PTEN基因亚细胞定位提高胶质瘤放射敏感性的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
恶性肿瘤是严重危害人类健康的一种疾病,放射治疗是治疗肿瘤的重要手段,但因为肿瘤周围存在的重要器官,使放疗剂量受到限制。因此提高放疗敏感性成为提高放疗效果的重要途径。
     为探讨细胞核PTEN蛋白是否能够提高肿瘤放疗敏感性,为肿瘤的治疗提供新的思路,我们从新鲜胎盘提取RNA,进行RT-PCR,经酶切鉴定和测序证明获得基因序列与Gene Bank完全一致。以PMD-PTEN质粒为模板,利用PCR将核定位信号加入PTEN序列。根据基因工程技术,获得pcDNA3.1-PTEN、pcDNA3.1-N-PTEN质粒;将胶质瘤细胞分为对照组、空质粒组、PTEN组、核PTEN组,Westernblot检测PTEN蛋白、P53蛋白、cyclin D1蛋白、在照射前、照射后48小时蛋白表达的变化;检测PKC、p-PKC在照射前、照射后瞬时、照射后12小时表达水平的变化;γ-H2AX检测DNA双链断裂;流式细胞仪检测细胞周期的变化;流式细胞仪检测细胞凋亡的变化;MTT检测细胞增殖。
     PTEN组、核PTEN组PTEN蛋白表达较对照组、空质粒组明显增加;P53蛋白PTEN组、核PTEN组PTEN蛋白表达较对照组、空质粒组明显增加;cyclin D1蛋白PTEN组、核PTEN组PTEN蛋白表达较对照组、空质粒组明显减少;质粒转染24小时后,4.0Gyγ射线照射48小时后,P53蛋白PTEN组、核PTEN组PTEN蛋白表达较对照组、空质粒组明显增加。射线照射后,cyclin D1蛋白PTEN组、核PTEN组蛋白表达较对照组、空质粒组明显减少;但各组均比照射前增加。PKC表达水平稳定不变,而p-PKC则在照射前表达水平低,照射15分钟后迅速增加;照射后8小时对照组、空质粒组回复到正常水平,PTEN组、核PTEN组仍维持在高水平;PTEN组、核PTEN组与对照组、空质粒组比较DNA双链断裂修复延迟;未照射时,PTEN组、核PTEN组较对照组、空质粒组G1周期增多;而照射后PTEN组、核PTEN组较对照组、空质粒组G2/M周期增多,具有明显差异;在照射前、照射后PTEN组、核PTEN组较对照组、空质粒组凋亡增多,具有明显差异;未照射时,PTEN组、核PTEN组较对照组、空质粒组OD值明显减少,照射后1天、2天、3天PTEN组、核PTEN组较对照组、空质粒组OD值明显减少。
     实验证明,PTEN组、核PTEN组联合γ射线通过阻滞细胞周期,抑制了肿瘤细胞增殖,延迟DNA双链断裂的修复,促进细胞凋亡。PTEN促进肿瘤细胞放射敏感性通过核PTEN途径实现。
Tumor is great threat to human health. Current treatments include surgery, radiotherapy, chemotherapy, gene therapy and biological therapy. Due to the absence of respectivity, these current treatments can bring about some side effects. Then, these current treatments have dose limitation and effection limitation. Nowadays cooperative treatments are the standars of tumor therapy. About 70% tumor patients need the radiotherapy. Gene therapy combination with radiotherapy can radiosensitize the tumor cells. PTEN is a tumor suppressor gene estimated to be inactivated in 50%-80% of solid tumor cells, Wick transduce PTEN gene into low-expression tumor cells, can elevate the radiosensitivity. Specifically, PTEN is predominantly localized to the nucleus in primary, differentiated and resting cells, compared to rapidly cycling cancer lines where in many cases there is a marked reduction of nuclear PTEN. In this research, we incorpated the nuclear located signals into PTEN sequence then conducted to determine whether Nuclear PTEN can radiosensitize the U251 cell line in which the PTEN is less expressed. .In this way, we may provide a promising way for tumor treatment.
     1 Construction of recombinant plasmids
     1.1 Acquisition of human wildtype PTEN sequence
     RNA is extracted from the placenta, the specific PCR primers were designed according to the sequence of PTEN gene:upstream 5-CGCGGATCCA GACAGCCATCAT CAAA GAG-3’including EcoRI enzyme digestion sites, downstream 5’-GGGCCGGAATTT CAGACT TTTGTAATTTGTG-3’including BamHI enzyme digestion sites. The PTEN gene was identified by cleavage of endonucleases and sequencing process.The results of identification confirmed that the sequence of the cloned gene was identical to that published on Genbank.
