仿生微型飞行器若干关键问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微型飞行器(Micro Aerial Vehicle—MAV)和微型飞行机器人(Micro Aerial Robot—MAR)具有携带方便、操作简单、较低的制造成本、隐蔽性好、机动灵活等特点,因此无论是在军事领域还是在民用领域,都有十分诱人的应用前景。正是在这一背景下,本文从仿生的角度来研究微型飞行器的飞行机理与样机制作;通过查阅文献中对自然界中昆虫翅膀运动的观察与测量,获取了昆虫翅膀的运动方程;采用UG建模技术,建立昆虫的几何模型;采用网格划分方法,获取昆虫在流场运动时的三维网格;运用CFD方法模拟翅膀运动时周围的流场,获取昆虫运动时的升阻力特性,进而来研究昆虫的飞行机理;在此基础上,通过现有可用的材料加工制作仿生微型飞行器。具体来讲,文章的主要内容如下:
     在低雷诺数下对昆虫在悬飞过程中的流场进行了数值模拟,建立了昆虫的几何模型,通过模拟昆虫在悬飞过程中翅膀的运动,求解非稳态流场下的N-S方程,获得了昆虫在悬飞过程中周围的压力场、速度场以及翅膀在运动过程中分布在翅膀表面及翅膀周围的非稳态涡和相应的轴向流;并且获得了翅膀在不同时刻的升力系数和阻力系数。
     通过对昆虫飞行机理的研究,建立了昆虫扑翼飞行时的数学模型;模型包括翅膀运动学方程、空气动力学模型、姿态运动学方程以及质心的动力学方程等,是从仿生的角度去建立模型,即采用数学工具来描述昆虫飞行时的运动特征,如采用高速摄像机来获取昆虫飞行时翅膀的运动参数,采用曲线拟合的方法建立翅膀的运动学方程;运用CFD方法来模拟昆虫在飞行时周围的空气流场及昆虫的升阻力系数;通过经典力学建立昆虫的姿态运动学方程和质心动力学方程,并采用模糊控制策略对昆虫姿态和数学模型进行了仿真研究。
     自主飞行是仿生微型飞行器重要的研究内容之一,它主要是通过把接收到的地面指令转换为飞行任务,通过自身对环境的感知,规划出一条可行的飞行路径,然后跟随规划出的路径飞行,来完成预定的任务。本文通过对自然界中昆虫飞行时其自身控制特性的研究,概念性地提出了分层控制机理,把仿生微飞行器的复杂控制问题转换为简单的层与层之间的控制问题,通过不同层控制单元的信息交互,实现复杂的控制任务;文中提出了在未知环境中航迹规划算法,初步研究了仿生微型飞行器的自主飞行。仿生微型飞行器飞行时不仅存在静态障碍物,同时也存在动态障碍物,并且飞行的全局环境是未知的,这些条件增大了航迹规划的难度,算法中运动物体只要根据局部探测到的信息,在当前点和目标点之间进行迭代运算,可以保证每步运动的最优性,仿真结果表明了该算法的快速性和高效性。
     根据自然界中昆虫飞行的特点和和结构特征,我们简化了昆虫模型,采用UG建模技术和微机械加工方法,对扑动机构、翅膀以及胸腔和尾翼进行设计,制造了完整的扑翼飞行样机,然后对其性能进行测试,并对仿生微型飞行器的控制系统进行设计;在此基础上,对获取的仿生微型飞行器样机进行了结构优化,并且获得了运动合理,结构轻巧的仿生微飞行器的样机。
     为了更加深入的研究仿生微型飞行器在扑翼不断拍打过程中周围的流场,我们设计了小型的风洞模型,进行了相应的PIV试验,研究了扑翼拍打过程中周围流场的变化,并与数值模拟的结果进行了分析对比,研究了仿生微型飞行器在不同频率、不同攻角、不同振幅、不同飞行速度、不同的翅膀初始位置下的非稳态流场;计算了仿生微飞行器在不同运动模态下的升阻力系数;分析了影响仿生微飞行器空气动力学的特性的不同因素;为研究仿生微飞行器的飞行机理和样机建造提供了理论依据。
Micro Aerial Vehicles (MAV) or Micro Aerial Robots(MAR), with the promising characteristics of extraordinary flight capabilities, unmatched maneuverability, low-cost fabrication, easier operation, has been very active researching area both in civil and military applications. Just under this background, studying on the flight mechanism of flapping-wing MAV and sample fabrication from the bionics are conducted in this dissertation. The kinematics equations of insect wings can be acquired by the observation and measurement on the natural insect in researching paper. The geometry model of insect is established by UG technology. The three dimensional grid during the insect moving in the flow field is achieved which adopted grid generation method. The characteristic of lift and drag are attained by simulation the surround flow field during the locomotion of wings, and the flight mechanism of insect is discussed. Based on this study, the physical flapping-wing MAV is fabricated by the acquirable materials and parts of apparatus in existence. Described concretely, the contents of this thesis as follows:
     The flow field during insect hovering flight at low Reynolds number is simulated. The geometry model of insect is established, and the N-S equation at unsteady flow field is solved through simulation the kinematics of insect wings. Based on these studies, the pressure flow field, velocity flow field, unsteady vortex which distributed along the surface and surrounding of wings during the process of wing motion and the corresponding axial flow are achieved during the insect hovering flight. The lift and drag coefficient are attained through integral the pressure components and viscid of wing surface.
     The mathematics model during insect flapping wing is established through study on insect flight mechanism. The model is constituted from the aspect of bionics which including the wing kinematics equation, aerodynamics model, attitude kinematics equation and the dynamics equation. That is to say, the motion characteristic of insect flight is described by mathematics tool, such as the kinematics parameters of wing acquired by high-speed video, the kinematics equation of wing attained by curve fitting, the lift and drag coefficient achieved and the flow field simulated were based on CFD method. The attitude kinematics and centroid dynamics equation are established by classic mechanics, and the attitude and the mathematics model are simulated by fuzzy control strategy.
     Self-determination flight is one of the important researching contents about flapping-wing MAV, it is mainly refer to how to convert the instruction from the ground into the flight task, and through detecting the information of local environment by itself, planning a suitable flying path, then flowing the planning path, so that accomplishing the prearranged flying task. The hierarchical strategy based on the study about the flying insect in nature during its flying is presented in this dissertation, which convert the complicated control problem into the control cell between the different layers, and at the same time present the dynamic unknown environment flight path planning arithmetic, primarily study the self-determination flight of flapping-wing MAV. There exist not only static obstacles but also dynamic obstacles during the process of MAV/MAR flight and the global environment information is almost unknown, which would increase the difficulty of fight path planning. The planed path between the present position and the goal is judged at every iterative step in this algorithm, which can guarantee the mostly optimized for every step, has the characteristic of speediness and efficiency.
     According to the flight characteristic and structure of natural insect, the insect mode is simplified. The flapping structure, wings, thorax and empennage are designed which adopted the UG modeling technology and micro mechanical process method. The integrated flapping-wing MAV sample is fabricated and the corresponding measurement is conducted, and the control system is designed for flapping-wing MAV. The structure of flapping-wing MAV sample is optimized based on the above research and the new flapping-wing MAV sample is achieved with the characteristics of reasonable motion & smart structure.
