高水热稳定性介孔材料的合成及在催化中应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
介孔材料由于具有的大比表面积和孔体积、均一的孔径分布等特点,以及它在吸附分离、催化、传感器件、药物控释等领域表现出来的巨大应用潜力,受到了世界各地研究者的重视。其中,SBA-15因为较好的水热稳定性和较大的孔径在介孔材料家族中占有重要的位置。近年来关于改进SBA-15水热稳定性和增加酸性的报道非常多。
     首先,我们在氟化物为助剂的P123单模板剂条件下,通过较高温度(160℃)和较高pH值(pH=6)的老化处理,合成出了铝量可控的高水热稳定性的Al-SBA-15介孔材料.通过小角X射线衍射(low-angle XRD).氮气吸附脱附等温线(N2-sorption isotherm).透射电镜(TEM)、X射线能谱元素分析(EDX)、氨的程序升温脱附(NH3-TPD)、固体核磁(27A1-NMR)等表征方法对材料进行分析发现:初始投料中的铝元素都保留在了产物中,并且合成的Al-SBA-15经过100℃下300小时的水热测试和600℃下6小时的水蒸气测试依旧保持了很好的介孔结构,比表面积几乎不变。合成的Al-SBA-15作为固体酸催化剂在甲醇溶液中催化环己酮和苯甲醛生成缩酮的催化反应中表现出了很好的催化活性和稳定性。
     进一步地,通过小角X-射线衍射、氮气吸附脱附等温线表征以不同硅铝比的Al-SBA-15作为载体负载不同量的铜元素的催化材料的结构性质,并以苯酚羟基化的反应为模型反应考察了材料的催化性能。研究发现:高的铜负载量不利于介孔材料结构的保持,在较低的铜负载量的情况下就可以使苯酚羟基化达到很高的转化率。通过对Al-SBA-15和SBA-15作为载体的催化剂的循环套用分析,发现Al-SBA-15作为载体比SBA-15拥有更好的催化稳定性,这应该得益于载体中的铝元素增加了材料表面的电荷,使铜离子与载体的相互作用加强,在循环套用中的铜离子在材料表面的分散更均匀。
Since the discovery of M41S by Mobil's scientists in 1992, ordered mesoporous silicate materials have attracted intense attention for their high surface area, uniform pore size distribution, large pore size, and potential applications, such as catalysts, catalyst supports, adsorbents and so on. SBA-15 is one of the most important materials in the family of mesoporous materials for its better hydrothermal stability and larger pore diameter. To expend the applications of SBA-15, much effort has been focused on the incorporation of heteroatom and enhancing the hydrothermal stability.
     Extremely hydrothermal stable mesoporous silica Al-SBA-15 with controllable Al content has been synthesized in a simple procedure only using one surfactant (P123) as template under the assistance of NaF at 160℃with a high pH value adjusted. This material was characterized by powder X-ray diffraction (XRD), N2 sorption isotherms, TEM,27Al MAS NMR, energy-dispersive X-ray spectroscopy (EDX), and NH3-TPD. It is found that synthesized Al-SBA-15 maintained the well-resolved SXRD patterns and high surface area, large pore size, thick pore wall and high pore volume after being hydrothermally treated at 100℃for 300 h or steamed at 600℃for 6 h and almost all the All added into the initial reaction mixture can be introduced into the products. The Al-SBA-15 is efficient catalyst for protection of carbonyl compounds reactions under mild conditions and in short reaction times.
     A series of catalysts with different copper content and Si/Al ratios were characterized by small X-ray diffraction, N2 adsorption-desorption and the catalytic activity in the reaction of phenol hydroxylation. It showed that the catalyst has a very high conversion in a lower copper content condition. With the copper content increased, the conversion wasn't increased, but the mesostructure became unordered. The phenol hydroxylation with Al-SAB-15 catalyst support has higher catalytic activity and stability than SBA-15 for 5 cycles. This may be ascribed to the increasing of the surface electric charge associated with Al cations and making the Cu dispersed uniform.
