尾矿坝抗震设计方法及抗震措施研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尾矿坝是用来阻挡尾矿使其沉积的土工构筑物,它的使用功能、建筑工艺、坝体结构和静动力特性均不同于一般的水工土石坝。随着我国经济的快速发展和工业水平的迅速提高,对矿山原材料产出的需求越来越大,尾矿坝数量也随之增加。尾矿坝按其构造形式可分成三类:上游式、中线式和下游式。上游式尾矿坝后继断面小及占地少,且工艺简单、造价低,我国大多数尾矿坝均采用上游式修建。国内外震害表明,因上游式尾矿坝浸润线较高,大部分坝体处于饱和状态,地震作用下易发生液化变形破坏。我国是一个多地震国家,而尾矿坝几乎是永久性建筑,在设计阶段、服务期及废弃后均需要进行抗震分析。因此,深入研究尾矿坝的抗震设计、稳定、变形及抗震措施就显得尤其重要和迫切。本文主要进行了以下几方面的研究工作:
     1.传统的场地液化评估法通常以安全系数的大小作为评估标准,安全系数的要求则由工程师经验确定,但不能给出相应的液化概率。首先阐述了砂土液化机理及场地液化评价方法,其次用对数退化模型分析国内外现场实测标贯数据,建立场地液化极限状态函数,然后将可靠度理论引入场地液化评价中,用一次二阶矩法建立场地液化概率评价模型,进行实例应用并与规范结果进行了比较。分析表明,建议模型具有较高的可靠性,相比传统的确定性分析方法,不仅能判定液化发生与否,还能给出液化概率,这为进行基于风险分析的抗震设计提供了可能。
     2.现有规范中尾矿坝抗震设计方法的计算过程相当繁琐,有必要提出一种实用的地震液化稳定分析简化法。结合《构筑物抗震设计规范》的修订,用有限元程序计算多个60m高的尾矿坝,确定坝顶加速度放大倍数、坝体加速度分布系数和应力折减系数,建立尾矿坝地震作用应力比的简化计算式。基于尾矿抗液化性能的影响因素分析,对规范中抗液化应力比计算式进行简化。液化分析简化法只要求简单的物理力学特性数据和地震烈度,避免了进行大量的土力学试验和数值计算来评价尾矿土层的液化特性。根据砂土抗液化安全系数与超孔隙水压力比的经验关系,建立了超孔隙水压力简化计算式,并应用到瑞典条分法中,克服了用传统拟静力法进行尾矿坝地震稳定分析时忽略超孔隙水压力带来的风险。综合中日尾矿坝抗震设计规范并进行比较分析,提出上游式四、五级尾矿坝在小于或等于8度地震时,用简化法进行抗震设计。
     3.以某上游式尾矿坝为例,用有限元法分析了坝体的地震反应、永久变形及超孔隙水压力的发展过程,研究了降低浸润线、碎石排水和加筋的抗震效果,提出了一种综合抗震措施,即在子坝区加筋、初期坝外坡增设反压体及坝基土密实。分析表明,采取综合抗震措施加固后坝体地震变形显著减小。
     4.应用二维商用软件ALID研究了Mochikoshi尾矿坝在不同条件下发生液化流动变形的特征,分析了降低浸润线、在上游增设稳定柱、下游施加反压体和坝基土密实对抑制尾矿坝液化流动变形的作用效果。从经济、方便施工的角度出发,提出了两种抑制尾矿坝液化流动变形的综合措施,即在坝基土密实加固,并同时在坝体外坡施加反压体和降低浸润线。分析表明,采取综合措施加固后坝体液化流动变形得到了有效控制。
     5.基于Watanabe提出的边坡地震稳定滑移分析法,以某上游式尾矿坝为例,研究了输入不同加速度峰值对坝体等价加速度时程、安全系数时程与潜在滑块滑移量发展过程的影响,分析了加筋对提高尾矿坝地震稳定及减小坝坡滑移量的有效性。分析表明,随着输入水平加速度峰值的增大,水平等价加速度与地震安全系数的变化幅值相应地增大,超越加速度的幅值增加、历时较长,地震滑移量增大;加筋能较好地改善尾矿的力学性能,大大提高坝体的稳定性,减小滑动位移;筋材间距的增大与设计强度的降低都会减小坝体的地震稳定系数。
Tailings dam is a soil construction that encloses tailings and its using function,architectural technology and structure static and dynamic characteristics are different fromtraditional hydraulic structure. In recent years, Chinese economy and industry quicklyadvance. Tailings dam rapidly aggrandize along with the demand increase of mine rawmaterials. Basically, tailings dam falls into three basic construction types: upstream, centerline, and downstream. The upstream method is frequently the least expensive, occupyingplace less, technology simply, and it has been used on many dams in the past. However,earthquake disasters show that the upstream method is the most susceptible to excessivepost-earthquake deformation and liquefaction because loose saturated deposits may beincorporated in the mostly upstream zones. There are frequently earthquakes in China, andmoreover, tailings dam is almost permanent soil construction and must be done antiseismicanalysis in design, serve and after closure. Consequently, it is of great importance andurgency to study antiseismic design, stability, deformation, and antiseismic measures fortailings dam. The main research works of this dissertation are as follow:
     1. The traditional site liquefaction evaluation method usually uses a factor of safety asassessing standard and the specified safety factor is largely determined by engineer'sexperience, however, there is not a liquefaction probability. The paper firstly expatiates on themechanism of sand liquefaction and evaluation method of site liquefaction. Secondly, a limitstate function for site liquefaction is developed based on logistic regression analysis SPTdatum of 200 sets case histories of 23 earthquakes over the world. And then reliability theoryis introduced site liquefaction evaluation and testing datum statistics analysis is used inconjunction with the first order and second moment method to found the liquefactionprobability evaluation model of site. Finally, a bridge site as example is analyzed andcompared to design code's results. The calculation result analyses show the proposed modelreliability is higher. Comparing to the deterministic method of site liquefaction evaluation, itcan not only assess if liquefaction occur but also give liquefaction probability, so it is possibleto make antiseismic design based on risk analysis.