     For further study the flow field characteristic of flapping-wing MAV flight, the tiny wind tunnel is designed and the corresponding PIV experiment is conducted. The changing flow field of flapping-wing MAV is studied, and the comparison between the numerical simulation and PIV results is analyzed. The flapping motion and unsteady flow field of flapping-wing MAV in different frequencies, different angles of attack, different velocities, different amplitudes and different initialized positions of wing are simulated. The lift and drag coefficient of flapping-wing MAV in different motion modes are calculated. The factors that influence the characteristic of aerodynamics of flapping-wing MAV are analyzed, which provided the academic warrant for the flying mechanisms and fabrication of flapping-wing MAV.
引文
[1] 辛健成. 喷薄欲出的微型无人机(上). 机器人技术与应用,1999,4:24~25
    [2] 辛健成. 喷薄欲出的微型无人机(下). 机器人技术与应用,1999,5: 23~26
    [3] 赵亚溥. 微型飞行器中的关键力学和智能材料问题. 中国科学基金. 2000, (1),pp.11-14.
    [4] M. Dwortzan. It's a fly! It's a bug! It's a microplane. October, 1997.
    [5] D. A. Jenkins, P. Ifju, M. Abdulrahim and S. Olipra, “Assessment of Controllability of Micro Air Vehicles,”Proc.Sixteenth Int. Conf. On Unmanned Air Vehicle Systems
    [6] W. Shyy, D. A. Jenkins and R. W. Smith, “Study of Adaptive Shape Airfoils at Low Reynolds Number in Oscillatory Flows,” AIAA Journal, vol. 35, pp.1545-48, 1997.
    [7] R. W. Smith and W. Shyy, “Computation of Aerodynamics Coefficients for a Flexible Membrane Airfoil in Turbulent Flow: A Comparison with Classical Theory,”Phys. Fluids,vol. 8, no. 12, 1996.
    [8] 国家 863 计划智能机器人专家组. 机器人博览.北京: 中国科学技术出版社,2001,p.83~85
    [9] MARK HEWISH. A bird in the hand. JANE’S INTERNATIONAL DEFENSE REVIEW, 1999,32(11):22~28
    [10] Hunter Keeter. DARPA Says MAV Acquisition Schedule Driven By Technology. http://www.infowar.com/mil_c4i/99/mil_c4i_082599d_j.shtml
    [11] 林志信. 形形色色的微型飞机. 机器人技术与应用,1999,6:21~22
    [12] 晓椿,晓东. 公文箱里的侦察机. 航空知识,1999,9:29~30
    [13] 晓清. 美国微型飞行器计划进入飞行试验阶段. 国际航空,1999,9:55~56
    [14] 计秀敏. 国外微型无人机的发展. http://www.7cworld.com/science/extensive/20000809/1668.htm
    [15] Hunter Keeter. DARPA Says MAV Acquisition Schedule Driven By Technology. http://www.infowar.com/mil_c4i/99/mil_c4i_082599d_j.shtml
    [16] Micro-Air Robots. http://ai.about.com/compute/ai/library/weekly/aa072099.htm?pid=2827&cob=home
    [17] MLB Company. http://www.sirius.com/~mlbco/
    [18] M. Gad-el-Hak, “Micro-air-vehicles: Can they be controlled better?,” J. Aircraft, vol. 38, no. 3, pp. 419–429, 2001.
    [19] D. Greek, “Prototype for a micro air vehicle,” Prof. Eng., vol. 12, no. 11, p. 26, 1999.
    [20] L. Gomes, “It’s a bird! It’s a spy plane!—Pentagon funds research into robin-sized robots.,” Wall Street J., vol. 6, Apr. 1, 1999.
    [21] S. Ashley, “Palm-size spy planes,” ASME J. Mech. Eng., vol. 120, no. 2, pp. 74–78, 1998.
    [22] J. M. Grasmeyer and M. T. Keennon, “Development of the black widow micro air vehicle,” in Proc. AIAA, Jan. 2001, Paper AIAA-2001-0127.
    [23] J. P. Thomas, M. A. Qidwai, P. Matic, R. K. Everrett, A. S. Gozdz, D. Culver,M. T. Keennon, and J. M. Grasmeyer, “Composite materials with multifunctional structure-power capabilities,” in Proc. American Soc. Composites 16th Technical Conf, Blacksburg, VA, Sept. 9–12, 2001.
    [24] J. Kellogg et al., “The NRL micro tactical expendable (MITE) air vehicle,” Aeronaut. J., vol. 106, no. 1062, pp. 431–441, 2002.
    [25] R. Ramamurti and W. Sandberg, “Simulation of the dynamics of micro air vehicles,” in Proc. AIAA , Jan. 10–13, 2000, Paper AIAA 2000-0896.
    [26] K. Ailinger, “Micro air vehicle (MAV) development at NRL,” in Proc. AUVSI, Baltimore, MD, June 3–6, 1997, pp. 624–626.
    [27] T. N. Pornsin-sirirak, Y.-C. Tai, H. Nassef, and C.-M. Ho, “Titaniumalloy MEMS wing technology for a micro aerial vehicle application,” Sens. Actuat. A, Phys., vol. 89, pp. 95–103, Mar. 1–2, 2001.
    [28] T. N. Pornsin-sirirak, H. Nassef, J. Grasmeyer, Y.-C. Tai, and C.-M. Ho,“MEMS wing technology for a battery-powered ornithopter,” in Proc.IEEE 13th Annual Int. Conf. Micro Electro Mechanical Systems, Miyazaki, Japan, Jan. 23–27, 2000, pp. 799–804.
    [29] T. N. Pornsin-sirirak, Y.-C. Tai, C.-M. Ho, and M. Keennon. Microbat:A palm-sized electrically powered ornithopter. [Online]. Available:http://touch.caltech.edu/home /publications/2001/jpl/jpl2001.pdf
    [30] “A Reciprocating Chemical Muscle (RCM) for Micro Air Vehicle“Entomopter” Flight,” 1997 Proceedings of the Association for Unmanned Vehicle Systems, International, June 1997, pp.429 – 435
    [31] “Planetary Exploration Using Biomimetics An Entomopter for Flight on Mars,” Phase II Final Report, NASA Institute for Advanced Concepts Project NAS5-98051, October 2002
    [32] “Update on Flapping Wing Micro Air Vehicle Research- Ongoing work to develop a flapping wing, crawling Entomopter,” 13th Bristol International RPV/UAV Systems Conference Proceedings, Bristol England, 30 March 1998 - 1 April 1998, pp. 30.1 - 30.12
    [33] “Extraterrestrial Flight (Entomopter-based Mars Surveyor),” von Karman Institute for Fluid Dynamics RTO/AVT Lecture Series on Low Reynolds Number Aerodynamics on Aircraft Including Applications in Emergening UAV Technology, Brussels Belgium, 24-28 November 2003
    [34] R.S. Fearing, K.H. Chiang, M.H. Dickinson, D.L. Pick, M. Sitti, and J. Yan. Transmission mechanism for a micromechanical flying insect.In Proc. of ICRA, 2000
    [35] Metin Sitti, Domenico Campolo, Joseph Yan, Ronald S. Fearing,Development of PZT and PZN-PT Based Unimorph ctuators forMicromechanical Flapping Mechanisms,Proceedings of the 2000 IEEE,International Conference on Robotics & Automation Seoul, Korea ? May 21-26, 2001
    [36] S. Morris and M. Holden, “Design of micro air vehicles and flight test validation,” in Proc. Fixed, Flapping and Rotary Wing Vehicles at Very Low Reynolds Numbers, 2000, pp. 153–176.
    [37] Van Den Berg C, Ellington CP. The three-dimensional leading-edge vortex of a hovering model hawkmoth. Philos Trans R Soc London Ser B. 353:329–40,1997.