     1.2 Acquisition of NSL PTEN sequence
     NSL-PTEN were constructed by using the PCR strategy for incorporating the nuclear signal: upstream 5- CGCGGATCCATGTCCTCTGCGTTGTCTGCGT
     ATCCTCTTCTTTCGTCACAGCCATCATC-3’including EcoRI enzyme digestion sites, The PTEN gene was identified by cleavage of endonucleases and sequencing process. The results of identification confirmed that the sequence of the cloned gene was identical to that published on Genbank.
     1.3 Construction of recombinant plasmids
     NSL-PTEN and PTEN were ligated to pcDNA3.1 to construct The pcDNA3.1- PTEN and pcDNA3.1-NSL-PTEN plasmids. In the following experiments, the expression rule of these plasmids in human glioma cell line U251, and their effects on the DSB repair, apoptosis and cell cycle of the two cell lines were detected.
     2 Experimental grouping and index detection
     The experiment was divided into four groups which were the control, pshuttle, PTEN, NSL-PTEN groups. The irradiation dose was 2.0 Gy. flow cytometry was used to detect cell cycle and apoptosis. DNA damage was checked byγ-H2AX, protein expression level was detected by Westernblot.
     3 protein expression level
     The cells and supernatant were harvested in different time after 4.0 Gyγ-irradiation. In PTEN, NSL-PTEN groups, PTEN protein increased significantly compared with control, pshuttle groups. In PTEN, NSL-PTEN groups, P53 protein increased significantly compared with control, pshuttle groups. In PTEN, NSL-PTEN groups,cyclin D1 protein decreased significantly compared with control, pshuttle groups. PKC protein expresses constantly. P-PKC protein expresses constantly before radiation. P-PKC protein increased significantly in 15 minutes. P-PKC protein decreased significantly in PTEN, NSL-PTEN groups.
     4 Effect of DNA damage
     The cells were irradiated with 4.0 Gy at 24h after transfection. DSB repair was delay in PTEN, NSL-PTEN groups.
     5 Effects of cell cycle combining recombinant plasmids andγ-irradiation on U251 cells
     The cells were irradiated with 4.0 Gy at 24h after transfection,then harvested 12 h,24h,48h, later.In PTEN, NSL-PTEN groups, the percentage of G1 increase significantly before radiation. In PTEN, NSL-PTEN groups, the percentage of G2/M increase significantly after radiation
     6 Effects of cell apoptosis combining recombinant plasmids andγ-irradiation on U251 cells
     The cells were irradiated with 4.0 Gy at 24h after transfection,then harvested 12 h,24h,48h, later.In PTEN, NSL-PTEN groups, the percentage of apoptosis increase significantly before radiation and adter radiation
     7 Effects of cell proliferation measured by MTT
     The cells were irradiated with 4.0 Gy at 24h after transfection,then harvested 24h,48h, 72 h later. The OD were measured by MTT. the PTEN and NSL-PTEN groups decrease significantly before radiation and adter radiation.
     8 Conclusion
     the PTEN and NSL-PTEN can resist tumor cell through modulation of cell cycle, apoptosis, delay of DSB repair, and impairment of proliferation. The NSL-PTEN may play the key role at the function of PTEN resistance of tumor.
引文
[1]Cancer Facts and Figures 2006.American Cancer Society Web site. Available at: http://www.cancer.org/downloads/STT/CAFF2006PWSecured.pdf. Accessed July 31, 2006.
    [2]Edwards BK, Brown ML, Wingo PA, et al. Annual reportto the nation on the status of cancer, 1975-2002, featuring population-based trends in cancer treatment[J]. J Natl Cancer Inst 2005;97:1407-1427.
    [3]Chemotherapy and you: A guide to self-help during cancer treatment. National Institutes of Health Web site. Available at: http://www.cancer. gov/PDF/b21d0a74 -b477-41ec-bdc0- a60bbe527786/chemoandyou.pdf. Accessed July 31, 2006.
    [4]Bassal M, Mertens AC, Taylor L, et al. Risk of selected subsequent carcinomas in survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. J Clin Oncol 2006;24:476-483.
    [5]ANDERSON W F, BLAESE R M, CULVER K, et al. The ADA human gene therapy clinical protocol: points to consider response with clinical protocol [J]. Hum Gene Ther, 1990, 1:331-362.
    [6]CAVAZZANA-CALVO M, HACEIN-BEY S, DE SAINTBASILE G, et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease [J]. Science, 2000, 288 (5466):669-672.
    [7]http://www.wiley.co.uk/genmed/clinical/
    [8]Vijaya S, Steffen DL, Robinson HL. Acceptor sites for retroviral integrations map near DNase I-hypersensitive sites in chromatin. Journal of Virology, 1986, 60(2):683-692
    [9]徐学武,俞卫锋.第三代腺病毒载体的研究进展[J].生物技术,2005,15(3):79-82.
