环境内分泌干扰物4-壬基苯酚对无脊椎动物家蚕的生殖毒性及分子机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
4-壬基苯酚(4-NP)是一种环境内分泌干扰物,对包括哺乳动物的多种动物生殖系统发育都表现出复杂的毒性效应。迄今为止,还未见4-NP对陆生无脊椎动物生殖发育的影响报告。本研究以无脊椎模式昆虫家蚕为实验模型,采用全龄幼虫饲料添毒方式,通过组织病理切片、生理生化检测、基因表达谱分析、蛋白IHC、HPLC分析、组织和细胞培养等实验技术,调查了4-NP对家蚕的生殖毒性,并探讨了其分子作用机制。在传统的动物体生殖毒理试验基础上,研究建立了简单方便快捷的NP类环境内分泌干扰物的陆生无脊椎动物离体毒性试验模型。获得的主要结果如下:
     1.4-NP经口暴露对家蚕具有生殖毒性
     家蚕幼虫全龄饲料添加4-NP0.05~0.4g kg~(-1),对家蚕蛹的雌雄性比没有影响(P>0.05),但两性的生殖腺指数降低了70.0%~48.7%;成虫的雌雄性比在0.4g kg~(-1)时显著下降了29.2%,产卵数和子代孵化率分别比对照下降了80.7%和91.8%;组织病理学检测出4-NP暴露后家蚕5龄幼虫的精巢生殖细胞发育滞后,细胞结构出现损伤。0.2g kg~(-1)4-NP暴露的家蚕5龄幼虫体内,HPLC检测出有4-NP累积,脂肪体中的累积系数高于中肠、表皮和生殖腺组织;雌蚕的累积系数高于雄蚕。表明4-NP经口暴露对家蚕具有生殖毒性。
     2.家蚕生殖腺中氧化保护酶系统对4-NP暴露敏感
     家蚕幼虫全龄饲料添加4-NP0.05~0.4g kg~(-1),诱导生殖腺脂质过氧化产物MDA增多,耗竭GSH,降低SOD、CAT和GPx活性,引起细胞氧化与抗氧化失衡,导致细胞损伤;同时GSH和GST协同作用参与了对4-NP的解毒。成虫期和蛹期生殖腺中的抗氧化酶系统比5龄幼虫期反应更加敏感,表明家蚕生殖细胞快速发育和成熟过程中抗氧化酶系统仍然对幼虫期的4-NP暴露具有反应;从性别而言,4-NP暴露后,雄性生殖腺的抗氧化酶活性更易被激活,并具备更好的GSH和GST协同作用机制,雌性家蚕抗氧化酶活性下降引起的组织细胞脂质过氧化更加严重。表明4-NP能够通过氧化损伤途径对家蚕雌性生殖发育产生更大的毒性效应,成虫期是可用于从生理指标上来检测4-NP暴露对家蚕生殖毒性效应的敏感时期。
     3.4-NP对雌雄家蚕生殖毒性影响具有不同的分子机理
     4-NP暴露使雌性家蚕生殖发育特异Vg和Esp基因的表达发生变化,IHC显示0.1g kg~(-1)4-NP暴露卵巢中卵黄蛋白的生成量下降。4-NP暴露通过下调雌性家蚕内分泌系统中蜕皮激素受体基因EcR的表达,减少卵黄蛋白由脂肪体向卵巢的转运与发育卵对卵黄蛋白的吸收;4-NP也通过下调JNK信号途径中Jun基因的表达水平来影响卵的发育。
     家蚕幼虫全龄饲料添加4-NP0.05~0.4g kg~(-1),诱导了雌特异Vg基因在雄性幼虫、蛹和成虫期的表达和IHC显示0.05g kg~(-1)4-NP暴露组Vg蛋白在雄性蛹期的表达,表明4-NP对雄性家蚕具有类雌激素效应。利用Vg可以作为评估4-NP和相关酚类等环境内分泌干扰物对家蚕生殖毒性效应的有效生物标志物。4-NP暴露显著抑制雄性家蚕中生殖细胞发育相关的SoxE和Stat基因表达,而EcR基因的表达水平没有受影响。推测4-NP暴露对雄性家蚕生殖腺或生殖细胞发育的影响可能与JAK/STAT信号通路有关。
     4.家蚕精巢组织和生精囊细胞体外培养毒性模型能够快速检测4-NP的雄性生殖毒性家蚕精巢组织直接暴露于7.0~28.0mg L~(-1)4-NP,组织内抗氧化防御系统的平衡受到破坏,但对生殖发育的相关基因SoxE没有显著影响。
     使用接近国内太湖流域生态环境中检测到的4-NP浓度0.02~2.0μg L~(-1)暴露,体外培养的家蚕生精囊生长受到明显抑制作用,表明家蚕雄性生殖细胞对4-NP非常敏感。体外培养生精囊细胞模型可用于检测4-NP的雄性生殖毒性。
     结论:家蚕是研究4-NP生殖毒性效应的一种良好无脊椎模式动物。
As an environmental endocrine disruptor,4-nonylphenol (4-NP) severely affects the developmentof the reproductive system within various animals, including mammals. Right until now there is noreport on the effect of4-NP on reproductive development of terrestrial invertebrates. Bombyx mori (B.mori) was set as an invertebrate insect model, adopting the full-instar larvae diet exposed to4-NP,employed by histopathology, physiological and biochemical detection, gene expression profile analysis,IHC, HPLC analysis, tissue and cell culture and other experimental technologies, the reproductivetoxicity of4-NP to B. mori and its molecular mechanism were investigated. On the basis of thetraditional reproductive toxicity testing in vivo, a easy-handed, fast and convenient in vitro toxicitytesting model was estabished which could be used to detect the endocrine disruptor such as4-NP. Themajor results are as follows:
     1.4-NP through oral exposure has reproductive toxic effects on silkworm, B. mori
     Added with0.05~0.4g kg~(-1)4-NP in diet at B. mori’s larval stage, there was no significantdifference in the sex ratio (female/male) at pupal stage, while the gonad somatic index decreased by70.0%~48.7%; At the adult stage, the sex ratio (female/male) fell by29.2%in the group exposed to0.4g kg~(-1)4-NP, the fecundity and the hatching rate decreased by80.7%and91.8%, respectively.Histopathology demonstrated that the growth of testis germ cells of B. mori was retarded and the cellstructure was injured in4-NP exposed groups.4-NP could be accumulated in the silkworm tissues, andthe content of4-NP in fat body was higher than in intestine, epidermis and gonads; the content of4-NPin females was higher than that in males. The results showed that4-NP through oral exposure hadreproductive toxic effects on B. mori.