    [38] Ellington CP. The novel aerodynamics of insect flight: application to micro-air vehicles. J Exp Biol. 202:3439–48,1999.
    [39] Pornsin-Sisirak T,Lee S W,Nassef H,Grasmeyer J,Tai Y C,Ho C M,and Keennon M.MEMS Wing Technology for a Battery-Powered Orithopter,13th IEEE International Conference On Micro Mechanical Systems(MEMS'00),Miyazaki,Japna,Jan,23-27
    [40] Fearing F S,Chiang K H,Dickson M,Pick D L,Sitti M,and Yan J,Wing Transmission for a Micro Mechanical Flying Insect,IEEE Int. Conf. on Robotics and Automation,April,2000,1354-1358
    [41] 掌中之"鸟". http://www.baoan.net.cn/~whzx/f5lkj.htm
    [42] http://www.hbdaily.com.cn/ctdsb/19990807/gb/ctdsb^956^13^ct13b06.htm
    [43] http://www.gzdaily.com/content/2000-11/26/content_38974.htm
    [44] Norihisa MIKI, Isao SHIMOYAMA. A Micro-Flight Mechanism with Rotational Wings. Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS),2000,p.158~163
    [45] 摩 擦 学 国 家 重 点 实 验 室 研 制 成 功 250mm 微 小 型 固 定 翼 飞 机 . http://www.pim.tsinghua.edu.cn/sklt/news/20001117.html
    [46] 田武,刘晓. 中国微型飞行器跻身世界前列. 科技与国力,2000,10:47
    [47] Getzan G,Dhimada M,Shimoyama,Matumoto Y and Miura H,Aerodynamic Behavior of Microstructure. Proceedings of the 1995 IEEE/RSJ International Conference on Intelligent Robot and Systems,1995,Los Alamitos,CA,vol.2:230-235
    [48] J.M. McMichael, M.S. Francis, “Micro AirVehicles – Toward a New Dimension in Flight,”http://www.darpa.mil/tto/mav/mav_auvsi.html(1997)
    [49] Rais-Rohani, M. And Hicks, G. Multidisciplinary Design and Prototype Development of a very Small Remotely-piloted Reconnaissance Airplane. Presented at the SAE/AIAA World Aviation Congress and Exposition in Anaheim, CA, October 13-16, 1997.
    [50] 胡德森. 多用途微型飞行器. 发明与革新,1999,5:26~27
    [51] 黄 俊 钦 . 敏 感 技 术 微 机 电 系 统 ( MEMS ) 促 进 航 空 天 仪 表 的 发展.http://www.etnet.com.cn/etzz/cgq/zjzl/920-1.htm
    [52] Azuma A, Masato O and Kunio Y. Aerodynamic characteristics of wings at low Reynolds Numbers. Fixed and flapping wings aerodynamics for micro air vehicle applications, Ed T, J, Mueller, Progress in Astro. & Aeoro., Vol. 195, pp 341-398, 2001.
    [53] R. S. Fearing, K. H. Chiang, M. H. Dichinson. Wing Transmission for a micromechanical flying insect, Proceedings of the 2000 IEEE, International conference on robotics & automation, San Francisco, CA, pp 1509-1516, April, 2000.
    [54] Steven Ho, Hany Nassef, Nick Pornsinsirirak, Unsteady serodynamics and flow control for flapping wing flyers. Progress in Aerospace Science, pp635-681, (39) 2003.
    [55] Creenwalt CH. The flight of birds. Trans Am Philos Soc 1975; 65: 1-67
    [56] Maxworthy, T. Experiments on the Weis-Fogh mechanism of lift generation by insects in hovering flight. Part 1. Dynamics of the ‘fling’. J. Fluid Mech. 93,47-63,1979.
    [57] Cloupeau, M. Direct measurements of instantaneous lift in desert locust; comparison with Jensen’s experiments on detached wings. J. exp. Biol. 180, 1–15,1979.
    [58] Wilkin, P. J. The instantaneous force on a desert locust, Schistocerca gregaria (Orthoptera: Acrididae), flying in a wind tunnel. J. Kansas ent. Soc. 63, 316–328,1990
    [59] Wilkin, P. J. Muscle performance in hovering hummingbirds. J. exp. Biol. 178, 39–57,1993.
    [60] Wilkin, P. J. and Williams, H. M. Comparison of the aerodynamic forces on a flying sphingid moth with those predicted by quasi-steady theory. Physiol. Zool. 66, 1015–1044,1993.
    [61] Thomas J. Mueller, James D. DeLaurier AERODYNAMICS OF SMALL VEHICLES Annu. Rev. Fluid Mech. 2003. 35:89–111
    [62] Usherwood, J. R. and Ellington, c. P. The areodynamics of revolving wings-II. Propeller force coefficients from mayfly to quail . J. Exp. Biol. 205, 1565-1576,2002.
    [63] Dickinson, M. H. The wake dynamics and flight forces of the fruit fly Drosophila melanogaster. J. exp. biol. 199, 2085–2104,1996.
    [64] Rayner, J. M. V. A vortex theory of animal flight. J. Fluid Mech. 91, 697–763,1979.
    [65] Speedding, G. R. The wake of a jackdaw (Corvus monedula) in slow flight. J. exp. Biol. 125, 287–307,1986.
    [66] Vest, M. S. Unsteady aerodynamic model of flapping wings. AIAA J. 34, no. 7, 1435–1440,1996.
    [67] Smith, M., Wilkin, P. and Williams, M. The advantages of an unsteady panel method in modeling the aerodynamic forces on rigid flapping wings. J. Exp. Biol.199,1073-1083,1996.
    [68] 法尔斯特伦, P. G. (Fahlstrom, Paul G.), 格利森, T. J. (Gleason, Thomas J.),著 吴汉平译 无人机系统导论/Introduction to UAV system,电子工业出版社,2003
    [69] Hao Qun, Zeng Li. Jiang, “Measurement of parameters from the beating wings of a bumblebee,” transactions of BeiJing institute of technology, Vol.23, No.4, Aug, 2003
    [70] Van Den Berg C, Ellington CP. The three-dimensional leading-edge vortex of a hovering model hawkmoth. Philos Trans R Soc London Ser B.1997;353:329–40.
    [71] Dickinson MH, Gotz KG. Unsteady aerodynamic performance of model wings at low Reynolds numbers J Exp Biol.1993;174 :45–64.
    [72] Thomas J. Mueller and James D.DeLaurier. “An overview of Micro Air Vehicle Aerodynamics”,Fixed and flapping wing aerodynamics for Micor Air Vechicle applications. pp1-10,2001
    [73] S. Ashley, “Palm-size spy planes,” ASME J. Mech. Eng., vol. 120, no. 2,pp. 74–78, 1998.
    [74] J. M. Grasmeyer and M. T. Keennon, “Development of the black widowmicro air vehicle,” in Proc. AIAA, Jan. 2001, Paper AIAA-2001-0127.
    [75] J. P. Thomas, M. A. Qidwai, P. Matic, R. K. Everrett, A. S. Gozdz, D.Culver,M. T. Keennon, and J. M. Grasmeyer, “Composite materials with multifunctional structure-power capabilities,” in Proc. American Soc.Composites 16th Technical Conf, Blacksburg, VA, Sept. 9–12, 2001.
    [76] M. Gad-el-Hak, “Micro-air-vehicles: Can they be controlled better?,” J. Aircraft, vol. 38, no. 3, pp. 419–429, 2001.
    [77] D. Greek, “Prototype for a micro air vehicle,” Prof. Eng., vol. 12, no.11, p. 26, 1999.