     2. The calculation process of tailings dam antiseismic design is very complicated in code,so it is necessary to advance a practicably simplified method of earthquake liquefaction andstability analysis. Combining the editing of Antiseismic Design of Special Structures, two-dimensional seismic response analyse are carded out for many 60m high tailings dams.Analyzing the calculative results, acceleration amplification ratio of the crest, damacceleration distributing coefficient and stress reduction coefficient are concluded and thenthe simplified procedure for calculating the cyclic shear stress ratio is founded. Based on theinfluence factors analysis of tailings resistance, the formula of cyclic resistance ratio inChinese design code is simplified. The simplified liquefaction evaluation method only needsmall physical-mechanical properties datum of tailings and degree of seismic intensity andavoid making a lot of soil mechanical tests and numerical calculation to assess liquefaction oftailings. According to the relationship between sand liquefaction resistance factor and excesspore pressure ratio, a simple formula of excess pore water pressure is proposed and applied inSweden slope stability analysis method for tailings dam, and that to overcome the risk forignoring excess pore water pressure in traditional pseudo-static method. The specialities ofantiseismic design code for tailings dam in China and Japan are compared and then usingsimplified method to make antiseismic design for height less than 60 m and within 8 degree ofseismic intensity is proposed.
     3. Taking a tailings dam as example, dam seismic response, permanent deformation, andthe development process of excess pore water pressure are studied using the finite elementmethod. After comparing the effects of three antiseismic measures, such as falling soakageline, drainage by setting stone column and reinforcing with fibre, a synthetically antiseismicmeasure that is composed of fibre-reinforced in child dam, forcing buttress out of starter damand densification foundation is proposed. It is found that the synthetically antiseismicmeasure produces better antiseismic effect.
     4. By using the finite element code ALID (Analysis for Liquefaction-InducedDeformation), liquefaction-induced flow deformation of No. 1 Mochikoshi talings dam underdifferent conditions is estimated. Some measures, such as falling soakage line, settingstabilizing column, forcing buttress out of dam and densification foundation are analyzed toassess the effect on restraining liquefaction-induced deformation of tailings dam. Looking ateconomy and the convenience of construction, two synthetical measures, namely densificationfoundation and at the same time forcing buttress out of dam and falling soakage line, areproposed. It is found that the synthetical antiseismic measures can reduce theliquefaction-induced deformation of dam to considerable amount.
     5. Taking a tailings dam as example, the time history of acceleration, safety factor andslippage in different earthquake excitations are studied and then the effect of reinforcement toimprove dam stability and reduce slippage are analyzed, using the analyse method of slopeseismic stability and slip that is proposed by Watanabe. With inputting horizontal accelerationaugment, it is found that the variety value of horizontal equivalence acceleration and safety factor, exceeding acceleration and lasting time as well as slippage will be aggrandized.Reinforcement with fibre can improve the mechanical properties of tailings and stability ofdam and reduce slippage. Adding fibre space and reducing fibre intension can minish damsafety coefficient.
引文
[1] 魏作安.细粒尾矿及其堆坝稳定性研究:(博士学位论文).重庆:重庆大学,2004.
    [2] 国务院环境保护委员会.中国21世纪议程.北京,1994.
    [3] 翟佳禹.80亿吨尾矿资源有待开发.中国工业报,2006年10月1日,第A01版.
    [4] 刘玉强,郭敏.我国矿山尾矿固体废料及地质环境现状分析.中国矿业,2004,13(3):1-5.
    [5] 张克绪.尾矿坝的抗震设计和研究(上).世界地震工程,1988,1:13-18.
    [6] 徐宏达.我国尾矿库病害事故统计分析.工业建筑,2001,1(31):69-71.
    [7] Swedish Mining Association. Seminar on safe tailings dam constructions. Gallivare, 2001.
    [8] 北京有色冶金设计研究总院主编.选矿厂尾矿设施设计规范(ZBJ1-90).北京:中国建筑工业出版社,1991.
    [9] 冶金部建筑研究总院主编.构筑物抗震设计规范(GB 50191-93).北京:中国计划出版社,1993.
    [10] 彭承英.尾矿库事故及预防措施.有色矿山,1996,5:38-40.
    [11] 卜训政.上游式尾矿坝安全隐患分析.化工矿物与加工,2001,6:22-24.
    [12] USCOLD, Committee on Dam Safety, Lessons from dam incidents, USA-Ⅱ, ASCE, 1988.