    [10]Li X, Tikoo SK. Promoter activity of left inverted terminal repeat and downstream sequences of porcine adenovirus type 3 [J]. Virus Res, 2005, 109:51-58.
    [11]Zakhartchouk A, Connors W, van Kessel A, et al. Bovine adenovirus type 3 containing heterologous protein in the C-ter minus of minor capsid protein IX [J]. Virology, 2004, 320: 291-300.
    [12]Ahmad K. Adenovirus vaccine works best [J]. The Lancet Oncol, 2003, 4: 558.
    [13]Flotte TR. Gene t herapy progress and prospect s : Recombinant ade2 no2associated virus ( rAAV) vectors[J ] .Gene Ther ,2004 ,11 :805 -810.
    [14]Haberman RP , McCown TJ , Samulski RJ . Novel t ranscriptional regulatory signals in t he adeno-associated virus terminal repeat A/ Djunction element [J ] . J Virol , 2000 , 74 : 8732 - 8739.
    [15]McCarty Dm, Young SM Jr, Samulski RJ. Integration of adeno-associated virus (AAV)and recombinant AAV vectors. Annu RevGenet, 2004, 38: 819- 845
    [16]Shiau AL, Liu PS, Wu CL. Novel strategy for generation and titration of recombinant adeno - associated virus vectors. [ J] Virol, 2005, 79( 1) : 193- 201.
    [17]邓继先,沈伟.用慢病毒载体制备转基因动物的研究进展[J].中国生物工程杂志,2004,24(9):16-19.
    [18]TRONO D. Lentiviral vectors : turning a deadly foe into a therapeutic agent [J ] . Gene Ther , 2000 ,7 (1) :20-23.
    [19]ANTHONY S , WHITEHEAD P R , ANDREY A K. Use of recombinant lentivirus pseudotyped with vesicular stomatitis virus glycoprotein G for efficient generation of human anti- cancer chimeric T cells by t ransduction of human peripheral blood lymphocytes in vitro[J ] . Virol J , 2006 ,3 (8) :1210.
    [20]杨宇,吴江,杨欣,等.携强绿色荧光蛋白重组慢病毒的构建及其在原代培养SD大鼠皮层神经细胞中的表达[J ] .吉林大学学报:医学版, 2007 ,33 (2) :237-241.
    [21]WONGL F , GOODHEAD L , PRAT C, et al. Lentivirus-mediated gene transfer to the central nervous system: therapeutic and research applications[J ]. Hum Gene Ther , 2006 ,17(1) :129.
    [22]CARROLL R , LIN J T , DACQUEL E J , et al . A human immunodeficiency virus type21 ( HIV21)2based ret roviral vector system utilizing stable HIV21 pakaging cell lines[J ] . J Virol ,1994 ,68 (9) :6047-6051.
    [23]GORBEAU P , KRAUS G, WONG2STAAL F. Efficient gene transfer by a human immunoddficiency virus type-1 ( HIV-1)2 derived vector utilizing a stable HIV pakaging cell line [ J ] . Proc N at1 Acad Sci US A , 1996 ,93 (24) :14070-14075.
    [24]Yoon S S, Carroll NM, Chiocca EA,et al. Cancer gene therapy using a replication-competent herpes simplex virus type 1 vector. Ann Surg. 1998, 228(3): 366-371.
    [25]Wolff JA Vladimir Budker. The mechanism of naked DNA uptake and expression[J].Adv Genet, 2005, 54: 3-20
    [26]K Scim A Rudnicki MA. Molecular-targeted therapy for Duchenne muscular dystrophy: progress and potential[J]. Mol Diagn Ther, 2008, 12(2): 99-108
    [27]Hironari Kanemura, Yuji Iimuro, Masaharu Takeuchi, et al. Hepatocyte growth factor gene transfer with naked plasmid DNA amelioratesdimethylnitrosamine-induced liver fibrosis in rats[J] Hepatol Res, 2008, 38(9): 930-939
    [28]Lian T, Ho RJ . Trends and developments in liposome drug delivery systems [ J ] . J Pharm Sci , 2001 , 90 (6) : 667.
    [29]Eliaz RE , Szoka FJ . Liposome - encapsulated doxorubicin targeted to CD44 [ J ] . Cancer Res , 2001 , 61 (6) : 25-92.
    [30]Zhengrong Cui , Russell JM. Topical immunization using nanoengineered genetic vaccines [ J ] . Journal of Controlled Release , 2002 , 81 : 173.
    [31]Alakhov V , Klinski E , Lemieux P , et al. Block copolymeric biotransport carriers as versatile vehicles for drug delivery[J ] . Expert Opin Biol Ther , 2001 , 1 (4) : 583.
    [32]Haeshin L , Jeong J H , Tae GP. PEG grafted polylysine with fusogenic peptide for gene delivery : high transfection efficiency with low cytotoxicity [J ] . J Control Release , 2002 , 79 : 283.