引文
[1]Corma A. From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chem. Rev.1997,97:2373-2420
    [2]Kresge C T, Leonowicz W J, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature.1992,359:710-712
    [3]Beck J S, Vartuli J C, Roth W J, Leonowicz M E, Kresge C T, Schmitt K D, Chu C T W, Olson D H, Sheppard EW, McCullen S B, Higgins J B, Schlenker J L. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem.Soc. 1992,114:10834-10843
    [4]Yanagisawa T, Shimizu T, Kuroda K, Kato C. The preparation of alkyltrimethylammoniumkanemite complexes and their conversion to microporous materials. Bull. Chem. Soc. Jpn.1990,63(4):988-992
    [5]Huo Q, Margolese D, Stucky G D. Organization of organic molecules with inorganic moleculars pecies into nanocomposite biphase arrays. Chem. Mater.1996,8:1147-1160
    [6]Yang P, Zhao D, Margolese D, et al. General lized syntheses of large-pore mesoporous metal oxides with semicrystal line frame works. Nature 1998,396:152-155
    [7]Landry C C, Tolbert S H, Gallis K W, Monnier A, Stucky G D, Norby F, Hanson J C. Phase Transformations in Mesostructured Silica/Surfactant Composites. Mechanisms for Change and Applications to Materials Synthesis. Chem. Mater.2001,13:1600-1608
    [8]Brinker C J, Scherer G W. Sol-Gel Science:The Physics and Chemistry of Sol-Gel Processing; Academic Press:New York,1990
    [9]Voegtlin A C, Ruch F, Guth J L, Patarin J, Huve L. F" mediated synthesis of mesoporous silica with ionic-and non-ionic surfactants A new templating pathway. Microporous Mater.1997,9(1,2):95-105
    [10]Kim J M, Han Y J, Chmelka B F, Stucky G D. One-step synthesis of ordered mesocomposites with non-ionic amphiphilic block copolymers:implications of isoelectric point, hydrolysis rate, and fluoride. Chem. Commun.2000,2437-2438
    [11]Huo Q S, Margolese D I, Ciesla U, Feng P Y, Gier T E, Sieger P, Leon R, Petroff P M, Schuth F, Stucky G D. Generalized synthesis of periodic surfactant/inorganic composite materials, Nature 1994,368:317-321
    [12]Zhao D Y, Sun J Y, Li Q Z, Stucky G D. Morphological Control of Highly Ordered Mesoporous Silica SBA-15. Chem. Mater.2000,12:275-279
    [13]Berggren A, Palmqvist A E C, Holmberg K. Surfactant-templated mesostructured materials from inorganic silica. Soft Matter 2005,1(3):219-226
    [14]Kim J M, Kim S K, Ryoo R. Synthesis of MCM-48 single crystals. Chem. Commun. 1998:259-260
    [15]Matos J R, Mercuri L P, Kruk M, Jaroniec M. Synthesis of large-pore silica with cage-like structure using sodium silicate and triblock copolymer template. Langmuir 2002,18(3):884-890
    [16]Yu C Z, Fan J, Tian B Z, Zhao D Y, Stucky G D. High-yield synthesis of periodic mesoporous silica rods and their replication to mesoporous carbon rods. AdV.Mater. 2002,14(23):1742-1745
    [17]Yu C Z, Fan J, Tian B Z, Zhao D Y. Morphology Development of Mesoporous Materials:a Colloidal Phase Separation Mechanism. Chem. Mater.2004,16(5): 889-898
    [18]Fan J, Yu C Z, Lei J, Zhang Q, Li T C, Tu B, Zhou W Z, Zhao D Y. Low-Temperature Strategy to Synthesize Highly Ordered Mesoporous Silicas with Very Large Pores. J. Am. Chem. Soc.2005,127:10794-10795