     2. Oxidation protective enzyme system in the gonads of silkworm, B. mori is sensitiveto4-NP exposure
     B. mori exposed to0.05~0.4g kg~(-1)4-NP in whole larval stage, the lipid peroxide MDA content ingonads was induced, and the GSH level was exhausted, the enzyme activities of SOD, CAT and GPXwere decreased,4-NP broke the balance of cell oxidation and antioxidant and led to cell injury.Meanwhile, the cooperation of GSH and GST played a role in4-NP detoxification.
     The antioxidant enzymatic systems in gonads of pupae and adults were more sensitive than inlarvae, suggesting that the oxidation protective enzymatic systems in the pupae and adults when germcells developed quickly, were still reactive to the4-NP exposed in larvae.
     The antioxidant enzymatic activities in the gonads of male could be activated easier than in femalegonads, because the male gonads had a better mechanism in cooperation of GSH and GST, and theattenuation of antioxidant enzyme activities in female gonads aggravated the lipid peroxidation of cells.The results suggested that4-NP could produce more reproductive toxicity in female silkworm throughoxidative damage. The adult was the sensitive stage which could be selected as the best period fordetecting insect reproductive toxicity.
     3.4-NP has different molecular mechanisms in affecting the reproductive toxicity ofmale and female silkworm, B. mori
     4-NP exposure induced the expression levels of female special genes Vg and Esp, in which Vgprotein content in ovaries was reduced in0.1g kg~(-1)4-NP exposed group analyzed by IHC. Takentogether, these results showed that4-NP impacted the expression level of the EcR gene which mightlead to reduced activity of ecdysteroids in the ovary and subsequent disturbance of the Vg productionpathway thus affecting its transfer from the fat body to the ovary in this in vivo model. Also,4-NP couldaffect the egg development by down-regulated the expression level of Jun in JNK signal.
     Vg gene expression in male gonad silent in normal stage was induced in larval, pupal and adultstage, while4-NP was added in diet in whole larval stage. Vg protein in testis of pupae was detected in0.05g kg~(-1)4-NP exposure group by IHC assay. The results suggested that4-NP had estronic effect onmale silkworm. Vg gene expression could be used as a typical biomarker in evaluating the reproductivetoxicity of B. mori exposed to4-NP and other related environment endocrine disruptors. The expressionlevel of SoxE and Stat in gonad of male B. mori was significantly reduced in4-NP exposure groups,while the expression level of EcR was not affected. The effects of4-NP on the development of malegonad or germ cells might be related to the JAK/STAT signal pathway.
     4. Establishing the model of B. mori’s testis and spermatotheca in vitro toxicityculture, which can be used to analyze the male reproductive toxicity of4-NP in insects
     Testes of silkworm were exposed to7~28mg L~(-1)4-NP in vitro, and the balance of antioxidantdefense system in tissue were damaged but the expression level of SoxE gene were not affected much.
     4-NP was restrained in the growth development of spermatocyst in vitro which could be used as amodel in analyzing male reproductive toxicity of4-NP. The concentration of4-NP used in detectionwas0.02~2μg L~(-1), which was close to that reported in the actual environment in TaiHu. It meant themale reproductive cells of B. mori were sensitive to4-NP and could be used for the quick analysis of4-NP’s male reproductive toxicity.
     Conclusion: Silkworm, B. mori is a good invertebrate model organism in studying reproductivetoxicity of4-NP.
引文
[1] Adams MD, Kelley JM, Gocayne JD, Dubnick M, Polymeropoulos MH, Xiao H, Merril CR, Wu A,Olde B, Moreno RF, Kerlavage AR, McCombie WR, Venter JC. Complementary DNA sequencing:Expressed sequence tags and human genome project [J]. Science,1991,252:1651-1656.
    [2] Agatz A, Hammers-Wirtz M, Gabsi F, Ratte HT, Brown CD, Preuss TG. Promoting effects onreproduction increase population vulnerability of Daphnia magna [J]. Environ Toxicol Chem,2012,31(7):1604-1610.
    [3] Altuntas E, Turgut T, Ilhan N, Deveci F, Muz HM, Celik I. The levels of oxidant and antioxidantin patients with COPD [J]. Tuberk Toraks,2003,51(4):373-379.
    [4] Aly HA, Domènech O, Banjar ZM. Effect of nonylphenol on male reproduction: analysis of ratepididymal biochemical markers and antioxidant defense enzymes [J]. Toxicol Appl Pharmacol,2012,261(2):134-141.
    [5] Arukwe A, R e K. Molecular and cellular detection of expression of vitellogenin and zona radiataprotein in liver and skin of juvenile salmon (Salmo salar) exposed to nonylphenol [J]. Cell TissueRes.2008,331(3):701-712.
    [6] Asami Y, Horie R, Hamamoto H, Sekimizu K. Use of silkworms for identification of drugcandidates having appropriate pharmacokinetics from plant sources [J]. BMC Pharmacol,2010,10:7.
    [7] Aydo an M, Korkmaz A, Barlas N, Kolankaya D. Pro-oxidant effect of vitamin Ccoadministration with bisphenol A, nonylphenol, and octylphenol on thereproductive tract of malerats [J]. Drug Chem Toxicol,2010,33(2):193-203.
    [8] Bebianno MJ, Géret F, Hoarau P, Serafim MA, Coelho MR, Gnassia-Barelli M, Roméo M.Biomarkers in Ruditapes decussatus: a potential bioindicator species [J]. Biomarkers,2004,9(4-5):305-330.
    [9] Bechmann Rk. Effect of the endocrine disrupter nonylphenol on the marine copepod Tisbebattagliai [J]. Science of the Total Environment,1999,233:33–46.
    [10] Beklioglu M, Banu Akkas S, Elif Ozcan H, Bezirci G, Togan I. Effects of4-nonylphenol, fishpredation and food availability on survival and life history traits of Daphnia magna straus [J].Ecotoxicology,2010,19(5):901-910.
    [11] Bettinetti R, Provini A. Toxicity of4-nonylphenol to Tubifex tubifex and Chironomus riparius in28-day whole-sediment tests [J]. Ecotoxicol Environ Saf,2002,53(1):113-121.
    [12] Billinghurst Z, Clare AS, Depledge MH. Effects of4-n-nonylphenol and17beta-oestradiol on earlydevelopment of the barnacle Elminius modestus [J]. J Exp Mar Bio Ecol,2001,257(2):255-268.