    [33]D M KLINMAN, J CONOVER, J M LEIDEN, et al. Safe and effective regulation by gene gun administration of an erytbropoielin-encoding DNA plasmid [J]. Hum Gene Ther, 1999, 10:659-665.
    [34]张晓志,林鸿,杨晓燕,等.重组腺病毒临床级基因治疗制品的质量控制[J].中华医学杂志,2004,84(10):849-852.
    [35]DURRBACH A, ANGEVIN E, PONCET P, et al. Antibody-mediated endocytosis of G250 tumor-associated antigen allows targeted gene transfer to human renal cell carcinoma in vitro [J]. Cancer Gene Ther, 1999, 6(6):564-571.
    [36]DEAS O, ANGEVIN E, CHERBONNIER C, et al. In vivo-targeted gene delivery using antibody-based nonviral vector [J]. Hum Gene Ther, 2002, 13(9):1101-1114.
    [37]XI LI, FU GENG FENG, FAN YAN RONG, et al. Bifidobacterium adolescentis as a delivery system of endostatin for cancer gene therapy: selective inhibitor of angiogenesis and hypoxic tumor growth [J]. Cancer Gene Ther. 2003, 10:105-111
    [38]HAMAJI Y, FUJIMORI M, SASAKI T, et al. Strong enhancement of recombinant cytosine deaminase activity in Bifidobacterium longum for tumor-targeting enzyme/prodrug therapy [J]. Biosci Biotechnol Biochem, 2007, 71(4):874-883.
    [39]李艳博,龚守良. pshuttle-Egr1-shTRAIL-shES双基因-放射治疗的体外抑瘤效应实验研究. [D].长春:吉林大学公共卫生学院,2009.
    [40]HOU X, LIU J E. Construction of Escherichia coli-Bifidobacterium longum shuttle vector and expression of tumor suppressor gene PTEN in B. longum [J]. Wei Sheng Wu Xue Bao, 2006, 46(3):347-352.
    [41]LUO D, SALTZMAN W M. Enhancement of transfection by physical concentrationofDNA at the cell surface [J]. Nat Biotechnol, 2000, 18(8):893-895.
    [42]Rahseed BK, Fuller GN, Friendman AH. Loss of heterozygosity for 10q loci in human glima[J]. Genes Chromo Cancer, 1992,5(1):75-78.
    [43]Fults D, Pedone CA, Thomas GA, et al. Allelotype of human malignant astrocytoma[J]. Cancer Res. 1990,50(18):5784-5789.
    [44]Gray IC, Phillips SM, Lee SJ, Loss of chromosomal region 10q23-25 in prostate cancer[J]. Cancer Res. 1995, 55(1):75-78.
    [45]Steck PA , Pershouse MA , Jasser SA , et al . Identification of a candidate tumour suppressor gene , MMAC1 , at chromosome l0q23. 3 that is mutated in multiple advanced cancers[J ] . Nature Genet , 1997 , 15 :356.
    [46]Li DM, Sun H. TEP1 ,encoded by a candidate tumor suppressor locus , is a novel protein tyrosine phosphatase regulated bytransforming growth factorβ[J ] . Cancer Res , 1997 , 57 :2124- 2129.
    [47]Li J, Yen C, Liaw DU, et al. PTEN, a putive protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science, 1997, 275(5308): 1943-1947.
    [48]Steck PA, Pershonse MA, Jasser SA, et al. Identification of a candidate tumor suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nature genetics, 1997,15(4): 356-359.
    [49]Li DM, Sun H. TEP1, encoded by a candidate tumor suppressor locus, is a novel protein tyrosine phosphatase regulated by transforming growth factorβ. Cancer Res, 1997, 86(6):2124-2130.
    [50]Roux P, PTEN: a tumor suppressor with original properties[J]. Bull Cancer, 1999, 86(6): 522-525.
    [51]Wang DS, Rieger-Christ K, Latini JM, et al. Molecular analysis of PTEN and MXI1 in primary bladder carcinoma[J]. Int J Cancer, 1999,88(4):620-625.
    [52]Simpson L, Parsons R. PTEN: life as a tumor suppressor[J]. Exp Cell Res, 2001, 264(1): 29-41.
    [53]Iijima M, Devreotes P. Tumor suppressor PTEN mediates sensing of chemoattractant gradients[J]. Cell, 2002, 109:599-610.
    [54]Myers MP, Stolarov JP, Eng C. PTEN, the tumor suppressor from human chromosome 10q23, is a dual-specificity phosphatase[J]. Proc Nat1 Acad Sci USA, 1997, 94(5):9052-9057.
    [55]Wu X, Obata T, Khan Q, et al. The phosphatidylinositol -3 kinase pathway regulates bladder cancer cell invasion. BJU Int, 2004, 93(1): 143-150.