    [13] USCOLD, Committee on Failures and Accidents to Large Dams, Lessons from dam incidents USA, ASCE/USCOLD. 1976.
    [14] USCOLD, Committee on Tailings Dams, Tailings dam incidents, USCOLD, 1994.
    [15] UNEP, Environmental and safety incidents concerning tailings dams at mines, based on survey conducted by Mining Journal Research Services for UNEP, 1996.
    [16] Brace I G, Logue C, Wilchek L A. Trends in tailing dam safety, http://www.bgcengineering.info/Publications/IGB%20Bruce,%20I.,%20Logue,%20C.,%20Wilchek,%20L.%201997.%20Trends%20in%20Tailings%20Dam%20Safety.pdf.
    [17] Finn W D L, Byrne, P M. Liquefaction potential of mine tailing dams. 12th ICOLD, 1976.
    [18] Finn W D L. Seismic stability of railings dams. General Reporter Department of Civil Engineering University of British Columbia Vancouver, B. C. Canada, Proc. International Symposium on Safety and Rehabilitation of Tailings Dams ICOLD, Sydney, Australia, 1990.
    [19] 汪闻韶.土的动力强度和液化特性.北京:中国电力出版社,1997.
    [20] http://blog.sina.com.cn/u/49c24b7a010005kf.
    [21] http://www.china.org.cn/chinese/HIA W/12213 58.htm.
    [22] http://www.chinanews.com.cn/other/news/2006/12-27/844785.shtml.
    [23] 《中国有色金属尾矿库概论》编辑委员会.中国有色金属尾矿库概论.北京:中国有色金属工业总公司,1992.
    [24] Ishihara K. Post-earthquake failure of a tailings dam due to liquefaction of the pond deposit.International Conference on Case Histories in Geotechnical Engineering, Stoiouis, Geotechnical Engineering, 1984, 3:1129-1143.
    [25] 王余庆,王治平,辛鸿博等.中国尾矿坝地震安全度(1)——大石河尾矿坝1976年唐山大地震震害及有关强震观测记录.工业建筑,1994(7):38-42.
    [26] 刘颖,谢君斐.砂土震动液化.北京:地震出版社,1984.
    [27] Hwang J H, Yang C W. Verification of critical cyclic strength curve by Taiwan Chi-Chi earthquake data. Soil Dynamics and Earthquake Engineering, 2001, 21(3): 237-257.
    [28] 黄文熙.水工建设中的结构力学与岩土力学问题.北京:水利电力出版社,1984,252-256.
    [29] 谢定义,巫志辉.不规则动荷脉冲波对砂土液化特性的影响.岩土工程学报,1987,9(4):1-12.
    [30] 王锺琦.地震液化的宏观研究.岩土工程学报,1995,4(3):1-10.
    [31] 张克绪,谢君裴.土动力学.北京:地震出版社,1989.
    [32] 徐志英,沈珠江.土坝地震孔隙水压力产生、扩散和消散的有限单元法动力分析.华东水利学院学报,1981,9(4):1-16.
    [33] 栾茂田,邵宇,林皋.土体地震反应非线性分析方法比较研究.见:栾茂田编.第五届全国土动力学学术会议文集.大连:大连理工大学出版社,1998,203-208.
    [34] 吴世明,徐枚在.土动力学现状与发展.岩土工程学报,1998,20(3):125-131.
    [35] 沈珠江.理论土力学.北京:中国水利电力出版社,1999,9-80.
    [36] Finn W D L, Lee K W, Martin G R. An effective stress model for liquefaction. Journal of the Geotechnical Engineering Division, ASCE, 1977, 103(6): 517-533.
    [37] Ishihara K, Yoshimine M. Evaluation of settlements in sand deposits following liquefaction during earthquakes. Soils and Foundations, 1992, 32(1): 173-188.
    [38] 刘华北,宋二样.埋深对地下结构地震液化响应的影响.清华大学学报,2005,45(3):301-305.
    [39] 鲁晓兵.垂向荷载作用下饱和砂土的液化分析:(博士学位论文).北京:中国科学院力学研究所,1999.
    [40] 刘汉龙,周云东,高玉峰.砂土地震液化后大变形特性试验研究.岩土工程学报,2002,24(2):142-146.
    [41] 张建民,王刚.砂土液化后大变形的机理.岩土工程学报,2006,28(7):835-840.
    [42] 周燕国,陈云敏,柯瀚.砂土液化势剪切波速简化判别法的改进.岩石力学与工程学报,2005,24(13):2370-2375.
    [43] 徐斌,孔宪京,邹德高等.饱和砂粒料液化后应力与应变特性试验研究.岩土工程学报,2007,29(1):103-106.
    [44] 王刚,张建民.砂土液化大变形的弹塑性循环本构模型.岩土工程学报,2007,29(1):51-59.
    [45] Harper T G, Mcleod H N, Davies M P. Seismic assessment of railings dams. Civil Engineering, 1992, 62(12): 64-66.
    [46] Seid K M, Byrne P M. Embankment dams and earthquakes. Hydropower & Dams, 2004, 2: 96-102.
    [47] 张超.尾矿动力特性及坝体稳定性分析:(博士学位论文).武汉:中国科学院武汉岩土力学研究所,2005.