    [13] Biteau B, Karpac J, Hwangbo D, Jasper H. Regulation of Drosophila lifespan by JNK signaling [J].Exp Gerontol,2011,46(5):349-354.
    [14] Brawley C, Matunis E. Regeneration of male germline stem cells by spermatogonialdedifferentiation in vivo [J]. Science,2004,304(5675):1331-1334.
    [15] Brix R, Postigo C, González S, Villagrasa M, Navarro A, Kuster M, de Alda MJ, Barceló D.Analysis and occurrence of alkylphenolic compounds and estrogens in a European river basin andan evaluation of their importance as priority pollutants [J]. Anal Bioanal Chem,2010,396(3):1301-1309.
    [16] Brown RJ, Conradi M,Depledge MH.Long-term exposure to4-nonylphenol affects sexualdifferentiation and growth of the amphipod Corophium volutator (Pallas,1766)[J]. Sci TotalEnviron,1999,233(1-3):77-88.
    [17] Cailleaud K, Budzinski H, Lardy S, Augagneur S, Barka S, Souissi S, Forget-Leray J. Uptake andelimination, and effect of estrogen-like contaminants in estuarine copepods: an experimental study[J]. Environ Sci Pollut Res Int,2011,18(2):226-236.
    [18] Cajaraville MP, Bebianno MJ, Blasco J, Porte C, Sarasquete C, Viarengo A. The use of biomarkersto assess the impact of pollution in coastal environments of the Iberian Peninsula: a practicalapproach [J]. Sci Total Environ,2000,247(2-3):295-311.
    [19] Chitra KC, Latchoumycandane C, Mathur PP. Effect of nonylphenol on the antioxidant system inepididymal sperm of rats [J]. Arch Toxicol,2002,76(9):5450-5451.
    [20] Czech P, Weber K, Dietrich DR. Effects of endocrine modulating substances on reproduction inthe hermaphroditic snail Lymnaea stagnalis L [J]. Aquat Toxicol,2001,53(2):103-114.
    [21] Das KC, Xia K. Transformation of4-nonylphenol isomers during biosolids composting [J].Chemosphere,2008,70(5):761-768.
    [22] De Jager C, Bornman MS, van der Horst G. The effect of p-nonylphenol, an environmentaltoxicant with oestrogenic properties, on fertility potential in adult male rats [J]. Andrologia,1999,31(2):99-106.
    [23] Duft M, Schulte-Oehlmann U, Weltje L, Tillmann M, Oehlmann J. Stimulated embryo productionas a parameter of estrogenic exposure via sediments in the freshwater mudsnail Potamopyrgusantipodarum [J]. Aquat Toxicol,2003,64(4):437-449.
    [24] Duong CN, Ra JS, Cho J, Kim SD, Choi HK, Park JH, Kim KW, Inam E, Kim SD. Estrogenicchemicals and estrogenicity in river waters of South Korea and seven Asian countries [J].Chemosphere,2010,78(3):286-293.
    [25] Engel DW, Vaughan DS. Biomarkers, natural variability and risk assessment: Can they co-exist?[J]. Hum. Ecol. Risk Assess,1996,2:257-262.
    [26] Ekelund R, Bergman A, Granmo A, Berggren M. Bioaccumulation of4-nonylphenol in marineanimals are evaluation [J]. Environ Pollut,1990,64(2):107-120.
    [27] Erickson BE. Endocrine-disrupting nonylphenols detected in wide range of foods [J]. Environ SciTechnol,2002,36(9):178A-179A.
    [28] Ewing RM, Kahla AB, Poitot O, Lopez F, Audic S, Claverie JM.Large-scale statistical analysis ofrice ESTs reveal correlated patterns of gene expression [J]. Genome Research,1999,9:950-959.
    [29] Foyer CH, Noctor G. Ascorbate and glutathione: the heart of the redox hub [J]. Plant Physiol,2011,155(1):2-18.
    [30] Frova C. Glutathione transferases in the genomics era: new insights and perspectives [J]. BiomolEng,2006,23(4):149-169.
    [31] Furuta M, Funabashi T, Kawaguchi M, Nakamura TJ, Mitsushima D, Kimura F. Effects ofp-nonylphenol and4-tert-octylphenol on the anterior pituitary functions in adult ovariectomizedrats [J]. Neuroendocrinology,2006,84(1):14-20.
    [32] Gatidou G, Vassalou E, Thomaidis NS. Bioconcentration of selected endocrine disruptingcompounds in the Mediterranean mussel, Mytilus galloprovincialis [J]. Mar Pollut Bull,2010,60(11):2111-2116.
    [33] Ghekiere A, Verslycke T, Janssen C. Effects of methoprene, nonylphenol, and estrone on thevitellogenesis of the mysid Neomysis integer [J]. Gen Comp Endocrinol,2006,147(2):190-195.
    [34] Gray MA, Metcalfe CD. Induction of testis-ova in Japanese medaka (Oryzias latipes) exposed top-nonylphenol [J]. Environ Toxicol Chem,1997,16:1082-1086.
    [35] Guenther K, Heinke V, Thiele B, Kleist E, Prast H, Raecker T. Endocrine disrupting nonylphenolsare ubiquitous in food [J]. Environ Sci Technol,2002,36(8):1676-1680.
    [36] Gultekin F, Ozturk M, Akdogan M.The effect of organophosphate insecticide chlorpyrifos-ethyl onlipid peroxidation and antioxidant enzymes (in vitro)[J]. Arch Toxicol,2000,74(9):533-538.
    [37] Hahn T, Schenk K, Schulz R. Environmental chemicals with known endocrine potential affect yolkprotein content in the aquatic insect Chironomus riparius [J]. Environ Pollut,2002,120(3):525-528.
    [38] Hamamoto H, Kamura K, Razanajatovo IM, Murakami K, Santa T, Sekimizu K. Effects ofmolecular mass and hydrophobicity on transport rates through non-specific pathways of thesilkworm larva midgut [J]. Int J Antimicrob Agents,2005,26(1):38-42.
    [39] Hamamoto H, Urai M, Paudel A, Horie R, Murakami K, Sekimizu K. Identification of noveltherapeutically effective antibiotics using silkworm infection model [J]. Yakugaku Zasshi,2012,132(1):79-84.
    [40] Hannas BR, Wang YH, Thomson S, Kwon G, Li H, Leblanc GA. Regulation and dysregulation ofvitellogenin mRNA accumulation in daphnids (Daphnia magna)[J]. Aquat Toxicol,2011,101(2):351-357.
