic Vibration Dampers for Structures[C]. proceedings of INOVA-73 WEorld Innovative Week Conference. Elsevier Applied Science. London. 25~39.
    [66] 中华人民共和国国家标准. 建筑结构荷载规范(GB 50009-2001). 中国建筑工业出版社.2001
    [67] Letchford C W, Sandri P, Levitan M L, et al. Frequency response requirements for fluctuating wind pressure measurements[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 40(3) :263-276
    [68] Tan D, Yang Q, Zhao C. Discrete analysis method for random vibration of structures subjected to spatially correlated filtered white noises[J]. Computer & Structures, 1992, 43(6):1051-1056.
    [69] 王之宏. 风荷载的模拟研究[J]. 建筑结构学报, 1994, 15(1):44-52.
    [70] 希缪 E, 斯坎伦 R H. 风对结构的作用—风工程导论[M]. 刘尚培, 项海帆, 谢霁明译, 上海:同济大学出版社, 1992.
    [71] 黄本才. 结构抗风分析原理及应用[M]. 上海:同济大学出版社, 2001.
    [72] 张相庭. 工程抗风设计计算手册[M]. 北京:中国建筑工业出版社, 1998.
    [73] 张相庭. 结构风压和风振计算[M]. 上海:同济大学出版社, 1985.5.
    [74] 张志强. 合肥电视塔 TMD 频域和时域的风振控制研究[D]. 南京:东南大学, 2000.
    [75] 傅继阳, 谢壮宁, 倪振华. 大跨悬挑平屋盖结构风荷载特性的试验研究[J]. 土木工程学报, 2003, 36(10): 7-14
    [76] Shinozuka M, Deodatis G. Simulation of stochastic processes by spectral representation[J]. Applied Mechanics Review, 1991, 44(4):191-203.
    [77] George Deodatis, Simulation of ergodic multivariate stochastic processes[J], J. Engrg. Mech., ASCE,1996, (122):778-787.
    [78] Ungar E E, Kerwin E M. Loss Factors of Viscoelastic Systems in Terms of Energy Concepts[J]. Journal of the Acoustical Society of America, 34:954-957.
    [79] Medaglia J M, Stahle C V. Application of SMRD Damping to the IUE Scientific Instrument Structure[J]. General Electric Space Div, 1975, Document 75SD54268.
    [80] Rao D K. Frequency and Loss Factors of Sandwich Beams under Various Boundary Condition[J]. Journal of Mechanics Engineering Science, 1978, 20:271-282
    [81] Ashour, S A, Hanson R D. Elastic Seismic Response of Buildings with Supplemental Damping[R], Report No. UMCE 87-01, 1987, The University of Michigan, Ann Arbor, MI.
    [82] Haftka R T, Adelman H M. Selection of actuator locations for static shape control of large space structures by heuristic integer programming[J]. Computers and Structures. 1985, 20(1-3):578~582.
    [83] 张琴, 楼文娟, 陈勇. 粘弹性阻尼器位置优化目标函数及其实现方法[J]. 工业建筑. 2003, 33(6):10~13
    [84] Agrawal A K, Yang JN. Optimal Placement of Passive Dampers on Seismic and Wind-Excited Buildings using Combinatorial Optimization[J]. Journal of Intelligent Material Systems and Structures. 1999, 10: 997~1014.
    [85] 中华人民共和国国家标准. 建筑抗震设计规范(GB50011-2001) 及条文说明. 中国建筑工业出版社, 2001
    [86] 徐赵东. 铅粘弹性阻尼结构的试验与研究[D]. 西安建筑科技大学博士学位论文, 2001.
    [87] 沈世钊. 大跨空间结构若干理论问题研究[J]. 苏州城建环保学院学报, 2000, 13(3):1~8.
    [88] Aas-Jakobsen K, Stroemmen E. Time domain buffeting response calculations of lender structures[J] . Journal of Wind Engineering and Industrial Aerodynamics ,2001 ,89 :341~364.
    [89] 楼文娟, 孙炳楠. 风与结构的耦合作用及风振响应分析[J] . 工程力学, 2000, 17(5):16~22.
    [90] 杨庆山, 沈世钊, 何成杰. 悬索结构风振系数计算[J]. 哈尔滨建筑大学学报, 1995, 28(6):33~39.