    [48] 刘菀茹.尾矿坝动力特性及其堆坝稳定性分析:(硕士学位论文).成都:四川大学,2006.
    [49] 潘建平,孔宪京,邹德高.尾矿坝地震液化分析.河海大学学报,2007,35(增1):49-52.
    [50] Ishihara K, Yasuda S, Yoshida Y. Liquefaction-induced flow failure of embankments and residual strength of silty sands. Soils and Foundations, 1990, 30(3): 69-80.
    [51] Zeng X W, Wu J, Rohlf R. Modeling the seismic response of coal-waste railings dams. Geotechnical News, 1998, (6): 29-32.
    [52] 徐志英,沈珠江.高尾矿坝的地震液化和稳定分析.岩土工程学报,1981,3(4):22-32.
    [53] 王武林,杨春和,阎金安.某铅锌矿尾矿坝工程勘察与稳定性分析.岩石力学与工程学报,1992,11(4):332-344.
    [54] 周健.尾矿坝在地震作用下的三维两相有效应力动力分析.工程抗震,1995,3:39-43.
    [55] 张克绪.尾矿坝的抗震设计和研究(下).世界地震工程,1988,2:15-18.
    [56] 腾志国、关于尾矿坝地震稳定性的分析及评价.河北冶金,2003,133(1):16-17.
    [57] 腾志国.关于尾矿坝地震稳定性的分析及评价(续).河北冶金,2003,133(2):8-12.
    [58] 柳厚祥,裘家葵.变分法在尾矿坝稳定性分析中的应用研究.工程设计与建设,2003,35(1):19-23.
    [59] 李新星.粟西沟尾矿坝地震动力反应及液化评价研究:(硕士学位论文).西安:长安大学,2004.
    [60] 王凤江.上游法高尾矿坝的抗震问题.冶金矿山设计与建设,2001,33(5):10-13.
    [61] 李再光,罗晓辉.尾矿坝地震反应的拟静力稳定分析.岩土力学,2006,27(7):1138-1142.
    [62] 魏作安,万玲.细粒尾矿堆积坝的地震稳定性分析.有色金属,2006,58(1):79-81.
    [63] 姜涛,王世希.尾矿坝砂土液化的简化判别法.见:姚伯英,侯忠良主编.构筑物抗震.北京:测绘出版社,1990:52-57.
    [64] 王余庆,高艳平,辛鸿博.中国尾矿坝地震安全度(2)——大石河尾矿坝基岩输入地震动的确定.工业建筑,1994(8):41-47.
    [65] 王治平,李志林.中国尾矿坝地震安全度(3)——经受唐山大地震的大石河尾矿坝历史和现状剖析.工业建筑,1994(9):47-50.
    [66] 辛鸿博,王余庆.中国尾矿坝地震安全度(6)——用SPT评价大石河尾矿坝的沉积特征.工业建筑,1994(11):50-53.
    [67] 李万升,刘静平,王治平.中国尾矿坝地震安全度(7)——大石河尾矿坝原位密度的同位素测试方法.工业建筑,1994(12):36-41.
    [68] 李万升,高建平,王治平.中国尾矿坝地震安全度(8)——大石河尾矿砂的力学特性试验研究.工业建筑,1995(1):43-48.
    [69] 辛鸿博,王余庆.中国尾矿坝地震安全度(9)——大石河尾矿粘性土的动力变形特性和强度特征.工业建筑,1995(2):38-42.
    [70] 王余庆,辛鸿博.中国尾矿坝地震安全度(10)——用单剪仪研究大石河尾矿砂的动特性.工业建筑,1995(3):37-40.
    [71] 王余庆,辛鸿博,李志林.中国尾矿坝地震安全度(11)——大石河尾矿砂稳态变形特性.工业建筑,1995(4):35-40.
    [72] 王余庆,辛鸿博.中国尾矿坝地震安全度(12)——用稳态理论评价大石河尾矿坝的液化与稳定.工业建筑,1995(5):49-52.
    [73] 辛鸿博,王余庆,高艳平.中国尾矿坝地震安全度(13)——1976年大石河尾矿坝一维地震反应分析.工业建筑,1995(6):49-52.
    [74] 高建生,李万升,王治平.中国尾矿坝地震安全度(14)——利用共振柱对尾矿砂的测试及分析.工业建筑,1995(7):48-50.
    [75] 辛鸿博,王余庆,高艳平.中国尾矿坝地震安全度(15)——1976年大石河尾矿坝二维地震反应分析.工业建筑,1995(8):43-46.
    [76] 高艳平,王余庆,辛鸿博.中国尾矿坝地震安全度(16)——大石河尾矿坝地震液化的二维简化判别.工业建筑,1995(10):43-46.
    [77] 辛鸿博,Finn W D L.1976年大石河尾矿坝地震反应分析.岩土工程学报,1996,18(4):48-56.
    [78] 中国水利水电科学研究院主编.水工建筑物抗震设计规范(DL5073—2000).北京:中国电力出版社,2001.
    [79] Ministry of International Trade and Industry (Bureau of Land and Pollution). Specifications of Construction of Tailings and Commentary, Japan, 1980.