    [19]Patarin J, Lebeau B, Zana R. Recent advances in the formation mechanisms of organized mesoporous materials. Curr. Opin. Colloid Interface Sci.2002,7(1,2): 107-115
    [20]Chen X Y, Huang L M, Li Q Z. Hydrothermal Transformation and Characterization of Porous Silica Templated by Surfactants. J. Phys. Chem. B 1997,101(42):8460-8467
    [21]Han Y, Li D F, Zhao L, Song J W, Yang X Y, Li N, Di Y, Li C J, Wu S, Xu X Z, Meng X J, Lin K F, Xiao F S. High-temperature generalized synthesis of stable ordered mesoporous silica-based materials by using fluorocarbon-hydrocarbon surfactant mixtures. Angew. Chem., Int. Ed.2003,42(31):3633-3637
    [22]Newalkar B L, Komarneni S. Control over Microporosity of Ordered Microporous-Mesoporous Silica SBA-15 Framework under Microwave-Hydrothermal Conditions:Effect of Salt Addition. Chem. Mater.2001,13:4573-4579
    [23]Newalkar B L, Komarneni S, Turaga U T, Katsuki H. Synthesis and characterization of PSU-1, a novel cage-like mesoporous silica. J. Mater.Chem.2003,13:1710-1716
    [24]Kruk M, Jaroniec M, Ko C. H, Ryoo R. Characterization of the Porous Structure of SBA-15. Chem. Mater.2000,12:1961-1968
    [25]Zhang F Q, Yan Y, Yang H F, Meng Y, Yu C Z, Tu B, Zhao D Y. Understanding Effect of Wall Structure on the Hydrothermal Stability of Mesostructured Silica SBA-15. J. Phys. Chem. B 2005,109(18),8723-8732
    [26]Inagaki S, Sakamoto Y, Fukushima Y, Terasaki O. Pore wall of a mesoporous molecular sieve derived from kanemite. Chem. Mater.1996,8:2089-2095
    [27]Zhao D Y, Huo Q S, Feng J L, Chmelka B F, Stucky G D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc.1998,120(24): 6024-6036
    [28]B. P van Grieken R, Calleja G, Stucky G D, Melero J A, Garcia R A, Iglesias J. Supercritical Fluid Extraction of a Nonionic Surfactant Template from SBA-15 Materials and Consequences on the Porous Structure. Langmuir.2003,19:3966-3973
    [29]Gallis K W, Landry C C. Rapid Calcination of Nanostructured Silicate Composites by Microwave Irradiation. AdV. Mater.2001,13:23-26
    [30]Hozumi A, Yokogawa Y, Kameyama T, Hiraku K, Sugimura H, Takai O, Okido M. Photocalcination of mesoporous silica films using vacuum ultraviolet light. AdV. Mater. 2000,12:985-987
    [31]Lu Y F, Ganguli R, Drewien C A, Anderson M T, Brinker C J, Gong W L, Guo Y X, Soyez H, Dunn B, Huang M H, Zink J I. Continuous formation of supported cubic and hexagonal mesoporous films by sol-gel dip-coating. Nature 1997,389:364-368
    [32]Tian B Z, Liu X Y, Solovyov L A, Liu Z, Yang H F, Zhang Z D, Xie S H, Zhang F Q, Tu B, Y C Z, Terasaki O, Zhao D Y. Facile Synthesis and Characterization of Novel Mesoporous and Mesorelief Oxides with Gyroidal Structures. J. Am. Chem. Soc.2004, 126(3):865-875
    [33]Melosh N A, Davidson P, Chmelka B F. Monolithic mesophase silica with large ordering domains. J. Am. Chem. Soc.2000,122(5):823-829
    [34]Xu M C, Arnold A, Buchholz A, Wang W, Hunger M. Low-Temperature Modification of Mesoporous MCM-41 Material with Sublimated Aluminum Chloride in Vacuum. J. Phys. Chem. B 2002,106(47):12140-12143.
