基于聚己内酯的生物可降解水凝胶及功能化胶束的制备与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水凝胶是一类具有三维网络结构的高分子材料。它不溶于水,但能明显地在水中溶胀,从而吸收大量的水,并具有很好的保持水分的能力。由于水凝胶拥有渗透性,它能够让对于细胞非常重要的物质,诸如氧气和营养成分通过,因而在组织工程和细胞包裹与细胞增殖方面有重要的应用。其中,生物可降解水凝胶因其具有优异的性能在组织工程和控制释放领域备受关注。作为组织工程主要组成部分(细胞、生物材料支架、生长因子或其他生物学信号)的材料支架,水凝胶因具有吸水溶胀的性质,能给组织工程中的种子细胞提供像动物组织一样的微环境。同时由于水凝胶中含有大量的水分,能使营养物质和氧气在水凝胶中运输,这为细胞的生存提供了保障。
     本论文第一章综述了水凝胶的分类、智能型水凝胶的成胶机理、水凝胶的生物应用,特别是可注射水凝胶在组织工程上的应用。同时,对功能化胶束的分类以及在药物传递体系中的应用也加以了阐述。
     本论文第二章设计并制备了一种生物可降解和具有pH敏感性的AC-PCL-HEMA/PAAc水凝胶,此水凝胶不仅保持了水凝胶的生物可降解性,而且融合了pH敏感性于水凝胶之中。这种水凝胶随着pH值的变化而具有较好的智能药物控制释放性质。另外,这种水凝胶作为支架材料包裹细胞,可通过水凝胶的降解调节其内部孔径的大小而利于细胞向水凝胶内部生长。
     本论文第三章合成了α-CD/MPEG-PCL-MPEG超分子水凝胶。这种水凝胶适合于通过注射器进行注射。水凝胶对Dextran-FITC能够起到很好的缓释效果,说明是一种很有前景的药物传递载体。用水凝胶包裹的ECV304和MSC细胞,经过一段时间培养后,细胞能保持其原来的形态而不发生改变。体外细胞毒性实验与体内生物相容性实验表明,这种水凝胶具有良好的生物相容性,可作为注射性组织支架在组织工程上加以运用。
     本论文第四章合成了Dex-PCL-HEMA/PNIPAAm水凝胶,其相转变温度为33.2℃,考察了在37℃下BSA在水凝胶中的药物控制释放。体外细胞毒性实验与体内组织相容性实验表明,此种水凝胶可作为可注射的聚合物支架在组织工程上得到应用。
     本论文第五章合成并表征了半乳糖化FITC的聚合物Gal-PCL-g-Dex-FITC。此聚合物不论在体外还是体内都能形成稳定的胶束。此胶束能被HepG2细胞选择性的吞噬并聚集在细胞内。更为重要的是,具有肝靶向的胶束能显著性的在肝脏中分布,另外,靶向胶束在肝组织中有相对高的吞噬量,表明半乳糖化的胶束在肝靶向药物载体上有重要的潜在应用。
     本论文第六章通过开环聚合以及RAFT聚合方法合成了乳糖化并键接了单氨基卟啉的两亲性聚合物聚甲基丙烯-2-氨乙酯-b-聚己内酯(Gal-APP-PAEMA-PCL)以及没有乳糖化聚合物APP-PAEMA-PCL。得到的聚合物能在水溶液中形成稳定的胶束。相对于APP-PAEMA的荧光强度,不论是在DMSO中还是PBS (pH 7.4)中,接枝了卟啉的两亲性聚合物的强度增大,而Gal-APP-PAEMA-PCL强度最大。这些接枝了卟啉的聚合物在浓度低于1 mg/mL对HEp2和HepG2细胞均没有暗毒性,而乳糖化的胶束能够优先在HepG2中聚集并具有更高的暗毒性及光照毒性。
Hydrogel is a sort of polymeric material which owns three dimensional networks. Hydrogel is insoluble in water and can swell in aqueous medium, thus it can absorb plenty of water and keep the water well. Hydrogels for cell encapsulation and proliferation are of importance in tissue engineering since hydrogels own the excellent property in permeability, which allows diffusion and transport of essential materials, such as oxygen, nutrients for cells. Owing to the excellent property, biodegradable hydrogels were widely utilized in tissue engineering and drug delivery. Highly swollen hydrogels provide a tissue-like microenvironment for cells. The high water content promotes facile transport and can be tuned to permit long-term cell survival.