    [56]Liu X, Shi Y, Giranda VL, et al. Inhibition of the phosphatidylinositol -3 kinase/Akt pathway sensitizes MDA-MB468 human breast cancer cells to cerulenin-induced apoptosis. Mol Cancer Ther, 2006, 5(3): 494-501.
    [57]Wymann MP, Pirola L. Structure and function of phosphatidylinositol-3 kinase[J]. Biochim Biophys Acta, 1998, 1436(1-2):127-150.
    [58]Standaert ML, Kanoh Y, Sajan MP, et al. Cb1 IRS-1, and IRS-2 mediate effects of rosiglitazone on PI3K, PKC-1 ambda, and glucose transport in 3T3/L1 adipocytes[J]. Endocrinology, 2002, 143(5):1705-1716.
    [59]Huang J, Kontos CD. PTEN modulates vascular endothelial growth factor-mediated signaling and angiogenic effects[J]. J Biol Chem, 2002, 277:10760-10766.
    [60]Gu J, Tamura M, Yamada KM, et al. Tumor suppressor PTEN inhibits integrin and growth factor-mediated mitogen-activated protein(MAP) kinase signaling[J]. J Cell Biol, 1998, 143(5): 1375-1383.
    [61]Tamura M, Gu J, Matsumoto K, et al. Inhibition of cell migration, spreading and focal adhesions by Tumor suppressor PTEN[J]. Science, 1998, 280(5369):1614-1617.
    [62]Tamura M, Gu J, Danen EH, et al. PTEN interactions with focal adhesion kinase and suppression of the extracellular matrix-dependent phosphatidylinositol 3-kinase/Akt cell survival pathway. J Biol Chem, 1999, 274(29): 20693-20703.
    [63]Tamura M, Gu J, Matsumoto K et al. Inhibition of cell migration, spreading and focal adhesions by tumor suppressor PTEN[J]. Science, 1998, 280(5539): 1614-1617.
    [64]Kould D, Shen R, Garyali A, et al. MMAC/PTEN tumor suppressor gene regulates vascular endothelial growth factor mediated angiogenesis in prostate cancer[J]. Int J Oncol, 2002, 21(3): 469-475.
    [65]Zundel W, Schindler C, Haas-Kogan D, et al. Loss of PTEN facilitates HIF-1-mediated gene expression[J]. Genes Dev, 2000, 14(4):391-396.
    [66]Tamura M, Gu J, Takino, et al. Tumor suppressor PTEN inhibition of cell invasion, migration and growth: differential involvement of focal adhesion kinase and p130[J]. Cancer Res, 1999, 59(2):442-449.
    [67]Koul D, Shen R, Garyali A, et al. MMAC/PTEN tumor suppressor gene regulates vascular endothelial growth factor mediated angiogenesis in prostate cancer[J]. Int J Oncol, 2002, 21(3): 469-475.
    [68]Zundel W, Schindler C, Haas-Kogan D, et al. Loss of PTEN facilitates HIF-1 mediated gene expression[J]. Genes Dev, 2000, 14(4): 391-396.
    [69]Girinsky T, Lubin R, Pignon JP, Chavaudra N, Gazeau J, Dubray B et al. Predictive valueof in vitro radiosensitivity parameters in head and neck cancers and cervical carcinomas: preliminary correlations with local comtrol and overall survival[J]. Int J Radiat Oncol Biol Phys 1993; 25:3-7.
    [70]Zhang R, Zhang JJ, He ZG, et al. Research advances on bladder cancer associated genes[J]. Ai Zheng, 2003, 22(1): 104-107.
    [71]West CM. Invited review: intrinsic radiosensitivity as a predictor of patient response to radiotherapy[J]. Br J Radiol 1995; 68:827-837.
    [72]G Pappas, LA Zumstein, A Munshi, et al.Adenoviral-mediated PTEN expression radiosensitizes non-small cell lung cancer cells by suppressing DNA repair capacity[J]. Cancer Gene Therapy 2007;14:543-549.
    [73]Ali, I.U., Schriml, L.M., Dean,M. Mutational spectra of PTEN/MMAC1 gene: a tumor suppressor with lipid phosphatase activity[J]. J. Natl. Cancer Inst. 1999, 91:1922-1932.
    [74]Kondo K, Yao M, Kobayashi K, et al. PTEN/MMAC1/TEP1 mutations in human primary renal-cell carcinomas and renal carcinoma cell lines[J]. Int J Cancer, 2001, 91(2):219-224.
    [75]Kennedy SG, Kandel ES, Cross TK, Hay N. Akt/Protein kinase B inhibits cell death by preventing the release of cytochrome c from mitochondria[J]. Mol Cell Biol 1999; 19: 5800-5810.
    [76]Kennedy SG, Wagner AJ,Conzen SD, Jordan J, Bellacosa A, Tsichlis PN et al. The PI 3-kinase/Akt signaling pathway delivers an anti-apoptotic signal[J]. Genes Dev 1997; 11:701-713.