    [78] L. Gomes, “It’s a bird! It’s a spy plane!—Pentagon funds research intorobin-sized robots.,” Wall Street J., vol. 6, Apr. 1, 1999.
    [79] J. Kellogg et al., “The NRL micro tactical expendable (MITE) air vehicle,”Aeronaut. J., vol. 106, no. 1062, pp. 431–441, 2002.
    [80] R. Ramamurti and W. Sandberg, “Simulation of the dynamics of microair vehicles,” in Proc. AIAA , Jan. 10–13, 2000, Paper AIAA 2000-0896.
    [81] K. Ailinger, “Micro air vehicle (MAV) development at NRL,” in Proc. AUVSI, Baltimore, MD, June 3–6, 1997, pp. 624–626.
    [82] P. G. Ifju, D. A. Jenkins, S. Ettinger,Y. Lian,W. Shyy, and M. R.Waszak,“Flexible-wing-based micro air vehicles,” in Proc. AIAA, 2002, Paper AIAA 2002-0705.
    [83] M. R.Waszak, L. N. Jenkins, and P. G. Ifju, “Stability and control propertiesof an aeroelastic fixed wing micro aerial vehicle,” in Proc. AIAA,2001, Paper AIAA 2001-4005.
    [84] P. G. Ifju, S. Ettinger, D. Jenkins, and L. Martinez, “Composite materials for micro air vehicles,” in Proc. 46th Int. SAMPE Symp. Exhib., vol. 46/2,Long Beach, CA, May 6–10, 2001, pp. 1926–1937.
    [85] Symetrics’ micro aerial vehicle (MAV) Big hit at Paris air show, “Is ita plane, a bird?” [Online]. Available: http://www.symetrics.com/whatsnew/whatsnew.htm
    [86] S. Morris and M. Holden, “Design of micro air vehicles and flight test validation,” in Proc. Fixed, Flapping and Rotary Wing Vehicles at VeryLow Reynolds Numbers, 2000, pp. 153–176.
    [87] C. Patel, H. Arya, and K. Sudhakar, “Design, Build & fly a solar powered aircraft,” Indian Inst. Technol., Mumbai, India, http://www.casde.iitb.ac.in/IMSL/solar /solar-AeSI -AGM.pdf. Available.
    [88] Huaiyu Wu, Dong Sun, “Micro Air Vehicle: Configuration, analysis, fabrication and test,” IEEE/ASME transactions on mechatronics, vol, 9, No.1,march 2004
    [89] T. J. Koo and S. Sastry, “Output tracking control design of a helicoptermodel based on approximate linearization,” in Proc. 37th IEEE Conf.Decision Control, Tampa, FL, Dec. 1998, pp. 3635–3640.
    [90] H. Shim, T. J. Koo, and S. Sastry, “A comprehensive study of control designfor an autonomous helicopter,” in Proc. 37th IEEE Conf. Decision Control, Tampa, FL, Dec. 1998, pp. 3653–3658.
    [91] H.J. Kim, D.H. Shim, and S.Sastry. A flight control system for aerial robots: Algorithms and experiments. IFAC Jounrnal of Control Engineering Practice, 2003. to appear
    [92] S. Dalton, Borne on the Wind (Reader?s Digest Press, New York, 1975); T. S. Collett and M. F. Land, J. Comp. Physiol. A 99, 1 (1975); W. Nachtigall, Insects in Flight (McGraw-Hill, New York, 1974)
    [93] R.S. Fearing, K.H. Chiang, M.H. Dickinson, D.L. Pick, M. Sitti, and J. Yan. Transmission mechanism for a micromechanical flying insect.In Proc. of ICRA, 2000
    [94] R. S. Fearing, K. H. Chiang, M. H. Dickinson, D. L. Pick, M. Sitti, and J.Yan, “Wing transmission for a micromechanical flying insect,” in Proc IEEE Int. Conf. Robot Automat., vol. 2, 2000, pp. 1509–1516.
    [95] 肖永利,厘米级旋翼型微型飞行器研究与设计,上海交通大学博士学位论文,2001
    [96] M.H. Dickinson, F.O. Lehnmann, and S.S. Sane. Wing rotation and the aerodynamic basis of insect flight. Science, 284(5422):1954–1960, 1999.
    [97] J. Yan, R.J. Wood, S. Avadhanula, R.S. Fearing, and M. Sitti. Towards flapping wing control for a micromechanical flying insect. In Proc of the IEEE International Conference on Robotics and Automation, pages 3901–3908, Seoul, South Korea, May 2001
    [98] R. C. Michelson and S. Reece, “Update on flapping wing micro air vehicle research,” in Proc. 13th Bristol Int. RPV Conf., Bristol, U.K., Mar.–Apr. 1998.
    [99] J. Hollingum, “Military look to flying insect robots,” Ind. Robot., vol. 25, no. 2, pp. 124–128, 1998.
    [100] Tobalske BW, Dial KP. Flight kinematics of black-billed magpies and pigeons over a wide range of speeds. J Exp Biol 1996;199:263-80.
    [101] Willmott, A. P. and Ellington, C. P. The mechanics of flight in the hawkmoth Manduca sexta. II. Aerodynamic consequences of kinematic and morphological variation. J. exp. Biol. 200, 2723–2745. 1997
    [102] Dickinson, M. H., Lehman, F. O. and Sane, S. P. Wing rotation and the aerodynamic basis of insect flight. Science 284, 1954-1960. 1999
    [103] Sane, S. P. and Dickinson, M. H. The control of flight force by a flapping wing: lift and drag production. J. Exp. Biol. 204, 2607-2626, 2001
    [104] Smith M, J, C, Wilkin P and Williams M, H. The advantages of an unsteady panel method in modelling the aerodynamic forces on rigid flapping wings, J. Exp. Biol, Vol. 199, pp 1073-1083, 1996.
    [105] Liu H, Ellington C, P, Kawachi K, Berg C, V, D and Willmott A, P. A computational fluid dynamic study of hawkmoth hovering, J. Exp. Biol, Vol. 201, pp 461-477, 1998.
    [106] Sun, M. and Tang, J. Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion. J. Exp. Biol. 205, 55-70,2002
    [107] 张纯刚 席裕庚 动态未知环境中移动机器人的滚动路径规划及安全性分析. 控制理论与应用. 2003,20(1).
    [108] 张颖 吴成东 原宝龙 机器人路径规划方法综述. 控制工程. 2003,10(S)
    [109] 张捍东 郑睿 岑预皖 移动机器人路径规划技术的现状与展望. 系统仿真学报. 2005,17(2).
    [110] Tobalske BW, Dial KP. Flight kinematics of black-billed magpies and pigeons over a wide range of speeds. J Exp Biol 1996;199: 263-80
    [1] R. S. Fearing, K. H. Chiang, M. H. Dichinson. Wing Transmission for a micromechanical flying insect, Proceedings of the 2000 IEEE, International conference on robotics & automation, San Francisco, CA, pp 1509-1516, April, 2000.
    [2] Wilkin, P. J. and Williams, H. M. Comparison of the aerodynamic forces on a flying sphingid moth with those predicted by quasi-steady theory. Physiol. Zool. 66, 1015–1044,1993.
    [3] Smith, M., Wilkin, P. and Williams, M. The advantages of an unsteady panel method in modeling the aerodynamic forces on rigid flapping wings. J. Exp. Biol.199,1073-1083,1996.