    [91] 网架结构设计与施工规程编制组. 网架结构设计与施工-规程应用指南[M]. 北京:中国建筑工业出版社, 1995.
    [92] SAP2000:Integrated finite element analysis and design of structures[M]. Computers and Structures, Inc., Version 7.0, Berkeley, California, USA.
    [93] 中华人民共和国国家标准.《钢结构设计规范》(GB 50017-2003).中国建筑工业出版社, 2003.
    [94] 中华人民共和国国家标准.《建筑抗震设计规范》(GB 50011-2001).中国建筑工业出版社, 2001.
    [95] Kato S, Nakazawa S. Earthquake response of domes implemented by hysteresis dampers for earthquake isolation[C]. Proc. of IASS, LASAA International Congress, Sydney, 1998:451-459.
    [96] 黄本才, 王国砚, 林颖儒等. 体育场屋盖结构静动力风荷载实用分析方法[J]. 空间结构, 2000, 6(3):33~39.
    [97] 沈世钊, 徐崇宝, 赵臣. 悬挂结构设计[M]. 北京:中国建筑工业出版社, 1997.
    [98] 陈政清. 桥梁风工程[M]. 北京:人民交通出版社. 2005.
    [99] 星谷胜(日),常宝琦译. 随机振动分析[M]. 北京:地震出版社,1977.
    [100] 常业军. 粘弹性阻尼器及消能减震结构的研究与应用[D]. 东南大学博士学位论文, 2003, 3.
    [101] 徐赵东.(铅)粘弹性阻尼结构的试验与研究[D]. 西安建筑科技大学博士学位论文, 2001,3.
    [102] 常业军 , 程文瀼 , 苏毅 . 粘弹性消能支撑的研究与设计 [J]. 东南大学学报 , 2004, 34(1):85~88.
    [103] 常业军, 徐清正, 张富有. 工程结构采用阻尼消能减震的反应谱分析方法[J]. 工程抗震与加固改造, 2005, (S1).
    [104] 常业军,徐清正,张富有,程文瀼.工程结构采用粘弹性阻尼器的减震原理及地震影响系数计算[J].工业建筑,2005,(06).
    [105] 程文瀼, 隋杰英, 陈月明等.宿迁市交通大厦采用粘弹性阻尼器的减震设计与研究.建筑结构学报,2000,3
    [106] 陈月明. 建筑结构的粘弹性阻尼振动控制[D]. 哈尔滨建筑大学博士论文.1998.
    [107] 隋杰英, 袁涌, 程文瀼等. 底层商用六层住宅楼采用粘弹性阻尼器的设计研究[J]. 建筑结构, 2001,31(7)
    [108] 常业军, 程文瀼, 隋杰英等.钢筋混凝土框-剪结构采用粘弹性阻尼器的减震设计[J]. 东南大学学报, 2002, 32(5).
    [109] 吴波, 李惠, 林立岩等. 东北某政府大楼采用摩擦阻尼器进行抗震加固的研究[J]. 建筑结构学报[J]. 1998, 19(5):28~36.
    [110] 陈静, 瞿伟廉, 肖纯. 预测控制在结构振动中的应用研究[J].武汉理工大学学报, 23(8),2001.
    [111] 戴德沛. 阻尼技术的工程应用[M]. 清华大学出版社,1991.
    [112] 高振世. 高层结构抗震设计[M].中国建筑工业出版社.1995.
    [113] 王松涛, 曹资. 现代抗震设计方法[M]. 中国建筑工业出版社, 1997.
    [114] 龚思礼. 建筑抗震设计[M]. 中国建筑工业出版社, 1994.
    [115] 包世华, 方鄂华.高层建筑结构设计[M]. 清华大学出版社, 1990.
    [116] 楼顺天. MATLAB 程序设计语言[M]. 西安电子科技大学出版社, 1997.
    [117] 刘保东, 朱晞.一种较适用于较宽环境温度的粘弹性阻尼器[J].北方交通大学学报, 2001, 2.
    [118] 徐彤, 周云, 李良. 结构减震控制技术在抗震加固改造中的应用[J]. 建筑结构, 2000, 10.
    [119] 周云, 刘季. 新型耗能(阻尼)减震器的开发与研究[J]. 地震工程与工程振动,1998,18(1).
    [120] 吕强, 王怀颖. 一种新型的筒型粘弹性阻尼器[J]. 陕西工学院学报, 1998, 14 (4).