     In chapter 1, the classification of hydrogel, the gel formation mechanism of intelligent hydrogel and the application in tissue engineering was reviewed. In addition, the classification of functionalized micelles and their application in drug delivery was also reviewed.
     In chapter 2, a series of biodegradable AC-PCL-HEMA/PAAc hydrogels were synthesized. The degradation of hydrogel was obviously accelerated in the presence of pseudomonas lipase due to the catalytic effect of the lipase on the degradation of PCL chains in the hydrogel network. The hydrogel exhibited pH sensitivity and a higher swelling ratio was observed in the solution with a higher pH value. The in vitro release of BSA from the hydrogel demonstrated that the hydrogel with a lower crosslinking density had a higher release rate. The cell culture on the hydrogels showed that the cells can adhere, and spread on the hydrogel surfaces as well as migrate inside the hydrogel networks.
     In chapter 3, supramolecular hydrogels consisting ofα-cyclodextrin and MPEG-PCL-MPEG triblock polymers were prepared and characterized in vitro and in vivo. The hydrogels were suitable for injection through a small-diameter aperture. The sustained release of the dextran-FITC from the hydrogels, which lasted for more than one month, indicated the hydrogels were promising for drug delivery. Due to the rapid gelation property, the hydrogels could effectively entrap biologically active additives such as drugs and cells for in situ injection. ECV304 and MSC cells were encapsulated in hydrogel and the cell morphologies could be kept the during the cell culture. The in vitro cytotoxicity and the in vivo histological studies demonstrated that the hydrogels had great potential as the injectable scaffolds for tissue engineering applications due to their good biocompatibility.
     In chapter 4, Dex-PCL-HEMA/PNIPAAm hydrogels were synthesized and characterized in vitro and in vivo. The hydrogels exhibited a phase transition temperature at 33.2℃, which was suitable for injection through a small-diameter aperture. The sustained release of the BSA from the hydrogel was observed when the temperature was higher than the LCST of the hydrogel. Cell viability studies in vitro and the histological studies in vivo demonstrated that the hydrogel was a promising candidate of an injectable polymer scaffold for tissue engineering applications.
     In chapter 5, galactosylated and FITC conjugated Gal-PCL-g-Dex-FITC grafted polymers were fabricated. The resulting polymers are able to self-assemble to form stable micelles in vitro and in vivo. The galactosylated and fluorescence labeled micelles could be selectively recognized by HepG2 cells and subsequently accumulate in HepG2 cells. Importantly, the liver targeting effect of the galactosylated micelles was clearly demonstrated by the fluorescence distribution of the micelles in liver tissue.
     In chapter 6, galactosylated and mono-aminoporphyrin (APP) grafted poly(2-aminoethyl methacrylate)-b-polycaprolactone (Gal-APP-PAEMA-PCL) and APP-PAEMA-PCL polymers were fabricated by the combination of ring opening and RAFT polymerization. The resulting polymers are able to self-assemble to form stable micelles. Compared to the APP-PAEMA and APP-PAEMA-PCL, the fluorescence intensity of the Gal-APP-PAEMA-PCL is higher than those of the formers whenever in DMSO or PBS (pH 7.4). None of the porphyrin based block polymers exhibits dark cytotoxicity to both HEp2 cells and HepG2 cells at a concentration of 1 mg/mL. Importantly, the galactosylated micelles could be selectively recognized by HepG2 cells and subsequently preferentially accumulated in HepG2 cells and had the higher dark and phototoxicity effect.
引文
[1]Chandra R, Rustgi R. Biodegradable polymers. Prog. Polym. Sci.1998,23: 1273-1335.
    [2]Iemma F, Spizzirri UG, Puoci F, Muzzalupo R, Trombino S, Picci N. Radical crosslinked albumin microspheres as potential drug delivery systems:Preparation and in vitro studies. Drug Deliv.2005,12:179-184.
    [3]Olsen D, Yang CL, Bodo M, Chang R, Leigh S, Baez J, Carmichael D, Perala M, Hamalainen ER, Jarvinen M, Polarek J. Recombinant collagen and gelatin for drug delivery. Adv. Drug Deliv. Rev.2003,55:1547-1567.