    [4] S. Dalton, Borne on the Wind (Reader?s Digest Press, New York, 1975); T. S. Collett and M. F. Land, J. Comp. Physiol. A 99, 1 (1975); W. Nachtigall, Insects in Flight (McGraw-Hill, New York, 1974)
    [5] R.S. Fearing, K.H. Chiang, M.H. Dickinson, D.L. Pick, M. Sitti, and J. Yan. Transmission mechanism for a micromechanical flying insect.In Proc. of ICRA, 2000.
    [6] T. N. Pornsin-sirirak, Y.-C. Tai, H. Nassef, and C.-M. Ho, “Titaniumalloy MEMS wing technology for a micro aerial vehicle application,” Sens. Actuat. A, Phys., vol. 89, pp. 95–103, Mar. 1–2, 2001.
    [7] T. N. Pornsin-sirirak, H. Nassef, J. Grasmeyer, Y.-C. Tai, and C.-M. Ho,“MEMS wing technology for a battery-powered ornithopter,” in Proc.IEEE 13th Annual Int. Conf. Micro Electro Mechanical Systems, Miyazaki, Japan, Jan. 23–27, 2000, pp. 799–804.
    [8] J. M. Grasmeyer and M. T. Keennon, “Development of the black widowmicro air vehicle,” in Proc. AIAA, Jan. 2001, Paper AIAA-2001-0127.
    [9] Thomas J. Mueller and James D.DeLaurier. “An overview of Micro Air Vehicle Aerodynamics”,Fixed and flapping wing aerodynamics for Micor Air Vechicle applications. pp1-10,2001.
    [10] Lijiang Zeng, Qun Hao Keiji Kawachi.Measuring the body vector of a free flight bumblebee by the reflection beam method. Meas. Sci. Technol. 12 1886–1890.2001.
    [11] Hao Qun, Zeng Li. Jiang, “Measurement of parameters from the beating wings of a bumblebee,” transactions of BeiJing institute of technology, Vol.23, No.4, Aug, 2003.
    [12] Van Den Berg C, Ellington CP. The three-dimensional leading-edge vortex of a hovering model hawkmoth. Philos Trans R Soc London Ser B. 353:329–40,1997.
    [13] ELLINGTON, C. P., VAN DEN BERG, C., WILLMOTT, A. P. AND THOMAS, A. L. R. Leading-edge vortices in insect flight. Nature 384, 626–630,1996.
    [14] 程暮林.振翅昆虫飞行原理的数值模拟.北京大学力学与工程科学系毕业设计.2001.
    [15] Maxworthy, T. Experiments on the Weis-Fogh mechanism of lift generation by insects in hovering flight. Part 1. Dynamics of the ‘fling’. J. Fluid Mech. 93,47-63,1979.
    [16] Cloupeau, M. Direct measurements of instantaneous lift in desert locust; comparison with Jensen’s experiments on detached wings. J. exp. Biol. 180, 1–15,1979.
    [17] Weis-Fogh, T. Energetics of hovering flight in hummingbirds and in Drosophila. J. exp. Biol. 56, 79–104 ,1972.
    [18] Weis-Fogh, T. Quick estimates of flight fitness in hovering animals, including novel mechanism for lift production. J. Exp. Biol. 59, 169–230,1973.
    [19] M. J. Lighthill, Mathematical Biofluiddynamics SIAM,Philadelphia, 1975.
    [20] M.J.Lighthill, J.Fluid Mech vol.60, part 1, pp.1-17,1973.
    [21] R.H.Edwards H.K.Cheng, J.Fluid Mech, vol.120, pp.463-473, 1982.
    [22] T.Maxworthy, J.Fluid Mech, vol.93, part 1, pp.47-63, 1978.
    [23] G.R.Spedding T.Maxworthy, J.Fluid Mech, 165, 247 ,1986.
    [24] Ellington, C. P.. The aerodynamics of hovering insect flight. I. Quasisteady analysis. Phil. Trans. R. Soc. Lond. B 305, 1-15. 1984.
    [25] Ellington, C. P. The aerodynamics of hovering insect flight. II. Morphological parameters. Phil. Trans. R. Soc. Lond. B 305, 17-40. 1984.
    [26] Ellington, C. P. The aerodynamics of hovering insect flight. III. Kinematics. Phil. Trans. R. Soc. Lond. B 305, 41-78. 1984.
    [27] Ellington, C. P., van den Berg, C. and Willmott, A. P. (1996). Leading edge vortices in insect flight. Nature 384, 626-630.
    [28] van den Berg, C. and Ellington, C. P. The vortex wake of a ‘hovering’ model hawkmoth. Phil. Trans. R. Soc. Lond. B 352, 317-328. 1997.
    [29] van den Berg, C. and Ellington, C. P. The three-dimensional leading-edge vortex of a ‘hovering’ model hawkmoth. Phil. Trans. R. Soc. Lond. B 352, 329-340. 1997.
    [30] Liu H, Ellington C, P, Kawachi K, Berg C, V, D and Willmott A, P. A computational fluid dynamic study of hawkmoth hovering, J. Exp. Biol, Vol. 201, pp 461-477, 1998.
    [31] Dickinson, M. H. The effects of wing rotation on unsteady aerodynamic performance at low Reynolds numbers. J. Exp. Biol. 192, 179–206. 1994.
    [32] Dickinson, M. H. and G?tz, K. G. Unsteady aerodynamic performance of model wings at low Reynolds numbers. J. Exp. Biol. 174, 45–64. 1993.
    [33] Dickinson, M. H., Lehman, F. O. and Sane, S. P. Wing rotation and the aerodynamic basis of insect flight. Science 284, 1954–1960. 1999.
    [34] Lan, S. L. and Sun, M.. Aerodynamic properties of a wing performing unsteady rotational motions at low Reynolds number. Acta Mech. 149, 135–147. 2001.
    [35] Sun, M. and Tang, J. Lift and power requirements of hovering flight in Drosophila virilis. J. Exp. Biol. 205, 2413-2427. 2002.
    [36] Sun, M. and Wu, J. H. Aerodynamic force generation and power requirements in forward flight in a fruit fly with modeled wing motion. J. Exp. Biol. 206, 3065-3083,2003.
    [37] Z, Jane Wang,Two dimensional mechanism for insect hovering, Physical review letters, volume 85,number 10, 4, 9,2000.
    [38] 管德:非定常空气动力计算,北京航空航天大学出版社,北京,1991.
    [39] 陈材侃编著 计算流体力学 重庆出版社 1992.
    [40] 吴子牛:计算流体力学基本原理,科学出版社,北京,2001.
    [41] Fluent Inc.:Fluent6.0 Dyanamic Mesh Manual,U.S., 2001.
    [42] Fluent Inc.:Fluent6.1 Tutotial Guide,U.S.,2002.
    [43] Alexander P.Willmott, Charles P. Ellington.Flow visualization and unsteady aerodynamics in the flight of the hawkmoth, Manduca sexta.Phil. Trans. R. Soc. Lond. B 352, 303-316, 1997.
    [1] P. G. Ifju, D. A. Jenkins, S. Ettinger,Y. Lian,W. Shyy, and M. R.Waszak,“Flexible-wing-based micro air vehicles,” in Proc. AIAA, 2002, Paper AIAA 2002-0705
    [2] Hao Qun, Zeng Li. Jiang, “Measurement of parameters from the beating wings of a bumblebee,” transactions of BeiJing institute of technology, Vol.23, No.4, pp.444-448, Aug, 2003
    [3] H.J. Kim, D.H. Shim, and S.Sastry. A flight control system for aerial robots: Algorithms and experiments. IFAC Jounrnal of Control Engineering Practice, 2003. to appear
    [4] T. N. Pornsin-sirirak, Y.-C. Tai, H. Nassef, and C.-M. Ho, “Titaniumalloy MEMS wing technology for a micro aerial vehicle application,” Sens. Actuat. A, Phys., vol. 89, pp. 95–103, Mar. 1–2, 2001.