    [77]Wan X , Yokoyama Y Shinohara A. PTEN augments staurosporine - induced apoptosis in PTEN– null Ishikawa cells by downregulating PI3K/ Akt signaling pathway[J] . Cell Death Differ , 2002 , 9 (4) :414 - 420.
    [78]Wick W, Furnary FB, Naumann U, Cavenee WK, Weller M. PTEN gene transfer in human malignant glioma: sensitization to irradiation and CD95L-induced apoptosis[J]. Oncogene 1999; 18:3936-3943.
    [79]Lachyankar MB., Sultana N., Schonhoff CM., et al. A role for nuclear PTEN in neuronal differatiation[J]. J. Neurosci. 2000, 20: 1404-1413.
    [80]Hanahan D. Weinberg R. A. The hallmarks of cancer[J]. Cell. 2000, 100:57-70.
    [81]Gimm O., Perren A., Weng LP., et al. Differential nuclear and cytoplasmic expression of PTEN in normal thyroid tissue, and benign and malignant epithelial thyroid tumors[J]. Am. J. Pathol. 2000, 156: 1693-1700.
    [82]Ginn-Pease, M.E., and Eng, C. Increased nuclear phosphatase and tesin homologue deleted on chromosome 10 is associated with G0- G1 in MCF-7 cells[J]. Cancer Res. 2003, 63:282-286.
    [83]Bork P, T Dandekar, Diaz-Lazcoz Y, et al. Prediction function: from genes to genomes and back[J]. J Mol Biol. 1998, 283(4):707-725.
    [84]Rost B, J Liu, Nair R, et al. Automatic prediction of protein function[J]. Cell Mol Sci. 2003, 60(12): 2637-2650.
    [85]Alberts B, D Bray. 1994, Molecular Biology of the Cell 3rd Ed. Graland Publishing Inc, New York.
    [86]Rost B. Enzyme function less conserved than anticipated[J]. J Mol Biol. 2002, 318(2):595-608.
    [87]Cokol M, R Nain Rost B. Finding nuclear localization signals[J]. EMBO Rep. 2000, 1(5): 411-415.
    [88]Trotman, L.C., Wang , X., Alimonti, A., et al. Ubiquitination regulates PTEN nuclear import and tumor suppression[J]. Cell. 2007, 128: 141-156.
    [89]Puc J, Parsons R. PTEN loss inhibits CHK1 to cause double strand-DNA breaks in cells[J]. Cell Cycle. 2005, 4:927-929.
    [90]Lachyankar M. B , N. Sultana, C. M. Schonhoff, et al. A role foe nuclear in neuronal differentiation[J]. J. Neursci. 2000, 20: 1404-1413.
    [91]Perren, A., P. Komminoth, P., Saremaslani, et al. Mutation and expression analyses reveal differential subcellular compartmentaliza- tion of PTEN in endocrine pancreatic tumors compared to normal islet cells[J]. Am. J. Pathol. 2000, 157: 1097-1103.
    [92]Fridberg M., Servin A, Anagnostaki L, Jerkeman M et al. Protein expression and cellular localization in two prognostic subgroups of diffuse large B-cell lymphoma: Higher expression of ZAP70 and PKC-beta II in the non-germinal center group and poor survival in patient deficient in nuclear PTEN[J]. Leuk. Lymphoma 48 2221-2232.
    [93]Juinn-Lin Liu,Xiaoyang Shen, Zsuzsanna K. Alfred Yung et al. Nuclear PTEN-mediated growth suppression is independent of akt down-regulation[J]. Molecular And Cellular Biology. 2005, 6211-6224.
    [94]Chung J-H, Ostrowski M.C, Romight T, Minaguchi T,. et al The ERK1/2 pathway modulates nuclear PTEN-mediated cell cycle arrest by cyclin D1 transcriptional regulation[J]. Hum. Mol. Genet. 2007, 15: 2553-2559.
    [95]Radu A, Neubauer V, Akagi T, et al. PTEN induces cell cycle arrest by decreasing the level and nuclear localization of cycin D1[J]. Mol Cell Biol. 2003, 23:6139-6149.
    [96]Li A. G, Piluso L. G, Cai X, et al. Mechanistic insights into maintenance of high P53 acetylation by PTEN[J]. Mol Cell. 2006, 23: 575-587.
    [97]Shen W.H, Balajee A.S, Wang J, et al. Essential role for nuclear PTEN in maintaining chromosomal integrity[J]. Cell. 2007,128: 157-170.
    [98]Cheney, IW S, T Neuteboom, et al. Adenovirus-mediated gene transfer of MMAC1/PTEN to glioblastoma cells inhibits S phase entry by the recruitment of p27Kip1 into cycin E/CDK2 complexes[J]. Cancer Res, 1999, 59:2318-2323.