    [80] Australian National Committee on Large Dams Incorporated. Guidelines on Dam Safety Management. Australian, 2003.
    [81] USSD Committee on Earthquakes. Guidelines on Design Features of Dams to Effectively Resist Seismic Ground Motion. US, 2003.
    [82] Chile Supreme Court Decree. Regulation on the Construction and Operation of Tailings Dams. Santiago, Chile, 1970.
    [83] The Committee on Soil Dynamics of the Geotechnical Engineering Division. Definition of terms related to liquefaction. Journal oft he Geotechnical Engineering Division, ASCE, 1978, 104(9): 1197-1200.
    [84] Seed H B, Idriss I M, Arango I. Evaluation of liquefaction potential using field performance data. Journal of Geotechnical Engineering, ASCE, 1983, 109(3): 458-482.
    [85] Castro G, Poulos J. Factors affecting liquefaction and cyclic mobility. Journal of Geotechnical Engineering Division, ASCE, 1977, 103(6): 501-516.
    [86] Robertson P K, Sasitharan S, Cunning J C, et al. Shear-wave velocity to Evaluate in-situ state of ottawa sand. Journal of Geotechnical Engineering, ASCE, 1995(121): 262-273.
    [87] 汪闻韶.土工抗震研究进展.岩土工程学报,1993,15(6):80-82.
    [88] 谢定义.饱和砂土体液化的若干问题.岩土工程学报,1992,14(3):90-98.
    [89] 潘健,刘利艳,林慧常.基于BP神经网络的砂土液化影响因素的综合评估.华南理工大学学报,2006,34(11):76-80.
    [90] 杨健,陈庆寿.砂土液化影响因素及其判别方法.西部探矿工程,2004,93(2):1-2.
    [91] Seed H B, Idriss I M. Simplified procedure for evaluating soil liquefaction potential. Journal of the Soil Mechanics and Foundations Division, ASCE, 1971, 97(9): 1249-1273.
    [92] 王刚.砂土液化后大变形的物理机制与本构模型研究:(博士学位论文).北京:清华大学,2005.
    [93] Yoshimi Y, Tokimatsu K, Hosaka Y. Evaluation of liquefaction resistance of clean sands based on high-quality undisturbed samples. Soils and Foundations, 1989, 29(1): 3-104.
    [94] 刘小生,汪闻韶,赵冬.饱和原状砂土的静动力强度特性试验研究.水利学报,1993,(2):32-42.
    [95] Yord T L, Idriss I M. Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(4): 297-313.
    [96] Seed R B, Cetin K O, Moss R E S, et al. Recent advances in soil liquefaction engineering and seismic site response evaluation. Proceedings of Fourth International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics and Symposium in Honor of Professor W. D. L. Finn, San Diego, California, March 26-31, 2001.
    [97] Dobry R, Ladd R S, Yokel F Y, et al. Prediction of pore-water pressure buildup and liquefaction of sands during earthquakes by the cyclic strain method. NBS Building Science Series 138, US Department of commerce.
    [98] Nemat-Nasser S, Shokooh A. A unified approach to densification and liquefaction of cohesionless sand in cyclic shearing. Canadian Geotechnical Journal, 1979, 16: 659-678.
    [99] Gutenberg B, Richter C F. Magnitude and energy of earthquakes. Ann. Geofis., 1956, 9: 1-15.
    [100] Arias A. A measure of earthquake intensity. In: Schaefer V Reds, Seismic Design for Nuclear Power Plants. Cambridge, MA: The MIT Press, 1970.428-483.
    [101] Davis R O, Berrill J B. Energy dissipation and seismic liquefaction in sands. Earthquake Engineering and Structural Dynamics, 1982, 10: 59-68.
    [102] Berrill J B, Davis R O. Energy dissipation and seismic liquefaction of sands: revised model. Soils and Foundations, 1985, 25(2): 106-118.
    [103] Law K T, Cao Y L, He G N. An energy approach for assessing seismic liquefaction potential. Canadian Geotechnical Journal, 1990, 27(3): 320-329.
    [104] Trifunac M D. Empirical criteria for liquefaction in sand via standard penetration tests and seismic wave energy. Soil Dynamics and Earthquake Engineering, 1995, 14:419-426.
    [105] Egan J A, Rosidi D. Assessment of earthquake-induced liquefaction using ground-motion energy characteristics. In Proceedings of Pacific Conference on Earthquake Engineering. New Zealand: 1991, Nov.20-23, 313-324.
    [106] Kayen R E, Mitchell J K. Assessment of liquefaction potential during earthquakes by Arias Intersity. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123(12): 1162-1174.
    [107] Running D L. An energy-based model for soil liquefaction: [dissertation]. Washington State University, 1996.
    [108] 吴再光,韩国城,林皋.随机土动力学概论.大连理工大学出版社,1992.
    [109] 汪明武,罗国煜.可靠性分析在砂土液化势评价中的应用.岩土工程学报,2000,22(5):542-544.
    [110] 佘跃心,刘汉龙,高玉峰.场地液化势评价概率模型.工程勘察,2002,34(5):4-7.
    [111] 佘跃心.砂土液化判别方法可靠性评价.岩土力学,2004,25(5):803-807.
    [112] 佘跃心.二维场地液化势预测的神经网络方法.岩土力学,2004,25(10):1569-1574.