    [35]Vogel R, Dobe C, Whittaker A, Edwards G, Riches J D, Harvey M, Trau M, Meredith P. Postsynthesis Stabilization of Free-standing Mesoporous Silica Films. Langmuir 2004, 20(7):2908-2914
    [36]Xia Y D, Mokaya R. A study of the behaviour of mesoporous silicas in OH/CTABr/H2O systems:phase dependent stabilisation, dissolution or semipseudomorphic transformation. J. Mater. Chem.2003,13(12):3112-3121
    [37]Schuth F, Schmidt W. Microporous and mesoporous materials. AdV. Mater.2002,14(9): 629-638
    [38]Ying J Y, Mehnert C P, Wong M S. Synthesis and applications of supramolecular-templated mesoporous materials. Angew. Chem., Int. Ed.1999,38: 56-77
    [39]Schuth F. Non-siliceous Mesostructured and Mesoporous Materials. Chem. Mater.2001, 13(10):3184-3195
    [40]Chen C Y, Burkett S L, Li H X, et al. Studies on mesoporous materials:Ⅱ, synthesis mechanism of MCM-41. Microporous Materials.1993,2 (1):27-34
    [41]Firouzi A, Kumar D, Bull L M, et al. Cooperative organization of inorganic-surfactant and biomimetic assemblies. Science.1995,267:1138-1143
    [42]Huo Q S, Margolese D I, Ciesla U, et al. Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays. Chemistry of Materials. 1994,6(8):1176-1191
    [43]Zhao D Y, Feng J L, Huo Q S, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science.1998,279:548-552
    [44]Mokaya R, Jones W. Post-synthesis grafting of Al onto MCM-41. Chem. Commun. 1997:2185-2186
    [45]Jana S K, Kugita T, Namba S. Aluminum-grafted MCM-41 molecular sieve:an active catalyst for bisphenol F synthesis process. Appl. Catal. A 2004,266:245-250
    [46]Mokaya R, Alxn. C-grafted MCM-41 Catalysts:Probing the Influence of Temperature on the Alumination Process. J. Catal.2000,193:103-107
    [47]Han Y, Li D, Zhao L, Song J, Li N, Di Y, Li C, Wu S, Xu X, Meng X, Lin K, Xiao F S. High-Temperature Generalized Synthesis of Stable Ordered Mesoporous Silica-Based Materials by Using Fluorocarbon-Hydrocarbon Surfactant Mixtures. Angew. Chem., Int. Ed.2003,42:3633-3637
    [48]Li D F, Han Y, Song J W, Zhao L, Xu X, Di Y, Xiao F S. High-temperature synthesis of stable ordered mesoporous silica materials by using fluorocarbon-hydrocarbon surfactant mixtures. Chemistry-A European Journal.2004,10 (23):5911-5922.