    [41] Hansen BH, R mma S, Garmo A, Olsvik PA, Andersen RA. Antioxidative stress proteins andtheir gene expression in brown trout (Salmo trutta) from three rivers with different heavy metallevels [J]. Comp Biochem Physiol C Toxicol Pharmacol,2006,143(3):263-274.
    [42] Hansen BH, R mma S, Garmo A, Pedersen SA, Olsvik PA, Andersen RA. Induction and activityof oxidative stress-related proteins during waterborne Cd/Zn-exposure in brown trout(Salmo trutta)[J]. Chemosphere,2007,67(11):2241-2249.
    [43] Hara Y, Strüssmann CA, Hashimoto S. Assessment of short-term exposure to nonylphenol inJapanese medaka using sperm velocity and frequency of motile sperm [J]. Arch Environ ContamToxicol,2007,53(3):406-410.
    [44] Hayes JD, Flanagan JU, Jowsey IR. Glutathione transferases [J]. Annu Rev Pharmacol Toxicol,2005,45:51–88.
    [45] Hirano M, Ishibashi H, Kim JW, Matsumura N, Arizono K. Effects of environmentally relevantconcentrations of nonylphenol on growth and20-hydroxyecdysone levels in mysid crustacean,Americamysis bahia [J]. Comp Biochem Physiol C Toxicol Pharmacol,2009,149(3):368-373.
    [46] Horvath CM, Darnell JE. The state of the STATs: recent developments in the study of signaltransduction to the nucleus [J]. Curr Opin Cell Biol,1997,9(2):233-239.
    [47] H ss S, Jüttner I, Traunspurgerd W, Pfisterb G, Schramm KW, Steinberg CE. Enhanced growthand reproduction of Caenorhabditis elegans (Nematoda) in the presence of4-nonylphenol [J].Environ Pollut,2002,20(2):169-172.
    [48] Hui Yong Loh S, Russell S. A Drosophila group E Sox gene is dynamically expressed in theembryonic alimentary canal [J]. Mech Dev,2000,93(1-2):185-188.
    [49] Indrasith LS, Izuhara M, Kobayashi M, Yamashita O. In vitro translation of the protease catalyzingBombyx mori egg-specific protein and identification of a nascent peptide with biological activity[J]. Arch Biochem Biophys,1988,267(1):328-333.
    [50] Ishibashi H, Hirano M, Matsumura N, Watanabe N, Takao Y, Arizono K. Reproductive effects andbioconcentration of4-nonylphenol in medaka fish (Oryzias latipes)[J]. Chemosphere,2006,65(6):1019-1026.
    [51] Ito Y, Yasuda A, Sonobe H. Synthesis and phosphorylation of ecdysteroids during ovariandevelopment in the silkworm, Bombyx mori [J]. Zoolog Sci,2008,25(7):721-727.
    [52] Johnson AC, Aerni HR, Gerritsen A, Gibert M, Giger W, Hylland K, Jürgens M, Nakari T,Pickering A, Suter MJ, Svenson A, Wettstein FE. Comparing steroid estrogen, and nonylphenolcontent across a range of European sewage plants with different treatment and managementpractices [J]. Water Res,2005,39(1):47-58.
    [53] Jonkers N, Laane RW, de Voogt P. Fate of nonylphenol ethoxylates and their metabolites in twoDutch estuaries: evidence of biodegradation in the field [J]. Environ Sci Technol,2003,37(2):321-327.
    [54] Kaito C, Akimitsu N, Watanabe H, Sekimizu K. Silkworm larvae as an animal model of bacterialinfection pathogenic to humans [J]. Microb Pathog,2002,32(4):183-1890.
    [55] Kim BM, Rhee JS, Park GS, Lee J, Lee YM, Lee JS. Cu/Zn-and Mn-superoxide dismutase (SOD)from the copepod Tigriopus japonicus: molecular cloning and expression in response toenvironmental pollutants [J]. Chemosphere,2011,84(10):1467-1475.
    [56] Kinnberg K, Korsgaard B, Bjerregaard P. Concentration-dependent effects of nonylphenol on testisstructure in adult platyfish Xiphophorus maculates [J]. Mar Environ Res,2000,50(1-5):169-73.
    [57] Kobayashi K, Tamotsu S, Yasuda K, Oishi T. Vitellogenin-immunohistochemistry in the liver andthe testis of the medaka, Oryzias latipes, exposed to17beta-estradiol and p-nonylphenol [J].Zoolog Sci,2005,22(4):453-461.
    [58] Kolpin D, Furlong E, Meyer M, Thurman E, Zaugg S, Barber L, Buxton H. Pharmaceuticals,Hormones, and Other Organic Wastewater Contaminants in U.S. Streams,199-2000: A NationalReconnaissance [J]. Environ. Sci Technol,2002,36(6):1202-1211.
    [59] Koopman P. Sex determination: a tale of two Sox genes [J]. Trends Genet,2005,21(7):367-370.
    [60] Krishnan N, Kodrík D. Antioxidant enzymes in Spodoptera littoralis (Boisduval): are theyenhanced to protect gut tissues duringoxidative stress?[J]. J Insect Physiol,2006,52(1):11-20.
    [61] Kuch HM, Ballschmiter K. Determination of endocrine-disrupting phenolic compounds andestrogens in surface and drinking water by HRGC-(NCI)-MS in the picogram per liter range [J].Environ Sci Technol,2001,35(15):3201-3206.
    [62] La Guardia MJ, Hale RC, Harvey E, Mainor TM. Alkylphenol ethoxylate degradation products inland-applied sewage sludge (biosolids)[J]. Environ Sci Technol,2001,35(24):4798-4804.
    [63] Lahnsteiner F, Berger B, Grubinger F, Weismann T. The effect of4-nonylphenol on semen quality,viability of gametes, fertilization success, and embryo and larvae survival in rainbow trout(Oncorhynchus mykiss)[J]. Aquat Toxicol,2005,71(4):297-306.
    [64] LEBLANC GA. Steroid hormone-regulated processes in invertebrates and their susceptibility toenvironmental endocrine disruption [M] MGUILLETE L J, eds. Environmental endocrinedisrupters: An evolutionary perspective. London: Taylor&Franc1998.
    [65] Lee SB, Choi J. Multilevel evaluation of nonylphenol toxicity in fourth-instar larvae ofChironomus riparius (Diptera, Chironomidae)[J]. Environ Toxicol Chem,2006,25(11):3006-3014.