    [4]Khor E, Lim LY. Implantable applications of chitin and chitosan. Biomaterials 2003,24:2339-2349.
    [5]Edgar, KJ. Cellulose esters in drug delivery. Cellulose 2007,14:49-64.
    [6]Zhang LM, Yang C, Yan L. Perspectives on:Strategies to fabricate starch-based hydrogels with potential biomedical applications. J. Bioact. Compat. Pol.2005,20: 297-314.
    [7]Liu XD, Yu WT, Wang W, Xiong Y, Ma XJ, Yuan QA. Polyelectrolyte microcapsules prepared by alginate and chitosan for biomedical application. Prog. Chem.2008,20:126-139.
    [8]Vercruysse KP, Prestwich GD. Hyaluronate derivatives in drug delivery. Crit. Rev. Ther.Drug 1998,15:513-555.
    [9]Mochizuki M, Hirami M. Structural effects on the biodegradation of aliphatic polyesters. Polym. Adv. Tech.1997,8:203-209.
    [10]Heller J, Barr J, Ng SY, Abdellauoi KS, Gurny R. Poly(ortho esters):Synthesis, characterization, properties and uses. Adv.Drug Deliv. Rev.2002,54:1015-1039.
    [11]Kumar N, Langer RS, Domb AJ. Polyanhydrides:An overview. Adv. Drug Deliv. Rev.2002,54:889-910.
    [12]Bourke SL, Kohn J. Polymers derived from the amino acid L-tyrosine: polycarbonates, polyarylates and copolymers with poly(ethylene glycol). Adv. Drug Deliv. Rev.2003,55:447-466.
    [13]Obst M, Steinbuchel A. Microbial degradation of poly(amino acid)s. Biomacromolecules 2004,5:1166-1176.
    [14]Richards M, Dahiyat BI, Arm DM, Brown PR, Leong KW. Evaluation of polyphosphates and polyphosphonates as degradable biomaterials. J. Biomed. Mater. Res.1991,25:1151-1167.
    [15]Schacht E, Vandorpe J, Dejardin S, Lemmouchi Y, Seymour L. Biomedical applications of degradable polyphosphazenes. Biotechnol. Bioeng.1996,52: 102-108.
    [16]Gan ZH, Liang QZ, Zhang J, Jing XB. Enzymatic degradation of polycaprolactone film in phosphate buffer solution containing lipases. Polym. Degrad. Stabil.1997,56:209-213.
    [17]Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog. Polym. Sci.2007,32:762-798.
    [18]Williams DF. Biomaterials and biocompatibility. Med. Prog. Technol.1976,4: 31-42.
    [19]Yannas IV, Burke JF, Orgill DP, Skrabut EM. Wound tissue can utilize a polymeric template to synthesize a functional extension of skm. Science 1982, 215:174-176.
    [20]Machens HG, Berger AC, Mailaender P. Bioartificial skin. Cells Tissues Organs 2000,167:88-94.
    [21]Yannas IV, Lele E, Orgill DP, Skrabut EM, Murphy GF. Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin. Proc. Natl. Acad. Sci.1989,86:933-937.
    [22]Freyman TM, Yannas IV, Gibson LJ. Cellular materials as porous scaffolds for tissue engineering. Prog. Mater. Sci.2001,46:273-282.
    [23]Ono I, Tateshita T, Inoue M. Effects of a collagen matrix containing basic fibroblast growth factor on wound contraction. J. Biomed. Mater. Res.1999, 48:621-630.
    [24]Elisseeff J, McIntosh W, Fu K, Blunk T, Langer R. Controlled-release of IGF-I and TGF-β1 in a photopolymerizing hydrogel for cartilage tissue engineering. J. Orthopaed Res.2001,19:1098-1104.
    [25]Babensee JE, McIntire LV, Mikos AG. Growth factor delivery for tissue engineering. Pharm. Res.2000,17:497-504.
    [26]Shea LD, Smiley E, Bonadio J, Mooney DJ. DNA delivery from polymer matrices for tissue engineering. Nat. Biotechnol.1999,17:551-554.
    [27]Mahoney MJ, Saltzman WM. Transplantation of brain cells assembled around a programmable synthetic microenvironment. Nat. Biotechnol.2001,19:934-939.
    [28]Wchterle Q, Lim D. Hydrophilic gels in biologic use. Nature 1960,185:117.