    [49]Li C L, Wang Y Q, Guo Y L, Liu X H, Guo Y, Zhang Z G, Wang Y S, Lu G Z. Synthesis of Highly Ordered, Extremely Hydrothermal stable SBA-15/Al-SBA-15 under the Assistance of Sodium Chloride. Chem. Mater.2007,19:173-178
    [50]Chen G D, Wang L Z, Lei J Y, Zhang J L. F-assistant synthesis of ultra-hydrothermally stable mesoporous silica by using nonionic organosilicon surfactant as templates. Microporous and Mesoporous Materials.2009,124:204-209
    [51]Pan D H, Yuan P, Zhao L Z, Liu N, Zhou L, Wei G F, Zhang J, Ling Y C, Fan Y, Wei B Y, Liu H Y, Yu C Z, Bao X J. New Understanding and Simple Approach to Synthesize Highly Hydrothermally Stable and Ordered Mesoporous Materials. Chem. Mater.2009, 21:5413-5425
    [52]Yue Y, Cedeon A, Bonardet J L, Melosh N, D'Esinose J B, Fraissard J, Melosh N. Direct synthesis of Al-SBA mesoporous molecular sieves:characterization and catalytic activities. Chem. Commun.1999:1967-1968
    [53]Li Y, Zhang W H, Zhang L, Yang Q H, Wei Z B, Feng Z C, Li C. Direct Synthesis of Al-SBA-15 Mesoporous Materials via Hydrolysis-Controlled Approach. J. Phys. Chem. B.2004,108:9739-9744
    [54]Wu S, Han Y, Zou Y C, Song J W, Zhao L, Di Y, Liu S Z, Xiao F S. Synthesis of Heteroatom Substituted SBA-15 by the "pH-Adjusting" Method. Chem. Mater.2004,16: 486-492
    [55]Vinu A, Murugesan V, Winfried B, Hartmann M. An Optimized Procedure for the Synthesis of AlSBA-15 with Large Pore Diameter and High Aluminum Content. J. Phys. Chem. B 2004,108:11496-11505
    [56]Srinivas D, Ratnasamy P. Spectroscopic and catalytic properties of SBA-15 molecular sieves functionalized with acidic and basic moieties. Microporous Mesoporous Mater. 2007,105:170-180
    [57]Dhar G M, Kumaran G M, Kumar M, Rawat K S, Sharma L D, Raju B D, Rao K S R. Physico-chemical characterization and catalysis on SBA-15 support molybdenum hydrotreating catalysts. Catal. Today 2005,99:309-314
    [58]Ferdous D, Dalai A K, Adjaye J. Hydrodenitrogenation and Hydrodesulfurization of Heavy Gas Oil Using NiMo/A12O3 Catalyst Containing Boron:Experimental and Kinetic Studies. Ind. Eng. Chem. Res.2006,45:544
    [59]Hedoire C E, Louis C, Davidson A, Breysse M, Mange F, Vrinat M. Support effect in hydrotreating catalysts:Hydrogenation properties of molybdenum sulfide supported on a-zeolites of variousacidities. J. Catal.2003,200:433
    [60]Kumaran G M, Garg S, Soni K, Kumar M, Sharma L D, Rao K S R, Dhar G M. Effect of Al-SBA-15 Support on Catalytic Functionalities of Hydrotreating Catalysts. II. Effect of Variation of Molybdenum and Promoter Contents on Catalytic Functionalities Ind. Eng. Chem. Res.2007,46:4747-4754
    [61]Rayo P, Rami'rez J, Rana M S, Ancheyta J, Aguilar-Elgue'zabal A. Effect of the Incorporation of Al, Ti, and Zr on the Cracking and Hydrodesulfurization Activity of NiMo/SBA-15 Catalysts. Ind. Eng. Chem. Res.2009,48:1242-1248
    [62]Chiang C W, Wang A Q, Wan B Z, Mou C Y. High Catalytic Activity for CO Oxidation of Gold Nanoparticles Confined in Acidic Support Al-SBA-15 at Low Temperatures. J. Phys. Chem. B 2005,109:18042-18047
    [1]Kresge C T, Leonowicz W J, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature.1992,359:710-712
    [2]Dragoi B, Dumitriu E, Guimon C, Auroux A. Acidic and adsorptive properties of SBA-15 modified by aluminum incorporation. Microporous and Mesoporous Materials. 2009,121:7-17
    [3]Zhao D Y, Feng J L, Huo Q S, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science.1998,279:548-552
    [4]Bagshaw S A, Prouzet E, Pinnavaia T J. Templating of Mesoporous Molecular Sieves by Nonionic Polyethylene Oxide Surfactants Science.1995,269:1242-1244
    [5]Tanev P T, Pinnavaia T J. A neutral templating route to mesoporous molecular sieves Science.1995,267:865-867
    [6]Li C L, Wang Y Q, Guo Y L, Liu X H, Guo Y, Zhang Z G, Wang Y S, Lu G Z. Synthesis of Highly Ordered, Extremely Hydrothermal stable SBA-15/Al-SBA-15 under the Assistance of Sodium Chloride. Chem. Mater.2007,19:173-178
    [7]Han Y, Li D, Zhao L, Song J, Li N, Di Y, Li C, Wu S, Xu X, Meng X, Lin K, Xiao F S. High-Temperature Generalized Synthesis of Stable Ordered Mesoporous Silica-Based Materials by Using Fluorocarbon-Hydrocarbon Surfactant Mixtures. Angew. Chem., Int. Ed.2003,42:3633-3637
    [8]Li D F, Han Y, Song J W, Zhao L, Xu X, Di Y, Xiao F S. High-temperature synthesis of stable ordered mesoporous silica materials by using fluorocarbon-hydrocarbon surfactant mixtures. Chemistry-A European Journal.2004,10 (23):5911-5922.