    [66] Lewis SK, Lech JJ. Uptake, disposition, and persistence of nonylphenol from water in rainbowtrout (Oncorhynchus mykiss)[J]. Xenobiotica,1996,26(8):813-819.
    [67] Li D, Kim M, Shim WJ, Yim UH, Oh JR, Kwon YJ. Seasonal flux of nonylphenol in Han River,Korea [J]. Chemosphere,2004,56(1):1-6.
    [68] Li X, Ying GG, Su HC, Yang XB, Wang L. Simultaneous determination and assessment of4-nonylphenol, bisphenol A and triclosan in tap water, bottled water and baby bottles [J]. EnvironInt,2010,36(6):557-562.
    [69] Limón-Pacheco J, Gonsebatt ME.The role of antioxidants and antioxidant-related enzymes inprotective responses to environmentally induced oxidative stress [J]. Mutat Res,2009,674(1-2):137-147.
    [70] Liu CL, Sung HH. Genes are differentially expressed at transcriptional level of Neocaridinadenticulata following short-term exposure to nonylphenol [J]. Bull Environ Contam Toxicol,2011,87(3):220-225.
    [71] Lopes PA, Pinheiro T, Santos MC, da Luz Mathias M, Collares-Pereira MJ, Viegas-Crespo AM.Response of antioxidant enzymes in freshwater fish populations (Leuciscus alburnoides complex)to inorganic pollutants exposure [J]. Sci Total Environ,2001,280(1-3):153-163.
    [72] Lye CM, Bentley MG, Galloway T. Effects of4-nonylphenol on the endocrine system of the shorecrab, Carcinus maenas [J]. Environ Toxicol,2008,23(3):309-318.
    [73] Matozzo V, Ballarin L, Marin MG. Exposure of the clam Tapes philippinarum to4-nonylphenol:changes in anti-oxidant enzyme activities and re-burrowing capability [J]. Mar Pollut Bull,2004,48(5-6):563-571.
    [74] Matozzo V, Marin MG. Can4-nonylphenol induce vitellogenin-like proteins in the clam Tapesphilippinarum?[J]. Environ Res,2005,97(1):43-49.
    [75] Matozzo V, Rova G, Ricciardi F, Marin MG. Immunotoxicity of the xenoestrogen4-nonylphenolto the cockle Cerastoderma glaucum [J]. Mar Pollut Bull,2008,57(6-12):453-459.
    [76] Meister A, Anderson ME. Glutathione [J]. Annu Rev Biochem,1983,52:711–760.
    [77] Miura C, Takahashi N, Michino F, Miura T. The effect of para-nonylphenol on Japanese eel(Anguilla japonica) spermatogenesis in vitro [J]. Aquat Toxicol,2005,71(2):133-141.
    [78] Monteiro DA, Rantin FT, Kalinin AL. Inorganic mercury exposure: toxicological effects, oxidativestress biomarkers and bioaccumulation in the tropical fresh water fish matrinxa, Bryconamazonicus (Spix and Agassiz,1829)[J]. Ecotoxicology,2010,19(1):105-123.
    [79] Mortensen GK, Kure LK. Degradation of nonylphenol in spiked soils and in soils treated withorganic waste products [J]. Environ Toxicol Chem,2003,22(4):718-721.
    [80] Mosconi G, Carnevali O, Franzoni MF, Cottone E, Lutz I, Kloas W, Yamamoto K, Kikuyama S,Polzonetti-Magni AM. Environmental estrogens and reproductive biology in amphibians [J]. GenComp Endocrinol,2002,126(2):125-129.
    [81] Muncke J. Exposure to endocrine disrupting compounds via the food chain: Is packaging a relevantsource?[J]. Sci Total Environ,2009,407(16):4549-4559.
    [82] Nair PM, Park SY, Choi J. Expression of catalase and glutathione S-transferase genes inChironomus riparius on exposure to cadmium and nonylphenol [J]. Comp Biochem Physiol CToxicol Pharmacol,2011,154(4):399-408.
    [83] Nair PM, Choi J. Modulation in the mRNA expression of ecdysone receptor gene in aquatic midge,Chironomus riparius upon exposure to nonylphenol and silver nanoparticles [J]. Environ ToxicolPharmacol,2012,33(1):98-106.
    [84] Nakada N, Tanishima T, Shinohara H, Kiri K, Takada H. Pharmaceutical chemicals and endocrinedisrupters in municipal wastewater in Tokyo and their removal duringactivated sludge treatment[J].Water Res,2006,40(17):3297-3303.
    [85] Nakao H. Isolation and characterization of a Bombyx vasa-like gene [J]. Dev Genes Evol,1999,209(5):312-316.
    [86] Nath P, Maitra S. Role of two plasma vitellogenins from Indian major carp (Cirrhinus mrigala) incatfish (Clarias batrachus) vitellogenesis [J]. Gen Comp Endocrinol,2001,124(1):30-44.
    [87] Nice HE. Sperm motility in the Pacific oyster (Crassostrea gigas) is affected by nonylphenol [J].Mar Pollut Bull,2005,50(12):1668-1674.
    [88] Nordin JH, Gochoco CH, Wojchowski DM, Kunkel JG. Comparative study of thesize-heterogeneous high mannose oligosaccharides of some insect vitellins [J]. Comp BiochemPhysiol B,1984,79(3):379-390.
    [89] Olsvik PA, Lie KK, Sturve J, Hasselberg L, Andersen OK. Transcriptional effects of nonylphenol,bisphenol A and PBDE-47in liver of juvenile Atlantic cod (Gadus morhua)[J]. Chemosphere,2009,75(3):360-367.
    [90] Pait AS, Nelson JO. A survey of indicators for reproductive endocrine disruption in Fundulusheteroclitus (killifish) at selected sites in the Chesapeake Bay [J]. Mar Environ Res,2009,68(4):170-177.
    [91] Park K, Kwak IS. Molecular effects of endocrine-disrupting chemicals on the Chironomus ripariusestrogen-related receptor gene [J]. Chemosphere,2010,79(9):934-941.
    [92] Park K, Kwak IS. Gene expression of ribosomal protein mRNA in Chironomus riparius: effects ofendocrine disruptor chemicals and antibiotics [J]. Comp Biochem Physiol C Toxicol Pharmacol,2012,156(2):113-120.
    [93] Petrie B, McAdam EJ, Whelan MJ, Lester JN, Cartmell E. The determination of nonylphenol andits precursors in a trickling filter waste water treatment process [J]. Anal Bioanal Chem,2013,
    [Epub ahead of print].