    [29]Wchterle Q, Hunter CM, MacGregor DC. Hydrogel based in vivo reference electrode catheter. Med. Biol. Eng. Comput.1983,21:1-8.
    [30]Dong L, Agarwal AK, Beebe DJ, Jiang H. Adaptive liquid microlenses activated by stimuliresponsive hydrogels. Nature 2006,442:551-554.
    [31]Rubina AY, Pan'kov SV, Dementieva El, Pen'kov DN, Butygin AV, Vasiliskov VA, Chudinov AV, Mikheikin AL, Mikhailovich VM, Mirzabekov AD. Hydrogel drop microchips with immobilized DNA:Properties and methods for large-scale production. Anal. Biochem.2004,325:92-106.
    [32]Tarcha PJ, Bindseil W, Chu VP. Absorptionenhanced solid-phase immunoassay method via water-swellable poly(acrylamide) microparticles. J. Immunol. Methods.1989,125:243-249.
    [33]Winchester JF, Apiliga MT, Mackay JM, Kennedy AC. Haemodialysis with charcoal haemoperfusion. Proc. Eur. Dial. Transplant. Assoc.1976,12:526-533.
    [34]Kolthammer J. The in vitro adsorption of drugs from horse serum onto carbon coated with an acrylic hydrogel. J. Pharm. Pharmacol.1975,27:801-805.
    [35]Widdop B, Medd RK, Braithwaite RA, Rees AJ, Goulding R. Experimental drug intoxication:Treatment with charcoal haemoperfusion. Arch. Toxicol.1975, 34:27-36.
    [36]Vale JA, Rees AJ, Widdop B, Goulding R. Use of charcoal haemoperfusion in the management of severely poisoned patients. Br. Med. J.1975,1:5-9.
    [37]Moise O, Sideman S, Hoffer E, Rousseau I, Better OS. Membrane permeability for inorganic phosphate ion. J. Biomed. Mater. Res.1977,11:903-913.
    [38]Honiger J, Couturier C, Goldschmidt P, Maillet F, Kazatchkine MD, Laroche L. New anionic polyelectrolyte hydrogel for corneal surgery. J. Biomed. Mater. Res. 1997,37:548-553.
    [39]Nakabayashi N, Iwasaki Y. Copolymers of 2-methacryloyloxyethyl phosphorylcholine (MPC) as biomaterials. Biomed. Mater. Eng.2004, 14:345-354.
    [40]Ferramosca E, Burke S, Chasan-Taber S, Ratti C, Chertow GM, Raggi P. Potential antiatherogenic and anti-inflammatory properties of sevelamer in maintenance hemodialysis patients. Am. Heart. J.2005,149:820-825.
    [41]Garg JP, Chasan-Taber S, Blair A, Plone M, Bommer J, Raggi P, Chertow GM. Effects of sevelamer and calcium-based phosphate binders on uric acid concentrations in patients undergoing hemodialysis:A randomized clinical trial. Arthritis. Rheum.2005,52:290-295.
    [42]Nicolson PC, Vogt J. Soft contact lens polymers:An evolution. Biomaterials 2001,22:3273-3283.
    [43]Goda T, Ishihara K. Soft contact lens biomaterials from bioinspired phospholipid polymers. Expert. Rev. Med. Devices.2006,3:167-174.
    [44]Stapleton F, Stretton S, Papas E, Skotnitsky C, Sweeney DF. Silicone hydrogel contact lenses and the ocular surface. Ocul. Surf.2006,4:24-43.
    [45]Gulsen D, Chauhan A. Dispersion of microemulsion drops in HEMA hydrogel:A potential ophthalmic drug delivery vehicle. Int. J. Pharm.2005,292:95-117.
    [46]Jain MR. Drug delivery through soft contact lenses. Br. J. Ophthalmol.1988, 72:150-154.
    [47]Chehade M, Elder MJ. Intraocular lens materials and styles:A review. Aust.N. Z. J. Ophthalmol.1997,25:255-263.
    [48]Nicolson PC, Vogt J. Soft contact lens polymers:An evolution. Biomaterials 2001,22:3273-3283.
    [49]Allarakhia L, Knoll RL, Lindstrom RL. Soft intraocular lenses. J. Cataract. Refract. Surg.1987,13:607-620.