    [9]Gu X, Li C L, Liu X H, Ren J W, Wang Y Q, Guo Y L, Guo Y, Lu G Z. Synthesis of Nanosized Multilayered Silica Vesicles with High Hydrothermal Stability. J. Phys. Chem. C.2009,113:6472-6479
    [10]Chen G D, Wang L Z, Lei J Y, Zhang J L. F-assistant synthesis of ultra-hydrothermally stable mesoporous silica by using nonionic organosilicon surfactant as templates. Microporous and Mesoporous Materials.2009,124:204-209
    [11]Xiao N, Wang L, Liu S, Zou Y C, Wang C Y, Ji Y Y, Song J W, Li F, Meng X J, Xiao F S. High-temperature synthesis of ordered mesoporous silicas from solo hydrocarbon surfactants and understanding of their synthetic mechanisms. J. Mater. Chem.2009,19: 661-665
    [12]Pan D H, Yuan P, Zhao L Z, Liu N, Zhou L, Wei G F, Zhang J, Ling Y C, Fan Y, Wei B Y, Liu H Y, Yu C Z, Bao X J. New Understanding and Simple Approach to Synthesize Highly Hydrothermally Stable and Ordered Mesoporous Materials. Chem. Mater.2009,21:5413-5425
    [13]Li Q, Wu Z X, Tu B, Park S S, Ha C S, Zhao D Y. Highly hydrothermal stability of ordered mesoporous aluminosilicates Al-SBA-15 with high Si/Al ratio. Microporous and Mesoporous Materials.2010,135:95-104
    [14]Yue Y, Cedeon A, Bonardet J L, Melosh N, D'Esinose J B, Fraissard J, Melosh N. Direct synthesis of AlSBA mesoporous molecular sieves:characterization and catalytic activities. Chem. Commun.1999:1967-1968
    [15]Zhang W, Lu J, Han B, Li M, Xiu J, Ying P, Li C. Direct Synthesis and Characterization of Titanium-Substituted Mesoporous Molecular Sieve SBA-15. Chem. Mater.2002,14: 3413-3421
    [16]Yang P, Zhao D, Margolese D, Stucky G D. General lized syntheses of large-pore mesoporous metal oxides with semicrystal line frame works. Nature 1998,396:152-155
    [17]Yang P, Zhao D, Margolese D, Chmelka B, Stucky G D. Block Copolymer Templating Syntheses of Mesoporous Metal Oxides with Large Ordering Lengths and Semicrystalline Framework. Chem. Mater.1999,11:2813-2826
    [18]Wu S, Han Y, Zou Y C, Song J W, Zhao L, Di Y, Liu S Z, Xiao F S. Synthesis of Heteroatom Substituted SBA-15 by the "pH-Adjusting" Method. Chem. Mater.2004, 16:486-492
    [19]Li Y, Zhang W H, Zhang L, Yang Q H, Wei Z B, Feng Z C, Li C. Direct Synthesis of Al-SBA-15 Mesoporous Materials via Hydrolysis-Controlled Approach. J. Phys. Chem. B.2004,108:9739-9744
    [20]Schmidt-Winkel P, Lukens W W, Yang P D, Margolese D I, Lettow J S, Ying J Y, Stucky G D. Microemulsion Templating of Siliceous Mesostructured Cellular Foams with Well-Defined Ultralarge Mesopores. Chem. Mater.2000,12:686-696
    [21]Yu C Z, Tian B Z, Fan J, Stucky G D, Zhao D Y. Nonionic Block Copolymer Synthesis of Large-Pore Cubic Mesoporous Single Crystals by Use of Inorganic Salts. J. Am. Chem. Soc.2002,124:4556-4557