    [99]Li DM, H Sun. PTEN/ MMAC1/TEP1 suppresses the tumorigenicity and induces G1 cell cycle arrest in human glioblastoma cells[J]. Proc Natl Acad Sci USA, 1998, 95:15406-15411.
    [100]Bakkenist, C J, Kastan, M. B. The DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation[J]. Nature. 2003, 421: 499-506
    [101]Lin PY, Fosmire SP, Park SH et al. Attenuation of PTEN increase p21 stability and cytosolic localization in kidney cancer cells: a potential mechanism of apoptosis resistance[J]. Mol Cancer. 2007, 6:16.
    [102]Stambolic V, MacPherson D, Sas D et al. Regulation of PTEN Transcription by p53[J]. Mol Cell. 2001, 8: 317-325.
    [103]Mayo LD, Dixon JE, Durden DL et al. PTEN protect p53 from Mdm2 and sensitizes cancer cells to chemotherapy[J]. Biol Chem. 2002, 277: 5484-5489.
    [104]Freeman DJ, Li AG, Wei G et al. PTEN tumor suppressor regulates p53 protein level and activity through phosphatase-dependent and in dependent mechanism[J]. Cancer Cell. 2003, 3: 117-130.
    [105]Zhou M, Gu L, Findley HW et al. PTEN reserves MDM2-mediated chemotherapy resistance by interacting with p53 in acute lymphoblastic leukemia cells[J]. Cancer Res. 2003, 63: 6357-6362.
    [106]Mayo LD, Donner DB. A phosphatidylinositol3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus[J]. Proc Natl Acad Sci US. 2001, 98: 11598-11603.
    [107]Meek K, Gupta S, Ramsden DA, Lees-Miller SP. The DNA-dependent protein kinase: the director at the end[J] . Immunol Rev. 2004 8;200:132-141.
    [108]Hefferin ML, Tomkinson AE. Mechanism of DNA double-strand break repair by non-homologous end joining. DNA Repair (Amst) [J]. 2005 4(6):639-648.
    [109]Ahnesorg P, Smith P, Jackson SP. XLF interacts with the XRCC4-DNA ligase IV complex to promote DNA nonhomologous end-joining[J]. Cell. 2006 Jan124(2):301-13.
    [110]Buck D, Malivert L, de Chasseval R, Barraud A et al. Cernunnos, a novel nonhomologous end-joining factor, is mutated in human immunodeficiency with microcephaly[J]. Cell.2006 Jan 27;124(2):287-99.
    [111]Rouse J, Jackson S P. Interfaces between the detection, signaling, and repair of DNA damage[J]. Science. 2002, 297: 547-551.
    [112]Matsuoka S, Ballif B A, Smogorzewska A et al. ATM and ATR substrate analysis reveals extensive proteins networks responsive to DNA damage[J]. Science. 2007, 316: 1160-1166.
    [113]Chen B P, Uematsu N, Kobayashi J. Ataxia telangiectasia mutated(ATM) is essential for DNA-Pkcs phosphrylations at the Thr-2609 cluster upon DNA double strand break[J]. J Biol Chem. 2007, 282: 6582-6587.
    [114]Lee J H, Paull T T. ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex[J]. Science. 2005, 308: 551-554.
    [115]Dvir A, Peterson S R, Knuth M W. Ku auto-antigen is the regulatory component of a template-associated protein kinase that phosphorylates RNA polymerase II[J]. Proc Natl Acad Sci USA. 1992, 89: 11920-11924.
    [116]Gottlieb T M, Jackson S P. The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen[J]. Cell. 1993, 72: 131-142.
    [117]Ma Y, Pannicke U, Schwarz K, Lieber MR. Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination[J]. Cell. 2002 ,108(6):781-794.
    [118]Ma Y, Lu H, Tippin B, Goodman MF, et al. A biochemically defined system for mammalian nonhomologous DNA end joining[J]. Mol Cell. 2004 ,16(5):701-713.
    [119]Ma Y, Pannicke U, Lu H, Niewolik D, Schwarz K, Lieber MR. The DNA-dependent protein kinase catalytic subunit phosphorylation sites in human Artemis[J]. J Biol Chem. 2005 ,280(40):33839-33846.
    [120]Chan DW, Chen BP, Prithivirajsingh S, et al. Autophosphorylation of the DNA-dependent protein kinase catalytic subunit is required for rejoining of DNA double-strand breaks[J]. Genes Dev. 2002, 16(18):2333-2338.
    [121]Douglas P, Sapkota GP, Morrice N, et al. Identification of in vitro and in vivo phosphorylation sites in the catalytic subunit of the DNA-dependent protein kinase[J]. Biochem J. 2002 ,368( 1):243-251.