    [5] T. N. Pornsin-sirirak, H. Nassef, J. Grasmeyer, Y.-C. Tai, and C.-M. Ho,“MEMS wing technology for a battery-powered ornithopter,” in Proc.IEEE 13th Annual Int. Conf. Micro Electro Mechanical Systems, Miyazaki, Japan, Jan. 23–27, 2000, pp. 799–804.
    [6] T. N. Pornsin-sirirak, Y.-C. Tai, C.-M. Ho, and M. Keennon. Microbat:A palm-sized electrically powered ornithopter. [Online]. Available:http://touch.caltech.edu/home /publications/2001/jpl/jpl2001.pdf
    [7] R. S. Fearing, K. H. Chiang, M. H. Dickinson, D. L. Pick, M. Sitti, and J.Yan, “Wing transmission for a micromechanical flying insect,” in Proc IEEE Int. Conf. Robot Automat., San Francisco, CA, vol. 2, 2000, pp. 1509–1516.
    [8] J. Yan, R. Wood, S. Avadhanula, M. Sitti, and R. S. Fearing, “Toward flapping wing control for a micromechanical flying insect,” in Proc. IEEE Int. Conf. Robotics and Automation, vol. 4, Seoul, Korea, 2001, pp. 3901–3908.
    [9] 陈皓生, 陈大融 微型直升机动力学建模的研究现状,飞行力学,第 21 卷,第 3 期,2003 年 9 月
    [10] L.Schenato, W.C. Wu, S. Sastry, “Attitude Control for a Micromechanical Flying Insect via Sensor Output Feedback ,” IEEE Transactions on Robotics and Automation, April 2004
    [11] L.Schenato, D. Campolo, S. Sastry, “Controllability issues in flapping flight for biomimetic Micro Aerial Vehicles (MAVs)”, To appear in IEEE International Conference on Decision and Control, Maui, Hawaii,December 2003
    [12] Hadan-dong , Saha-gu, Pusan. A t t itude cont ro l of helicop ter simulato r using neural netwo rk based PID controller [A ]. IEEE Internat ional Fuzzy System Confer2 ence P roceedings [ C ]. Seoul, Korea: Published by IEEE, 1999. 22225.
    [13] M ahony R, Hamel T. Hover cont ro l via lyapunov control for an autonomous helicopter [A ]. P roceedings of 38th IEEE Conference on Decision & Cont ro l[C ]. NJ,USA: Published by P iscataw ay, IEEE, 1994. 1 238-1 242.
    [14] 罗四维,人工神经网络建造,中国铁道出版社,1998
    [15] 施鸿宝.神经网络及其应用. 西安交通大学出版社.1993
    [16] Sabatto S Z, Zheng Y X. Intelligent fligh t controllers for helicopter control [J ]. Internat ional Conference on N euralN etwo rk s, 1997, 2 (7) : 172621.
    [17] Ma Guozhi, Saleh Zein-Sabatto. Intelligent fligh t control design for helicopter yaw control[A ]. P roceedings of the Thirtieth outheastern Sympo sium on System Theory[C ]. N Y,USA: Published by IEEE, 1998. 184-188.
    [18] 夏天昌.系统辨识.著国防工业出版社.1984
    [19] 张成乾, 张国强.系统辨识与参数估计.机械工业出版社.1986
    [20] Hashimoto S, O gaw a T. System identification experiments on a large scale unmanned helicopter for autonomous flight [A ]. IEEE International Conference on Cont ro l App lications [C ]. A nchorage, A laska, U SA:Published by IEEE, 2000. 25227
    [21] Pallett T J ,A hmad S. Adaptive neural network control of a helicopter in vertical flight [J ]. Aerospace Control Systems, 1993, 2 (1) : 642268.
    [22] Maxworthy, T. Experiments on the Weis-Fogh mechanism of lift generation by insects in hovering flight. Part 1. Dynamics of the ‘fling’. J. Fluid Mech. 93, 47–63. 1979
    [23] R.S. Fearing, K.H. Chiang, M.H. Dickinson, D.L. Pick, M. Sitti, and J. Yan. Transmission mechanism for a micromechanical flying insect.In Proc. of ICRA, 2000
    [24] T.Maxworthy, J.Fluid Mech, vol.93, part 1, pp.47-63, 1978
    [25] G.R.Spedding T.Maxworthy, J.Fluid Mech, 165, 247 ,1986
    [26] Ellington, C. P., van den Berg, C. and Willmott, A. P. (1996). Leading edge vortices in insect flight. Nature 384, 626-630.
    [27] van den Berg, C. and Ellington, C. P. The vortex wake of a ‘hovering’ model hawkmoth. Phil. Trans. R. Soc. Lond. B 352, 317-328. 1997
    [28] Dickinson, M. H. The effects of wing rotation on unsteady aerodynamic performance at low Reynolds numbers. J. Exp. Biol. 192, 179–206. 1994
    [29] Dickinson, M. H. and G?tz, K. G. Unsteady aerodynamic performance of model wings at low Reynolds numbers. J. Exp. Biol. 174, 45–64. 1993
    [30] Smith, E. A. 1991. Inujjuamiut Foraging Strategies: Evolutionary Ecology of an Arctic Hunting Economy. Hawthorne, New York:Aldine de Gruyter.
    [31] Smith, E. A., Borgerhoff Mulder, M. & Hill, K. 2000. Evolutionary analyses of human behaviour: a commentary on Daly & Wilson. Animal Behaviour, 60, F21–F26: http://www.academicpress.com/anbehav/forum and http://www.idealibrary.com.
    [32] Liu H, Ellington C, P, Kawachi K, Berg C, V, D and Willmott A, P. A computational fluid dynamic study of hawkmoth hovering, J. Exp. Biol, Vol. 201, pp 461-477, 1998.
    [33] Sun, M. and Tang, J. Lift and power requirements of hovering flight in Drosophila virilis. J. Exp. Biol. 205, 2413-2427. 2002
    [34] Sun, M. and Wu, J. H. Aerodynamic force generation and power requirements in forward flight in a fruit fly with modeled wing motion. J. Exp. Biol. 206, 3065-3083,2003
    [35] 基于 MEMS 技术的扑翼式微飞行器的研究.左德参,陈文元,彭松林,李智军,张卫平 《系统仿真学报》2005,6
    [36] Zuo Decan, Chen Whenyuan, Peng Songlin, Zhang Weiping, The Modeling and Simulation Study of Insect-like Flapping-wing MAV,Advanced Robotics, Vol. 20, No. 7, pp. 807–824 2006
    [37] 吕学富.飞行器飞行力学 西北工业大学出版社 1995
    [38] 卡普兰.空间飞行器动力学和控制.科学出版社.1981
    [39] 柴天佑.多变量自适应解耦控制及应用.科学出版社.2001
    [40] 诸 静模糊控制原理与应用.机械工业出版社.1995
    [41] 戎月莉.计算机模糊控制原理及应用.北京航空航天大学出版社.1995
    [42] Mao sun,Jian tang. Lift and power requirements of hovering flight in Drosophila virilis. The journal fo experimental biology 205,2413-2427,2002
    [1] Huaiyu Wu, Dong Sun, “Micro Air Vehicle: Configuration, analysis, fabrication and test,” IEEE/ASME transactions on mechatronics, vol, 9, No.1,march 2004, pp.108-117
    [2] T. J. Koo and S. Sastry, “Output tracking control design of a helicoptermodel based on approximate linearization,” in Proc. 37th IEEE Conf.Decision Control, Tampa, FL, Dec. 1998, pp. 3635–3640.