    [121] 周福霖, 俞公骅. 多层和高层建筑结构减震控制新体系[J]. 工程抗震, 1999, 3.
    [122] 周云, 周福霖. 耗能减震体系的能量设计方法[J]. 世界地震工程,1997,13(4)
    [123] Bertero V V. The Need for Multi-Level Seismic Design Criteria[R].Report No. UCB/EERC- 96-01.University of California,Berkeley,USA,1996.
    [124] Bertero V V. Overview of Seismic Risk Reduction in Urban Areas:Role,Importance,and Reliability of Current U S Seismic Codes: Performance-Based Seismic Engineering[R]. China-United States Bilateral Workshop on Seismic Code,Guangzhou,1997.
    [125] Kirekawa, Ito Y, Asano K . A Study of Structure Control Using Viscoelastic Material[C].Proceedings of 10WCEE,Madrid,Spain,1992.
    [126] Lee H H, Tsai C S. Analytical Model for Viscoelastic Dampers in Seismic Mitigation Application[C].Proceedings of l0WCEE,Madrid,Spain,1992.
    [127] Otani S. Development of Performance-Based Design Methodology in Japan[C].Proceedings of the International Workshop on Seismic Design Methodologies for the Next Generation of Codes.Balkema,1997:59~68.
    [128] Austin M A, Pister K S. Design of Seismic-Restraint Friction-Braced Frames[J],ASCE Journal of Structural Engineering, 1985, 111(12):2751~2769.
    [129] Bertero R D, Bertero V V. Application of a Comprehensive Approach for the Performance-Based Earthquake-Resistant Design of Buildings[C],Proceedings of the Twelfth WCEE,Auckland,2000.
    [130] Sues R H, Wen Y K, Ang A H. Stochastic Evaluation of Seismic Structural Performance [J]. Journal of Structural Engineering. 1985, 111:1204~1218.
    [131] Pires J E A, Wen Y K, Ang A H. Stochastic Analysis of Liquefaction Under Earthquake Loading[R]. Civil Engineering Studies. Report SRS No.504, University of Illinois at Urbana-Champaing, 1983.
    [132] Casciatti F, Faravelli L. Stochastic Equivalent Linearization for 3-D Frames[J].Journal of Engineering Mechanics Division, ASCE. 1989,114:1760~1771.
    [133] Lin B C, Tadjbakhsh I G, Papageorgiu A S, et al. Response of Basis-Iso1ation Building to Random Excitation Described by the C1ough-Penzien Spectra1 Model[J]. Earthquake Engineering and Structural Dynamics. 1989, 18:49~62.
    [134] Yang J N, Lin Z, Vongchavalitkul S. Stochastic Hybrid Control of Hysteretic Structures[J]. - 77 -Probabilistic Engineering Mechanics. 1994, 9:125~133.
    [135] Spencer J B F, Sain M K, Kantor J C, et al. Probabilitic Stability Mea- sures for Controlled Structures Subject to Real Parameter Uncertainties[J].Smart Materials and Structures. 1992, 1.
    [136] Field J R V, Bergman L A, Hall W. Computation of Probabilistic Stability Measure for a Controlled Distributed Parameter System Method to Computer Probabilistic Measures of Robustness for Structural Systems[J]. Journal of Probabilistic Engineering Mechanics. 1995, 10(3).
    [137] Battaini M, Casciati F, Faravelli L. Reliability Analysis of Controlled Structures[C]. Proceedings of Intelligent Information System. IASTED, Grand Bahama, 1997:589~593.
    [138] Breitung K, Faravelli F. Reliability of Actively Controlled Structural Systems[C].International Conference on Nonlinear Stochastic Dynamics. Hanoi, Vietnam, 1995.
    [139] Kaspari D C, Spencer J B F, Sain M K. Optimal Structural Control:a Reliability-Based Approach[J].Design Engineering Technical Conferences ASME. 1995:855~862.
    [140] Battaini M, Breitung K, Casciati F, et al. Active Control Reliability of a Structure Under Wind Excitation[J]. Journal of Wind Engineering and Industrial Areodynamics. 1998, 74~76.
    [141] Pradlwarter H J, Schueller G I, Dorka U. Reliability of MDOF-systems with Hysteretic Devices[J],Engineering Structures. 1998, 20(8):685~691.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700