    [113] 陈国兴,李方明.基于径向基函数神经网络模型的砂土液化概率判别方法.岩土工程学报,2006,28(3):301-305.
    [114] Liao S S C, Veneziano D, Whitman, R V. Regression models for evaluating liquefaction probability. Journal of Geotechnical Engineering, 1988, 114(4): 389-411.
    [115] Youd T L, Noble S K. Liquefaction criteria based statistical and probabilistic analysis. Proceedings of NCEER Workshop on Evaluation of Liquefaction Resistance of Soil, Technical report No: NCEER-97-0022, State university of New York at Buffalo, 1997, 201-216.
    [116] Juang C H, Jiang T, Andrus R D. Assessing probability-based methods for liquefaction potential evaluation. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(7): 580-589.
    [117] Lai S Y, Chang W J, Lin P S. Logistic regression model for evaluating soil liquefaction probability using CPT data. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(6): 694-704.
    [118] Horowitz J L. Evaluation of usefulness of two standard goodness-of-fit indicators for comparing non-nested random utility models. Advances in Trip Generation, Transportation Research Record 874, Transportation Research Board, National Research Council, Washington, 1982, 19-25.
    [119] Cetin K O, Seed R B, Kiureghian A D, et al. Standard penetration test-based probabilistic and deterministic assessment of seismic soil liquefaction potential. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(12): 1314-1340.
    [120] 赵国藩,曹居易,张宽权.工程结构可靠度.北京:水利电力出版社,1984.
    [121] 谢康和,周健.岩土工程有限元分析理论与应用.北京:科学出版社,2002.
    [122] 邹德高,孔宪京.GEOtechnical D Ynamic Nonlinear Analysis—GEODYNA使用说明,大连理工大学土木水利学院工程抗震研究所.
    [123] Cetin K O, Seed R B. Nonlinear shear mass participation factor (r_d) for cyclic shear stress ratio evaluation. Soil Dynamics and Earthquake Engineering, 2004, 24(2): 103-113.
    [124] 阮元成,郭新.饱和尾矿料动力变形特性的试验研究.水利学报,2003,34(4):24-29.
    [125] 阮元成,郭新.饱和尾矿料静、动强度特性的试验研究.水利学报,2004,35(1):67-73.
    [126] 陈敬松,张家生,孙希望.饱和尾矿砂动强度特性试验结果与分析.水利学报,2006,37(5):603-607.
    [127] 金晓媚,王余庆.尾矿土振动液化参数.第四届全国土动力学学术会议论文集。杭州:浙江大学出版社,1994.
    [128] 张超,杨春和,白世伟.尾矿料的动力特性试验研究.岩土力学,2006,27(1):35-40.
    [129] Ishihara K, Troncoso J, Kawase Y, et al. Cyclic strength characteristics of tailings materials. Soils and Foundations, 1980, 20(4): 127-142.
    [130] Garga V K, Mchay L D. Cyclic triaxial strength of mine tailings. Journal of Geotechnical Engineering, 1984, 110(8): 1091-1105.
    [131] Troncoso J H. Critical state of tailings silty sands for earthquake loadings. Soils Dynamics and Earthquake Engineering, 1986, 5(3): 248-252.
    [132] Wijewickreme D, Sanin M V, Greenaway G R. Cyclic shear response of fine-grained mine tailings. Canadian Geotechnical Journal, 2005, 42(12): 1408-1421.
    [133] 徐宏达.不同固结度尾矿泥动强度的试验和推求.中国矿山工程,2004,33(5):26-29.
    [134] 辛鸿博,王余庆.大石河尾矿粘性土的动力变形和强度特征.水利学报,1995,26(11):56-62.
    [135] 谢孔金,王霞,王磊.尾矿坝坝体沉积尾矿的动力变形特性.岩土工程界,2005,8(2):45-49.
    [136] 刘宪权,谢孔金.尾矿坝坝体沉积尾矿的动强度特性.西部探矿工程,2006,(9):51-53.
    [137] 谢欣,张家生,刘聪聪.尾矿料的力学性试验研究.矿业工程,2006,4(5):61-62.
    [138] Seed H B, Martin P P, Lysmer J. Pore-water pressure changes during soil liquefaction. Journal of the Geotechnical Engineering Division, ASCE, 1976, 102(4): 323-346.
    [139] Iwasaki T, Arakawa T, Tokida K I. Simplified procedures for assessing soil liquefaction during earthquakes. Soil Dynamics and Earthquake Engineering, 1984, 3(1): 49-58.
    [140] Cooke H G, and Mitchell J K. Evaluation and selection of liquefaction mitigation measures for existing bridges. Proc. Seismic risks and solutions for highways and bridges in the central and eastern United States, Mid-America highway seismic conference, Feb.28-Mar.3, 1999.
    [141] JGS. Soils and foundations-special issue on geotechnical aspects of the January 17, 1995 Hyogoken-Nam bu earthquake. Japanese society geotechnique engineeringg, 1996.
    [142] Shenthan T. Liquefaction mitigation in silty soils using stone columns supplemented with wick drains: [dissertation]. New York: State university of New York at Buffalo, 2005.
    [143] Nashed R. Liquefaction mitigation of silty soils using dynamic compaction: [dissertation]. New York: State university of New York at Buffalo, 2005.