    [3] H. Shim, T. J. Koo, and S. Sastry, “A comprehensive study of control designfor an autonomous helicopter,” in Proc. 37th IEEE Conf. Decision Control, Tampa, FL, Dec. 1998, pp. 3653–3658.
    [4] H.J. Kim, D.H. Shim, and S.Sastry. A flight control system for aerial robots: Algorithms and experiments. IFAC Jounrnal of Control Engineering Practice, 2003. to appear
    [5] T. N. Pornsin-sirirak, Y.-C. Tai, H. Nassef, and C.-M. Ho, “Titaniumalloy MEMS wing technology for a micro aerial vehicle application,” Sens. Actuat. A, Phys., vol. 89, pp. 95–103, Mar. 1–2, 2001.
    [6] Dickinson, M. H. The wake dynamics and flight forces of the fruit fly Drosophila melanogaster. J. exp. biol. 199, 2085–2104. 1996.
    [7] Maxworthy, T. Experiments on the Weis-Fogh mechanism of lift generation by insects in hovering flight. Part 1. Dynamics of the ‘fling’. J. Fluid Mech. 93, 47–63. 1979.
    [8] Sane, S. P. and Dickinson, M. H. The control of flight force by a flapping wing: lift and drag production. J. Exp. Biol. 204, 2607-2626, 2001.
    [9] L. Schenato, X. Deng, S. Sastry, Flight control system for a micromechanical flying insect: architecture and implementation. Proceedings of the 2001 IEEE International conference on robotics & automation, Seoul, Korea, may 21-26m 2001. p1641-1646.
    [10] T. J. Koo, D. H. Shim, 0. Shakernia, B. Sinopoli,Y. Ma, F. Hoffmann, and S. Sastry. Hierarchical hybrid system design on berkeley uav. In Submitted to International Aerial Robotics Competition, Richland,Washington, USA, 19!48.
    [11] Jung, Derek Gupta, Kamal K. Spatial occupancy recovery from a multiple-view range imaging system for path planning applications,Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, v 1, 1995, p 472-477.
    [12] 王于 林良明 颜国正 动态障碍物环境下移动机器人路径规划. 上海交通大学学报. 2002, 36(10).
    [13] Jia, Zhanfeng; Varaiya, Pravin Grid discretization based method for anisotropic shortest path problem over continuous regions, Proceedings of the IEEE Conference on Decision and Control, v 4, 2004 43rd IEEE Conference on Decision and Control (CDC), 2004, p 3830-3837.
    [14] Rowe, Neil C.; Ross, Ron S. Optimal grid-free path planning across arbitrarily contoured terrain with anisotropic friction and gravity effects, IEEE Transactions on Robotics and Automation, v 6, n 5, Oct, 1990, p 540-553.
    [15] Lozano-Perez, Tomas Wesley, Michael A. ALGORITHM FOR PLANNING COLLISION-FREE PATHS AMONG POLYHEDRAL OBSTACLES. Communications of the ACM, v 22, n 10, Oct, 1979, p 560-570.
    [16] Lozano-Perez, Tomas SPATIAL REASONING IN THE PLANNING OF ROBOT MOTIONS.Source: IEEE, v 1, 1981, p 560-570.
    [17] Yu, Yong; Gupta, Kamal C-space entropy: A measure for view planning and exploration for general robot-sensor systems in unknown environments, International Journal of Robotics Research, v 23, n 12, December, 2004, p 1197-1223.
    [18] Gerke, Michael Genetic path planning for mobile robots, Proceedings of the American Control Conference, v 4, 1999, p 2424-2429.
    [19] Piao, Song-Hao ,Hong, Bing-Rong Robot path planning using genetic algorithms Journal of Harbin Institute of Technology (New Series), v 8, n 3, September, 2001, p 215-217.
    [20] Castillo, Oscar; Trujillo, Leonardo; Melin, Patricia Multiple objective Genetic Algorithms for Autonomous Mobile Robot Path Planning Optimization, Applied Computational Intelligence - Proceedings of the 6th International FLINS Conference, Applied Computational Intelligence - Proceedings of the 6th International FLINS Conference, 2004, p 444-449.
    [21] Zhu, Qing-Bao Ants predictive algorithm for path planning of robot in a complex dynamic environment, Jisuanji Xuebao/Chinese Journal of Computers, v 28, n 11, November, 2005, p 1898-1906.
    [22] 樊晓平 罗熊 易晟 张航 复杂环境下基于蚁群优化算法的机器人路径规划. 控制与决策. 2004,19(2).
    [23] Zhang, Ru-Bo; Guo, Bi-Xiang; Xiong, Jiang Research on global path planning for robots based on ant colony Liu, Gengqian Li, Tiejun; Peng, Yuqing; Hou, Xiangdan The ant algorithm for solving robot path planning problem, Proceedings - 3rd International Conference on Information Technology and Applications, ICITA 2005, v II, Proceedings - 3rd International Conference on Information Technology and Applications, ICITA 2005, 2005, p 25-27.
    [24] Liang, Ke; Li, Zhiye; Chen, Dongyue; Chen, Xiong Improved artificial potential field for unknown narrow environments Proceedings - 2004 IEEE International Conference on Robotics and Biomimetics, IEEE ROBIO 2004, Proceedings - 2004 IEEE International Conference on Robotics and Biomimetics, IEEE ROBIO 2004, 2004, p 688-692.
    [25] 张斌.多机器人系统仿真平台.中国科学院自动化所硕士学位论文.2003.
    [26] Zu, D.,Han, J.D.; Campbell, Mark Artificial potential guided evolutionary path plan for multi-vehicle multi-target pursuit, IEEE International Conference on Robotics and Biomimetics, IEEE ROBIO 2004, Proceedings - 2004 IEEE International Conference on Robotics and Biomimetics, IEEE ROBIO 2004, 2004, p 855-861.
    [27] Mitsuoka, Akira; Saito, Haruo Characteristic improvement of automatic planning method of the collision-free manipulator path among obstacles using fuzzy reasoning, Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, v 59, n 567, Nov, 1993, p 3378-3383.
    [28] 温素芳 朱齐丹 张小仿 基于模糊控制器的移动机器人路径规划仿真. 应用科技. 2005, 32(4).
    [29] Juidette, H.; Youlal, H. Fuzzy dynamic path planning using genetic algorithms Electronics Letters, v 36, n 4, Feb, 2000, p 374-376.
    [30] Chan, Ricky H.T.; Tam, Peter K.S.; Leung, Dennis N.K. Neural network approach for solving the path planning problem, Proceedings - IEEE International Symposium on Circuits and Systems, v 4, 1993, p 2454-2457.
    [31] Fan, Chang-Hong; Chen, Wei-Dong; Xi, Yu-Geng Neural networks-based approach to safe path planning of mobile robot in unknown environment, Zidonghua Xuebao/Acta Automatica Sinica, v 30, n 6, November, 2004, p 816-823.
    [1] T. N. Pornsin-sirirak, Y.-C. Tai, H. Nassef, and C.-M. Ho, “Titaniumalloy MEMS wing technology for a micro aerial vehicle application,” Sens. Actuat. A, Phys., vol. 89, pp. 95–103, Mar. 1–2, 2001
    [2] R. S. Fearing, K. H. Chiang, M. H. Dickinson, D. L. Pick, M. Sitti, and J.Yan, “Wing transmission for a micromechanical flying insect,” in Proc IEEE Int. Conf. Robot Automat., San Francisco, CA, vol. 2, 2000, pp. 1509–1516.