    [94] Preuss TG, Telscher M, Ratte HT. Life stage-dependent bioconcentration of a nonylphenol isomerin Daphnia magna [J]. Environ Pollut,2008,156(3):1211-1217.
    [95] Prillaman HM, Turner TT. Rescue of testicular function after acute experimental torsion [J]. J Urol,157(1):340-345.
    [96] Puinean AM, Rotchell JM. Vitellogenin gene expression as a biomarker of endocrine disruption inthe invertebrate, Mytilus edulis [J]. Mar Environ Res,2006,62Suppl: S211-214.
    [97] Quinn B, Gagné F, Blaise C, Costello MJ, Wilson JG, Mothersill C. Evaluation of the lethal andsub-lethal toxicity and potential endocrine disrupting effect of nonylphenol on the zebra mussel(Dreissena polymorpha)[J]. Comp Biochem Physiol C Toxicol Pharmacol,2006,142(1-2):118-127.
    [98] Qujeq D, Aliakbarpour HR, Kalavi K. Relationship between malondialdehyde level andglutathione peroxidase activity in diabetic rats [J]. Clin Chim Acta,2004,340(1-2):79-83.
    [99] Rajaratnam VS. Isolation, characterization and complete nucleotide sequence of a Galleriamellonella cDNA coding for the follicle cell-specific yolk protein, YP4[J]. Insect Biochem MolBiol,1996,26(6):545-555.
    [100] Renault AD. Vasa is expressed in somatic cells of the embryonic gonad in a sex-specificmanner in Drosophila melanogaster [J]. Biol Open,2012,1(10):1043-1048.
    [101] RENE′LAFONT. The Endocrinology of Invertebrates [J]. Ecotoxicology,2000,9:41-57.
    [102] Rinaldi R, Eliasson E, Swedmark S, Morgenstern R. Reactive intermediates and the dynamics ofglutathione transferases [J]. Drug Metab Dispos,2002,30(10):1053-1058.
    [103] Riva C, Porte C, Binelli A, Provini A. Evaluation of4-nonylphenol in vivo exposure in Dreissenapolymorpha: Bioaccumulation, steroid levels and oxidative stress [J]. Comp Biochem Physiol CToxicol Pharmacol,2010,152(2):175-181.
    [104] Rurangwa E, Biegniewska A, Slominska E, Skorkowski EF, Ollevier F. Effect of tributyltin onadenylate content and enzyme activities of teleost sperm: a biochemical approach to study themechanisms of toxicant reduced spermatozoa motility [J]. Comp Biochem Physiol C ToxicolPharmacol,2002,131(3):335-344.
    [105] Salapasidou M, Samara C, Voutsa D. Endocrine disrupting compounds in the atmosphere of theurban area of The ssaloniki, Greece [J]. Atmos Environ,2011,45:3720-3729.
    [106] Sanders MB, Billinghurst Z, Depledge MH, Clare AS. Larval Development and Vitellin-likeProtein Expression in Palaemon elegans Larvae Following Xeno-oestrogen Exposure [J]. IntegrComp Biol,2005,45(1):51-60.
    [107] Sappington TW. The major yolk proteins of higher Diptera are homologs of a class of minor yolkproteins in Lepidoptera [J]. J Mol Evol,2002,55(4):470-475.
    [108] Sato Y, Yamashita O. Structure and expression of a gene coding for egg specific protein in thesilkworm, Bombyx mori [J]. Insect Biochemistry,1991,21(5):495-505.
    [109] Schefe JH, Lehmann KE, Buschmann IR, Unger T, Funke-Kaiser H. Quantative realtimeRT-PCR data analysis: current concepts and the novel “gene expression’s CT diference” formula[J]. J Mol Med,2008,84(11):901-910.
    [110] Seike N, Wanibuchi H, Morimura K, Wei M, Nishikawa T, Hirata K, Yoshikawa J, Fukushima S.Enhancement of lung carcinogenesis by nonylphenol and genistein in a F344rat multiorgancarcinogenesis model [J]. Cancer Lett,2003,192(1):25-36.
    [111] Seki M, Yokota H, Maeda M, Tadokoro H, Kobayashi K. Effects of4-nonylphenol and4-tert-octylphenol on sex differentiation and vitellogenin induction in medaka (Oryzias latipes)[J]. Environ Toxicol Chem,2003,22(7):1507-1516.
    [112] Servos M.R. Review of the aquatic toxicity, estrogenic responses and bioaccumulation ofalkylphenols and alkylphenol polyethoxylates [J]. Water Quality Research Journal of Canada,1999,34:123-177.
    [113] Shan J, Wang T, Li C, Klumpp E, Ji R. Bioaccumulation and bound-residue formation of abranched4-nonylphenol isomer in the geophagous earthworm Metaphire guillelmi in a rice paddysoil [J]. Environ Sci Technol,2010,44(12):4558-4563.
    [114] Shirk PD, Perera OP.5′coding region of the follicular epithelium yolk polypeptide2cDNA inthe moth, Plodia interpunctella, contains an extended coding region [J]. Arch Insect BiochemPhysiol,1998,39(3):98-108.
    [115] Shurin JB, Dodson SI. Sublethal toxic effects of cyanobacteria and nonylphenol on environmentalsex determination and development in Daphnia [J]. Environ Toxicol Chem,1997,16(6):1269-1276.
    [116] Smith MD, Hill EM. Uptake and metabolism of technical nonylphenol and its brominatedanalogues in the roach (Rutilus rutilus)[J]. Aquat Toxicol,2004,69(4):359-369.
    [117] Soares A, Guieysse B, Jefferson B, Cartmell E, Lester JN. Nonylphenol in the environment: acritical review on occurrence, fate, toxicity and treatment in wastewaters [J]. Environ Int,2008,34(7):1033-1049.
    [118] Sone K, Hinago M, Kitayama A, Morokuma J, Ueno N, Watanabe H, Iguchi T. Effects of17beta-estradiol, nonylphenol, and bisphenol-A on developing Xenopus laevis embryos [J]. GenComp Endocrinol,2004,138(3):228-236.
    [119] Soto AM, Justicia H, Wray JW, Sonnenschein C. p-Nonyl-phenol: an estrogenic xenobioticreleased from "modified" polystyrene [J]. Environ Health Perspect,1991,92:167-173.
    [120] Spehar RL, Brooke LT, Markee TP, Kahl MD. Comparative toxicity and bioconcentration ofnonylphenol in freshwater organisms [J]. Environ Toxicol Chem,2010,29(9):2104-2111.