    [122]Ding Q, Reddy YV, Wang W, et al. Autophosphorylation of the catalytic subunit of the DNA-dependent protein kinase is required for efficient end processing during DNA double-strand break repair[J]. Mol Cell Biol. 2003 ,(16):5836-5848.
    [123]Cui X, Yu Y, Gupta S, et al. Autophosphorylation of DNA-dependent protein kinase regulates DNA end processing and may also alter double-strand break repair pathway choice[J]. Mol Cell Biol.2005, 25: 10842–10852
    [124]Block WD, Yu Y, Merkle D, et al. Autophosphorylation-dependent remodeling of the DNA-dependent protein kinase catalytic subunit regulates ligation of DNA ends[J]. Nucleic Acids Res. 2004 ,32(14):4351-4357.
    [125]Reddy YV, Ding Q, Lees-Miller SP, et al. Non-homologous end joining requires that the DNA-PK complex undergo an autophosphorylation-dependent rearrangement at DNA ends[J]. J Biol Chem. 2004 ,279(38):39408-39413.
    [126]Calsou P, Delteil C, Frit P, et al. Coordinated assembly of Ku and p460 subunits of the DNA-dependent protein kinase on DNA ends is necessary for XRCC4-ligase IV recruitment[J]. J Mol Biol. 2003 Feb 7;326(1):93-103.
    [127]Bruggeman SW, Valk-Lingbeek ME, Stoop PP, et al. Ink4a and Arf differentially affect cell proliferation and neural stem cell self-renewal in Bmil-deficient mice[J]. Genes Dev. 2005, 19: 1438-1443.
    [128]Molofsky AV, He S, Bydon M et al. Bmi-I promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16 Ink4a and p19 Arf senescence pathways[J]. Genes Dev. 2005, 19: 1432-1437.
    [129]Chagraoui J, Niessen SL, Lessard J et al. E4F1: a novel candidate factor for mediating BMII function in primitive hematopoietic cells[J]. Genes Dev. 2006, 20: 2110-2120.
    [130]Akala OO, Park IK, Qian D et al. Long-term haematopoietic reconstitution by Trp53-/- p16 Ink4a-/- p19 Arf-/- multipotent progenitors[J]. Nature. 2008, 453: 228-232.
    [131]Vonlanthen S, Heighway J, Altermatt HJ et al. The bmil oncoprotein is differentially expressed in non-small cell lung cancer and correlates with INK4A-ARF locus expression[J]. Br J Cancer. 2001, 84: 1372-1376.
    [132]Kim JH, Yoon SY, Kim CN et al. The Bmi-l oncoprotein is overexpressed in human colorectal cancer and correlates with the reduced p16 Ink4a/ p14 Arf proteins[J]. Cancer Lett. 2004, 203: 217-224.
    [133]Kim JH, Yoon SY, Jeong SH et al. Overexpression of Bmi-l oncoprotein correlates with axillary lymph node metastases in invasive ductal breast cancer[J]. Breast. 2004, 13:283-388.
    [134]Song LB, Zeng MS, Liao WT et al. Bmi-l is a novel molecular marker of nasopharyngealcarcinoma progression and immortalizes primary human nasopharyngeal epithelial cells[J]. Cancer Res. 2006, 66: 6225-6232.
    [135]Glinsky GV, Berezovska O, Glinskii AB. Microarray analysis identifies a death- form-cancer signature predicting therapy failure in patients with multiple types of cancer[J]. J Clin Invest. 2005, 115:1503-1521.
    [136]Berezovska OP, Glinskii AB, Yang Z et al. Essential role for activation of the Polycomb group(PcG) protein chromatin silencing pathway in metastatic protate cancer[J]. Cell Cycle. 2006, 5:1886-1901.
    [137]Dimri GP, Martinez JL, Keblusek P et al. The Bmi-l oncoprotein induces telomerase activity and immortalizes human mammary epithelial cells[J]. Cancer Res. 2002, 62: 4736-4745.
    [138]Nick R. LESLIE, C. Peter DOWNES. PTEN function: how normal cells control it and tumor cells lose it[J]. Biochem J. 2004, 382:1-11.
    [139]Furnari, F. B., H. J. Huang, and W. K. Cavenee. The phosphoinositol phosphatase activity of PTEN mediates a serum-sensitive G1 growth arrest in glioma cells[J]. Cancer Res. 1998, 58:5002–5008.
    [140]Li, D. M., and H. Sun.PTEN/MMAC1/TEP1 suppresses the tumorigenicity and induces G1 cell cycle arrest in human glioblastoma cells[J]. Proc. Natl. Acad. Sci. USA1998, 95:15406–15411.
    [141]Marple B,Wouters BG,Joiner MC.An association between the radiation i nduced arrest of G2 phase cells and low dose hyper radiosensitivity:a plausible underlying mechanism[J].Radiat Res,2003,160(1):38 45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700