    [3] T. N. Pornsin-sirirak, H. Nassef, J. Grasmeyer, Y.-C. Tai, and C.-M. Ho,“MEMS wing technology for a battery-powered ornithopter,” in Proc.IEEE 13th Annual Int. Conf. Micro Electro Mechanical Systems, Miyazaki, Japan, Jan. 23–27, 2000, pp. 799–804.
    [4] T. N. Pornsin-sirirak, Y.-C. Tai, C.-M. Ho, and M. Keennon. Microbat:A palm-sized electrically powered ornithopter. [Online]. Available:http://touch.caltech.edu/home /publications/2001/jpl/jpl2001.pdf
    [5] 侯宇,方宗德,刘岚,傅卫平,吴立言,微扑翼飞行器驱动机构的设计与动态特性研究,航空动力学报 2004 年 第 04 期
    [6] R.S. Fearing, K.H. Chiang, M.H. Dickinson, D.L. Pick, M. Sitti, and J. Yan. Transmission mechanism for a micromechanical flying insect.In Proc. of ICRA, 2000
    [7] Metin Sitti, Domenico Campolo, Joseph Yan, Ronald S. Fearing,Development of PZT and PZN-PT Based Unimorph ctuators forMicromechanical Flapping Mechanisms,Proceedings of the 2000 IEEE,International Conference on Robotics & Automation Seoul, Korea ? May 21-26, 2001
    [8] 韩玉林,微型飞行器的仿生电磁驱动扑翼装置,东南大学,2003.3.10,申请号:03112944.7
    [9] 杨凯,辜承林,严新荣,基于内嵌式 SMA 电机的柔性机械手研制,中国电机工程学报 2002 年 第 12期
    [10] “A Reciprocating Chemical Muscle (RCM) for Micro Air Vehicle“Entomopter” Flight,” 1997 Proceedings of the Association for Unmanned Vehicle Systems, International, June 1997, pp.429 – 435
    [11] “Planetary Exploration Using Biomimetics An Entomopter for Flight on Mars,” Phase II Final Report, NASA Institute for Advanced Concepts Project NAS5-98051, October 2002
    [12] “Update on Flapping Wing Micro Air Vehicle Research- Ongoing work to develop a flapping wing, crawling Entomopter,” 13th Bristol International RPV/UAV Systems Conference Proceedings, Bristol England, 30 March 1998 - 1 April 1998, pp. 30.1 - 30.12
    [13] “Extraterrestrial Flight (Entomopter-based Mars Surveyor),” von Karman Institute for Fluid Dynamics RTO/AVT Lecture Series on Low Reynolds Number Aerodynamics on Aircraft Including Applications in Emergening UAV Technology, Brussels Belgium, 24-28 November 2003
    [14] 宋海龙,微型扑翼飞行器传动系统设计及新型扑翼形式概念研究;硕士;西北工业大学;2005,3,1
    [15] 郑福廷,平面连杆机构设计,机械工业出版社,1989
    [16] 嘉木工作室,UG18 实体建模实例教程,机械工业出版社,2002
    [17] 曾锐,昂海松,刘国涛,刘良钢,柔性扑翼的模型建立及其功率研究,中山大学学报(自然科学版) 2004年 第 03 期
    [18] Product specification:433/868/915RF transceiver with embedded 8051 compatible Microcontroller and 4 input, 10bit ADC, Nordic
    [19] J. Yan, R. Wood, S. Avadhanula, M. Sitti, and R. S. Fearing, “Toward flapping wing control for a micromechanical flying insect,” in Proc. IEEE Int. Conf. Robotics and Automation, vol. 4, Seoul, Korea, 2001, pp. 3901–3908.
    [20] J. Yan, R.J. Wood, S. Avadhanula, R.S. Fearing, and M. Sitti. Towards flapping wing control for a micromechanical flying insect. In Proc of the IEEE International Conference on Robotics and Automation, pages 3901–3908, Seoul, South Korea, May 2001.
    [1] Azuma A, Masato O and Kunio Y. Aerodynamic characteristics of wings at low Reynolds Numbers. Fixed and flapping wings aerodynamics for micro air vehicle applications, Ed T, J, Mueller, Progress in Astro. & Aeoro., Vol. 195, pp 341-398, 2001
    [2] M. R.Waszak, L. N. Jenkins, and P. G. Ifju, “Stability and control propertiesof an aeroelastic fixed wing micro aerial vehicle,” in Proc. AIAA,2001, Paper AIAA 2001-4005.
    [3] J. M. Grasmeyer and M. T. Keennon, “Development of the black widowmicro air vehicle,” in Proc. AIAA, Jan. 2001, Paper AIAA-2001-0127.
    [4] R.S. Fearing, K.H. Chiang, M.H. Dickinson, D.L. Pick, M. Sitti, and J. Yan. Transmission mechanism for a micromechanical flying insect.In Proc. of ICRA, 2000.
    [5] T. N. Pornsin-sirirak, Y.-C. Tai, H. Nassef, and C.-M. Ho, “Titaniumalloy MEMS wing technology for a micro aerial vehicle application,” Sens. Actuat. A, Phys., vol. 89, pp. 95–103, Mar. 1–2, 2001.
    [6] R. S. Fearing, K. H. Chiang, M. H. Dickinson, D. L. Pick, M. Sitti, and J.Yan, “Wing transmission for a micromechanical flying insect,” in Proc IEEE Int. Conf. Robot Automat., San Francisco, CA, vol. 2, 2000, pp. 1509–1516.
    [7] 竺晓程 轴流通风机转子叶顶区流场的实验和数值研究 上海交通大学博士学位论文 2003
    [8] T. N. Pornsin-sirirak, H. Nassef, J. Grasmeyer, Y.-C. Tai, and C.-M. Ho,“MEMS wing technology for a battery-powered ornithopter,” in Proc.IEEE 13th Annual Int. Conf. Micro Electro Mechanical Systems, Miyazaki, Japan, Jan. 23–27, 2000, pp. 799–804.
    [9] 吴子牛:计算流体力学基本原理,科学出版社,北京,2001.
    [10] John C. Tannehill, Dale A. Anderson, Richard H. Pletcher :Computational Fluid Mechanics and Heat Transfer (Second Edition), Taylor & Francis publishers, U.S.,1996.
    [11] 管德:非定常空气动力计算,北京航空航天大学出版社,北京,1991.
    [12] Fluent Inc.:Fluent6.0 Dyanamic Mesh Manual,U.S.,2001.
    [13] M.H. Dickinson, F.O. Lehnmann, and S.S. Sane. Wing rotation and the aerodynamic basis of insect flight. Science, 284(5422):1954–1960, 1999.
    [14] Dickinson, M. H. The wake dynamics and flight forces of the fruit fly Drosophila melanogaster. J. exp. biol. 199, 2085–2104,1996.
    [15] R. S. Fearing, K. H. Chiang, M. H. Dichinson. Wing Transmission for a micromechanical flying insect, Proceedings of the 2000 IEEE, International conference on robotics & automation, San Francisco, CA, pp 1509-1516, April, 2000.
    [16] Ho, S. Unsteady aerodynamics and adaptive flow control of micro air vehicles. PhD thesis, University of California, Los Angeles, 2003.
    [17] Ho CM, Tai YC. Micro-electro-mechanical systems(MEMS) and fluid flows. Ann Rev Fluid Mech 1998;30:579– 612.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700