    [144] 王余庆.尾矿坝抗震鉴定与加固.见:魏琏,谢君斐主编.中国工程抗震研究四十年.北京:地震出版社,1989,225-228.
    [145] 黄春霞,张鸿儒,隋志龙.碎石桩复合地基的抗液化特性探讨.工程地质学报,2004,12(2):148-154.
    [146] Ishihara S, Kawase Y, Nakajima M. Liquefaction characteristics of sand deposits at an oil tank site during the 1978 Miyagiken-oki earthquake. Soils and foundations, 1980, 20(2): 97-111.
    [147] Mitchell J K, Baxter C D P, Munson T C. Performance of improved ground during earthquakes. Soil improvement for earthquake hazard mitigation, ASCE geotechnical special publication No. 49, 1995, 1-36.
    [148] Seed H B, Booker J R. Stabilization of potentially liquefiable sand deposits using gravel drains. Journal of the Geotechnical Engineering Division, ASCE, 1977, 103(7): 757-768.
    [149] Baez J I, Martin G R. Advances in the design of vibro systems for the improvement of liquefaction resistance. Proceeding of the Symposium on Ground Improvcmant. Vancouver Gcotechnical Society, Vancouver, B. C., Canada, 1993.
    [150] Luehring R, Stevens M, Snorteland N, et al. Liquefaction mitigation of a silty dam foundation using vibro-stone columns and drainage wicks: a case history at salmon lake dam. The Future of Dams and Their Reservoirs, 21st USSD Annual Meeting and Lecture Proceedings, USSD, 2001, 41-57.
    [151] 徐志英.砂井内设置砾石排水桩抗地震液化的分析与计算.勘察科学技术,1985,(1):1-7.
    [152] Adailer K, Elgamal A, Meneses J, et al. Stone columns as liquefaction countermeasure in non-plastic silty soils. Soil Dynamics and Earthquake Engineering, 2003(23): 571-584.
    [153] Baez J I, Martin G R. Quantitative evaluation of stone column technique for earthquake liquefaction mitigation. 10th world conference on earthquake engineering, Rotterdam, 1992.1477-1483.
    [154] 郑建国.碎石桩复合地基液化判别方法的探讨.工程勘察,1999,(2):5-7.
    [155] 邱钰,黄卫,刘松玉.干振碎石桩处理高速公路液化地基效果分析.公路交通科技,2000,17(4):19-21.
    [156] 林本海,谢定义.复合地基的液化检验理论及其应用.北京:中国水利水电出版社,1999.
    [157] 徐日庆等.土工合成材料应用技术.北京:化学工业出版社,2005:1-20.
    [158] 中国建筑史编写委员会.中国建筑简史(第一册).北京:中国建筑工业出版社,1962.
    [159] 中国大百科全书总编辑委员会——土木工程编辑委员会.中国大百科全书(第一版)——土木工程.北京:中国大百科全书出版社,1987.
    [160] Schdosser F, Long N T. Recent result in French research on reinforced earth. Journal of the Construction Division, ASCE, 1974, 100(3): 223-237.
    [161] 陈忠达.公路挡土墙设计(第一版).北京:人民交通出版社,1999.
    [162] 杜运兴.预应力CFRP加筋土技术的应用与研究:(湖南大学博士学位论文).湖南大学:湖南大学,2003:1-9.
    [163] 王凤江.加筋尾矿砂的三轴试验研究.辽宁工程技术大学学报,2003,22(5):618-620.
    [164] 孔宪京,邹德高,邓学晶等.高土石坝综合抗震措施及其效果的验算.水利学报,2006,37(12):1489-1495.
    [165] 刘浩吾,王雪松.论土石坝的新型结构——加筋堆石坝.水利水电技术,2000,31(4):19-21.
    [166] 钱家欢,殷宗泽.土工原理与计算.北京:中国水利水电出版社,1996.
    [167] Pastor M, Zienkiewicz O C, Chan A H C. Generalized plasticity and the modelling of soil behavior. International Journal for Numerical and Analytical Methods in Geomechanics, 14:151-190, 1990.
    [168] Chan A H C. User manual for DIANA SWANDYNE-Ⅱ. UK: School of Civil Engineering, University of Birmingham, 1993.
    [169] Madabhushi S P G, Zeng X. Seismic response of gravity quay wall Ⅱ: Numerical modeling. Journal of Geotchnical and Geoenvironmental engineering, ASCE, 1998, 124(5): 418-427.
    [170] Dewoolkar M M, Ko H Y, Pak R Y S. Centrifuge modelling of models of seismic effects on saturated earth structures. Gcotcchniquc, 1999, 49(2): 247-266.
    [171] Ghosh B, Madabhushi S P G. A numerical investigation into effects of single and multiple frequency earthquake motions. Soil Dynamics and Earthquake engineering, 2003, 23: 691-704.
    [172] Aydingun O, Adalier K. Numerical analysis of seismically induced liquefaction in earth embankment foundations Part Ⅰ: Benchmark model. Canadian Geotcchnical Journal, 2003, 40(4): 753-765.
    [173] 刘华北,宋二祥.可液化土中地铁结构的地震响应.岩土力学,2005,26(3):381-386.