    [121] Swevers L, Iatrou K. The ecdysone regulatory cascade and ovarian development in lepidopteraninsects: insights from the silkmoth paradigm [J]. Insect Biochem Mol Biol,2003, D33(12):1285-1297.
    [122] Taenzler V, Bruns E, Dorgerloh M, Pfeifle V, Weltje L. Chironomids: suitable test organisms forrisk assessment investigations on the potential endocrine disrupting properties of pesticides [J].Ecotoxicology,2007,16(1):221-230.
    [123] Takahashi A, Higashitani T, Yakou Y, Saitou M, Tamamoto H, Tanaka H. Evaluatingbioaccumulation of suspected endocrine disruptors into periphytons and benthos in the TamaRiver [J]. Water Sci Technol,2003,47(9):71-76.
    [124] Tansil NC, Li Y, Koh LD, Peng TC, Win KY, Liu XY, Han MY. The use of molecularfluorescent markers to monitor absorption and distribution of xenobiotics in a silkworm model [J].Biomaterials,2011,32(36):9576-9583.
    [125] Thummel CS. From embryogenesis to metamorphosis: the regulation and function of Drosophilanuclear receptor super family members [J]. Cell,1995,83(6):871-877.
    [126] Tsuda T, Takino A, Muraki K, Harada H, Kojima M. Evaluation of4-nonylphenols and4-tert-octylphenol contamination of fish in rivers by laboratory accumulation and excretionexperiments [J]. Water Res,2001,35(7):1786-1792.
    [127] U. S. EPA. Short-Term methods for estimating the chronic toxicity of effluents and receivingwaters to marine and estuarine organisms. EPA/600-4-91-003. Environmental MonitoringSystems Laboratory, Cincinnati, Ohio,1994, pp.483.
    [128] Van der Oost R, Beyer J, Vermeulen NP. Fish bioaccumulation and biomarkers in environmentalrisk assessment: a review [J]. Environ Toxicol Pharmacol,2003,13(2):57-149.
    [129] Vandenbergh GF, Adriaens D, Verslycke T, Janssen CR. Effects of17alpha-ethinylestradiol onsexual development of the amphipod Hyalella azteca [J]. Ecotoxicol Environ Saf,2003,54(2):216-222.
    [130] Venkatesan AK, Halden RU. National inventory of alkylphenol ethoxylate compounds in U.S.sewage sludges and chemical fate in outdoor soil mesocosms [J]. Environ Pollut,2013,174:189-193.
    [131] Verderame M, Prisco M, Andreuccetti P, Aniello F, Limatola E. Experimentallynonylphenol-polluted diet induces the expression of silent genes VTG and ERα in the liver ofmale lizard Podarcis sicula [J]. Environ Pollut,2011,159(5):1101-1107.
    [132] Verslycke TA, Vethaak AD, Arijs K, Janssen CR. Flame retardants, surfactants and organotins insediment and mysid shrimp of the Scheldt estuary (The Netherlands)[J]. Environ Pollut,2005,136(1):19-31.
    [133] Vetillard A, Bailhache T. Effects of4-n-nonylphenol and tamoxifen on salmongonadotropin-releasing hormone, estrogen receptor, and vitellogenin gene expression in juvenilerainbow trout [J]. Toxicol Sci,2006,92(2):537-544.
    [134] Weber LP, Hill RL Jr, Janz DM. Developmental estrogenic exposure in zebrafish (Danio rerio):II. Histological evaluation of gametogenesis and organ toxicity [J]. Aquat Toxicol,2003,63(4):431-446.
    [135] Weston CR, Davis RJ. The JNK signal transduction pathway [J]. Curr Opin Cell Biol,2007,19(2):142-149.
    [136] Widarto TH, Holmstrup M, Forbes VE. The influence of nonylphenol on life-history of theearthworm Dendrobaena octaedra Savigny: linking effects from the individual to the populationlevel [J]. Ecotoxicol Environ Saf,2004,58(2):147-159.
    [137] Widarto TH, Krogh PH, Forbes VE. Nonylphenol stimulates fecundity but not population growthrate (lambda) of Folsomia candida [J]. Ecotoxicol Environ Saf,2007,67(3):369-377.
    [138] Wu M, Xu H, Shen Y, Qiu W, Yang M. Oxidative stress in zebrafish embryos induced by shortterm exposure to bisphenol A, nonylphenol, and their mixture [J]. Environ Toxicol Chem,2011,30(10):2335-2341.
    [139] Xiao Q, Zhang SC, Zhao BS. Toxic effects of nonylphenol on the gonad of adult rosy barb [J].
    [Article in Chinese] Huan Jing Ke Xue,2007,28(11):2580-2585.
    [140] Xuereb B, Bezin L, Chaumot A, Budzinski H, Augagneur S, Tutundjian R, Garric J, Geffard O.Vitellogenin-like gene expression in freshwater amphipod Gammarus fossarum (Koch,1835):functional characterization in females and potential for use as an endocrine disruption biomarkerin males [J]. Ecotoxicology,2011,20(6):1286-1299.
    [141] Yano K, Sakurai MT, Izumi S, Tomino S. Vitellogenin gene of the silkworm, Bombyx mori:structure and sex dependent expression [J]. FEBS Lett,1994,356(2-3):207-211.
    [142] Yao TP, Forman BM, Jiang Z, Cherbas L, Chen JD, McKeown M, Cherbas P, Evans RM.Functional ecdysone receptor is the product of EcR and Ultraspiracle genes [J]. Nature,1993,366(6454):476-479.
    [143] Yokosuka M, Ohtani-Kaneko R, Yamashita K, Muraoka D, Kuroda Y, Watanabe C. Estrogen andenvironmental estrogenic chemicals exert developmental effects on rat hypothalamic neuronsandglias [J].Toxicol In Vitro,2008,22(1):1-9.
    [144] Yu IT, Rhee JS, Raisuddin S, Lee JS. Characterization of the glutathione S-transferase-Mu(GSTM) gene sequence and its expression in the hermaphroditic fish, Kryptolebias marmoratusas a function of development, gender type and chemical exposure [J]. Chem Biol Interact,2008,174(2):118-125.
    [145] Zhou J, Wang WN, Wang AL, He WY, Zhou QT, Liu Y, Xu J. Glutathione S-transferase in thewhite shrimp Litopenaeus vannamei: Characterization and regulation under PH stress [J]. CompBiochem Physiol C Toxicol Pharmacol,2009,150:224–230.
    [146] Zhu J, Indrasith LS, Yamashita O. Characterication of vitellin, egg-specific protein and30KDprotein from Bombyx eggs, and their fates during oogenesis and embyogenesis [J]. Biochim.Biophys Acta,1986,882:427-436.