    [22]Wang Y Q, Zibrowius B, Yang C, Spliethoff B, Schuth F. Synthesis and characterization of large-pore vinyl-functionalized mesoporous silica SBA-15. Chem. Commun.2004:46-47
    [23]Xu M, Wang W, Seiler M, Buchholz A, Hunger M. Improved Bronsted Acidity of Mesoporous [Al]MCM-41 Material Treated with Ammonium Fluoride. J. Phys. Chem. B.2002,106:3202-3208
    [24]Robinson M W, Graham A E. Mesoporous aluminosilicate promoted protection and deprotection of carbonyl compounds. Tetrahedron Letts.2007,48:4727-4731
    [25]Corma A. Solid acid catalysts. Current Opinion in Solid State and Materials Science. 1997,2:63-75
    [1]Schudel P, Mayer H, Isler O, Sebrell W H, Harris R S. The Vitamins, Academic Press, New York.1972,5:165-168
    [2]Weissermel K, Arpe H J. Industrial Organic Chemistry, VCH, Weinheim.1993: 358-360
    [3]Santos A, Yustos P, Quintanilla A, Rodriguez S, Garcia-Ochoa F. Route of the catalytic oxidation of phenol in aqueous phase. Appl. Catal. B.2002,39:97-113
    [4]Sheldon R A, Van Santen R A. Catalytic Oxidation:Principles and Applications, World Scientific, Singapore.1995:79-104
    [5]Tanev P T, Chibwe M, Pinnavaia T J. Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds. Nature.1994,368:321-323
    [6]Ahn W S, Kim N K, Jeong S Y. Synthesis, characterization, and catalytic properties of Ti-containing mesoporous molecular sieves prepared using a fluorosilicon compound. Catalysis Today.2001.68:83-88
    [7]Corma A, Navrro M T, Perez-Pariente J. Synthesis of an ultralarge pore titanium silicate isomorphous to MCM-41 and its application as a catalyst for selective oxidation of hydrocarbons. J. Chem. Soc. Chem. Commun.1994:147-148
    [8]Notari B. Synthesis and Catalytic Properties of Titanium Containing Zeolites. Stud. Surf. Sci. Catal.1988.37:413-425
    [9]Zhang G Y, Long J L, Wang X X, Zhang Z Z, Dai W X, Liu P, Li Z H, Wu L, Fu X Z. Catalytic Role of Cu Sites of Cu/MCM-41 in Phenol Hydroxylation. Langmuir.2010, 26(2):1362-1371
    [10]Parida K M, Rath D. Surface characterization and catalytic evaluation of copper-promoted Al-MCM-41 toward hydroxylation of phenol. Journal of Colloid and Interface Science.2009,340:209-217
    [11]Wang L P, Kong A G, Chen B, Ding H M, Shan Y K, He M Y. Direct synthesis, characterization of Cu-SBA-15 and its high catalytic activity in hydroxylation of phenol by H2O2. Journal of Molecular Catalysis A:Chemical.2005,230:143-150
    [12]Yin A Y, Guo X Y, Dai W L, Fan K G. Effect of Si/Al Ratio of Mesoporous Support on the Structure Evolution and Catalytic Performance of the Cu/Al-HMS Catalyst. J. Phys. Chem. C.2010,114:8523-8532

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700