    [174] 刘华北,宋二祥.截断墙法降低地下结构地震液化上浮.岩土力学,2006,27(7):1049-1055.
    [175] Yang S, Ling H I, Liu H B. Finite element response analysis of liquefiable soil deposit using a generalized plasticity model. Proceedings of 17gh ASCE Engineering Mechanics Conference, Newark: University of Delaware, 2004.
    [176] Seed H B, Lee K L. Liquefaction of saturated sands during cyclic loading. Journal of the Soil Mechanics and Foundation Engineering Division, ASCE, 1966, 92(6): 105-134.
    [177] ALID研究会.2次元液化流动解析说明书(Analysis for Liquefaction-Induced Deformation), 2005.
    [178] Ishihara K. Liquefaction and flow failure during earthquakes. Geotechnique, 1993, 43(3): 351-415.
    [179] Hamada M, Towhata I, Yasuda S, et al. Study on permanent ground displacement induced by seismic liquefaction. Computers and Geotechnics, 1987, 4: 197-220.
    [180] Youd T L, Perkins D M. Mapping of liquefaction severity index. Journal of Geotechnical Engineering, ASCE, 1987, 113(11): 1374-1392.
    [181] Bartlett S F, Youd T L. Empirical prediction of lateral spread displacement. Journal of Geotechnical Engineering, ASCE, 1995, 121(4): 316-329.
    [182] Chiru-Danzer M, Juang C H, Christopher R A, et al. Estimation of liquefaction-induced horizontal displacements using artificial neural networks. Canadian Geotechnical Journal, 2001, 38: 200-207.
    [183] 刘勇健.人工神经网络原理在建筑物震馅预测中的应用.地震研究,2001,24(3):262-266.
    [184] 余跃心,刘汉龙,高玉峰.地震诱发的侧向水平位移神经网络预测模型.世界地震工程,2003,19(1):96-101.
    [185] Javadi A A, Rezania M, Nezhad M M. Evaluation of liquefaction induced lateral displacements using genetic programming. Computers and Geotechinics, 2006, 33: 222-233.
    [186] 周云东.地震液化引起的地面大变形试验研究:(博士学位论文).南京:河海大学,2003.
    [187] Uzuoka R, Yashima A, Kawakami T, et al. Fluid dynamics based prediction of liquefaction-induced lateral spreading. Computers and Geotechnics, 1998, 22(3): 243-282.
    [188] Hadush S, Yashima A, Uzuoka R. Importance of viscous fluid characteristics in liquefaction-induced lateral spreading analysis. Computers and Geotechnics, 2000, 27(3): 199-224.
    [189] Towhata I, Sasaki Y, Tokida K I, et al. Prediction of permanent displacement of liquefied ground by means of minimum energy principle. Soils and Foundations, 1992, 32(3): 97-116.
    [190] Shamoto Y, Zhang J M, Goto S, et al. A new approach to evaluate the post-liquefaction permanent deformation in saturated sand. Proceeding of 11th World Conference on Earthquake Engineering, Acapulco, Mexico, 1996.
    [191] Shamoto Y, Zhang J M, Tokimatsu K. Methods for evaluating residual post-liquefaction ground settlement and horizontal displacement. Soils and Foundations, Special Issue on Geotechnical Aspects of the January 17 1995 Hyogo-ken Nambu Earthquake, 1998, 38(2): 69-84.
    [192] 张建民.地震液化后地基大变形的实用预测方法.第八届土力学及岩土工程学术会议论文集,万国学术出版社,1999,573-576.
    [193] Yasuda S, Yoshida N, Masuda T, et al. Stress-strain relationships of liquefied sands. Earthquake Geotechnical Engineering, Rotterdam: Balkema, 1995, 811-816.
    [194] Yasuda S, Yoshida N, Kiku H, et al. A simplified method to evaluate liquefaction-induced deformation. Earthquake Geotechnical Engineering, Rotterdam: Balkema, 1999, 555-560.
    [195] Yasuda S, Ideno T, Sakurai Y. Analyses for liquefaction-induced settlement of river levees by ALID. Proceeding of the 12th Asian Regional Conference on Soil Mecanics & Geotechnical Engineering, Singapore: World Scientific Publishing, 2003, 347-350.
    [196] 刘汉龙,费康,高玉峰.边坡地震稳定性时程分析方法.岩土力学,2003,24(4):553-556.
    [197] Watanabe H, Baba K, Hirata K. A consideration on the method of evaluation for sliding stability of filldams during strong motion earthquakes based upon dynamic analysis.Tokyo: Central Research Institute of Electric Power Industry, 1981.
    [198] Newmark N M. Effects of earthquakes on dams and embankments. Geotechnique, 1965, 15(2): 139-160.
    [199] Seed H B, Martin G R. The seismic coefficients in earth dam design. Journal of the Soil Mechanics and Foundations Division, ASCE, 1966, 92(3): 25-58.
    [200] 赵杰,邵龙潭.北京云冶公司冯家峪铁矿尾矿库坝体勘察试验研究及动静力稳定分析.大连理工大学,2005.
    [201] 邵龙潭,赵杰.梅山矿冶公司梁唐尾矿库尾矿筑坝渗流试验和静动力稳定分析.大连理工大学,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700