    [147]柴春利,钱平,关国平,徐伟,李文学,夏庆友,鲁成.家蚕vasa基因的表达型研究[J].蚕业科学,2006,32(4):469-476.
    [148]陈吉华,付荣恕.壬基酚对雄性孔雀鱼的慢性毒性效应[J].供水技术,2012,6(01):6-10.
    [149]陈玉华.家蚕精巢蛋白表达谱分析及精子形成的相关研究[D].苏州大学,2011.
    [150]陈勇,张宁,卢桥发.肺结核血浆丙二醛和谷胱甘肽过氧化物酶的变化[J].临床肺科杂志,2005,1(1):21.
    [151]邓茂先,吴德生,张立实,徐培渝.壬基酚对雌性SD大鼠早期性发育的影响[J].中国公共卫生,2002,18(02):147-148.
    [152]范奇元,李卫华,金泰虞,丁训诚,蒋学之.壬基酚在大鼠组织中的分布与清除[J].卫生毒理学杂志,200l,15(1):42-43.
    [153]范奇元,金泰虞,蒋学之,丁训诚.我国部分地区环境中壬基酚的检测[J].中国公共卫生,2002,18(11):1372-1375.
    [154]傅明珠,李正炎,王波.夏季长江口及其临近海域不同环境介质中壬基酚的分布特征[J].海洋环境科学,2008,27(06):561-565.
    [155]郭金莲,任慕兰.壬基酚对成年雌性SD大鼠生殖功能的影响[J].东南大学学报(医学版),2007,26(4):287-290.
    [156]郭彤,张高峰,朱宝长.壬基酚或双酚A对原代培养鲫肝细胞毒性的影响[J].首都师范大学学报:自然科学版,2009,30(02):35-40.
    [157]黄敏毅,李妍姝,穆青,段仁燕,董佳佳.壬基酚对雄性黑斑蛙生殖毒性的研究[J].生命科学研究,2010,14(6):538-542.
    [158]季明明.利用家蚕丝腺退化模型研究JNK途径和BmNep1基因[D].苏州大学,2012.
    [159]李祥军,周忠良,顾建华.壬基酚对河川沙塘鳢性腺分化和发育影响的研究[J].水产科学,2009,28(1):15-19.
    [160]李忻怡,王慧,张育辉.壬基酚对中国林蛙精巢中StAR表达的影响[J].环境科学研究,2011,24(5):564-569.
    [161]李洋,胡雪峰,王效举,茂木守,大塚宜寿,细野繁雄,杜艳,姜琪,李珊,冯建伟.苏州河底泥3种内分泌干扰物的空间分布及环境风险[J].环境科学,2012,33(1):239-246.
    [162]李正炎,Donghao Li.西瓦湖中壬基酚和双酚A的污染特征[J].青岛海洋大学学报(自然科学版),2003,33(6):847-853.
    [163]李正炎,傅明珠,卫东.胶州湾及其邻近河流中壬基酚等有机污染物的分布特征[J].海洋与湖沼,2008,39(6):599-603.
    [164]刘文萍,石晓勇,王晓波,张传松.北黄海辽宁近岸水环境中壬基酚污染状况调查及生态风险评估[J].海洋环境科学,2009,28(6):664-667.
    [165]刘征涛,张颖,徐镜波,孔志明,沈萍萍.烷基酚类的生殖干扰毒性与结构相关研究[J].环境科学研究,2002,15(6):39-41.
    [166]卢中建,王荫长,尤子平.小地老虎真核和无核精子的超微结构[J].南京农业大学学报,1993,16(3):38-43.
    [167]路军秀,徐自超,毛泽善,袁向山,马全祥.壬基酚对小鼠睾丸超微结构的影响[J].新乡医学院学报,2008,25(5):443-445.
    [168]马焕艳.家蚕生殖发育相关基因BmSTAT的研究[D].苏州大学,2010.
    [169]任杰,江苏娟.海口市部分市售蔬菜4-壬基酚、双酚A污染情况初步调查研究[J].现代预防医学,2010,37(3):451-455.
    [170]邵兵,胡建英,杨敏.重庆流域嘉陵江和长江水环境中壬基酚污染状况调查[J].环境科学学报,2002,22(1):12-16.
    [171]孙培艳,李正炎,王鑫平,崔文林,傅明珠.黄河入海口壬基酚污染分布特征[J].海岸工程,2007,26(3):17-22.
    [172]王平,徐建,郭炜烽,朱琳,戴树桂.黄河(兰州段)水生生态系统中壬基酚的分布研究[J].城市环境与城市生态,2006,19(2):20-22.
    [173]王艳平,李正,杨正礼,任海静,曹素珍.黑龙江农田土壤壬基酚及其短链聚氧乙烯醚残留调查[J].土壤通报,2012,43(3):706-710.
    [174]王志强,张依章,张远,王圣瑞,吴攀,黄剑锋.太湖流域宜溧河酚类内分泌干扰物的空间分布及风险评价[J].环境科学研究,2012,25(12):1351-1357.
    [175]魏玲.家蚕Sox基因的鉴定和功能研究[D].西南大学,2011.
    [176]杨丽丽,张晶,方展强.雌二醇、壬基酚、多氯联苯、镉和锌及其混合物对唐鱼的雌激素效应比较[J].水产学报,2011,35(6):838-845.
    [177]裔洪根,徐世清,戴璇颖,曹伟,李达光.环境激素壬基酚对鳞翅目昆虫培养细胞的影响[J].蚕业科学,2006,32(02):215-219.
    [178]张琦,董慧茹.固相萃取-高效液相色谱法测定水中BPA、NP和OP含量[J].分析科学学报,2009,25(2)157-160.
    [179]张照韩,冯玉杰,高鹏,孙清芳,任南琪.松花江水内分泌干扰物及雌激素活性调查[J].哈尔滨工业大学学报,2011,43(12):58-62.
    [180]朱春华,薛海波,李郁娇,黄国钟,刘易洋,李广丽.壬基酚(NP)对罗氏沼虾幼虾生长和性别分化的影响[J].水产学报,2011a,35(3):365-371.
    [181]朱春华,冉维亮,邓思平,李广丽.环境因子对凡纳滨对虾性别分化的影响[J].水生生物学报,2011b,35(3):414-421.
    [182]左明杰,洪万树,周理斌.壬基酚对中华乌塘鳢精子发生及活力的影响[J].厦门大学学报(自然科学版),2010,49(04):579-584.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700