    [50]Hicks C, Crawford G, Chirila T, Wiffen S, Vijayasekaran S, Lou X. Development and clinical assessment of an artificial cornea. Prog. Retin. Eye Res.2000, 19:149-170.
    [51]Vijayasekaran S, Chirila TV, Robertson TA, Lou X, Fitton JH, Hicks CR, Constable IJ. Calcification of poly(2-hydroxyethyl methacrylate) hydrogel sponges implanted in the rabbit cornea:A 3-month study. J. Biomater. Sci. Polym. Ed.2000,11:599-615.
    [52]Kwon JW, Han YK, Lee WJ, Cho CS, Paik SJ, Cho DI, Lee JH, Wee WR. Biocompatibility of poloxamer hydrogel as an injectable intraocular lens:A pilot study. J. Cataract. Refract. Surg.2005,31:607-613.
    [53]Morrison DA, Gridneva Z, Chirila TV, Hicks CR. Screening for drug-induced spoliation of the hydrogel optic of the AlphaCor artificial cornea. Cont. Lens Anterior Eye 2006,29:93-100.
    [54]Uchino Y, Shimmura S, Miyashita H, Taguchi T, Kobayashi H, Shimazaki J,Tanaka J, Tsubota K. Amniotic membrane immobilized poly(vinyl alcohol) hybrid polymer as an artificial cornea scaffold that supports a stratified and differentiated corneal epithelium. J. Biomed. Mater. Res. B Appl. Biomater.2007, 81:201-206.
    [55]Pearce RS, West LR, Rodeheaver GT, Edlich RF. Evaluation of a new hydrogel coating for drainage tubes. Am. J. Surg.1984,148:687-691.
    [56]Gorman SP, Tunney MM, Keane PF, Van Bladel K, Bley B. Characterization and assessment of a novel poly(ethylene oxide)/polyurethane composite hydrogel (Aquavene) as a ureteral stent biomaterial. J. Biomed. Mater. Res.1998,39: 642-649.
    [57]Kaufmann AM, Lye T, Redekop G, Brevner A, Hamilton M, Kozey M, Easton D. Infection rates in standard vs. hydrogel coated ventricular catheters. Can. J. Neurol. Sci.2004,31:506-510.
    [58]Chew BH, Denstedt JD. Technology insight:Novel ureteral stent materials and designs. Nat. Clin. Pract. Urol.2004,1:44-48.
    [59]Hong Y, Chirila TV, Vijayasekaran S, Dalton PD, Tahija SG, Cuypers MJ, Constable IJ. Crosslinked poly(1-vinyl-2-pyrrolidinone) as a vitreous substitute. J. Biomed. Mater. Res.1996,30:441-448.
    [60]Mikhalovska LI, Gun'ko VM, Turov VV, Zarko VI, James SL, Vadgama P, Tomlins PE, Mikhalovsky SV. Characterisation of the nanoporous structure of collagen-glycosaminoglycan hydrogels by freezing-out of bulk and bound water. Biomaterials 2006,27:3599-3607.
    [61]Silber JS, Anderson DG, Hayes VM, Vaccaro AR. Advances in surgical management of lumbar degenerative disease. Orthopedics 2002,25:767-771.
    [62]Arimura H, Ouchi T, Kishida A, Ohya Y. Preparation of a hyaluronic acid hydrogel through polyion complex formation using cationic polylactide-based microspheres as a biodegradable crosslinking agent. J. Biomater. Sci. Polym. Ed. 2005,16:1347-1358.
    [63]Coats TJ, Edwards C, Newton R, Staun E. The effect of gel burns dressings on skin temperature. Emerg. Med. J.2002,19:224-225.
    [64]Eisenbud D, Hunter H, Kessler L, Zulkowski K. Hydrogel wound dressings: Where do we stand in 2003? Ostomy Wound Manage.2003,49:52-57.
    [65]Kirker KR, Luo Y, Morris SE, Shelby J, Prestwich GD. Glycosaminoglycan hydrogels as sup-plemental wound dressings for donor sites. J. Burn Care Rehabil.2004,25:276-286.
    [66]Martineau L, Shek PN. Evaluation of a bi-layer wound dressing for burn care Ⅰ. Cooling and wound healing properties. Burns 2006,32:70-76.
    [67]Osti E. Cutaneous burns treated with hydrogel (burnshield) and a semipermeable adhesive film. Arch Surg.2006,141:39-42.
    [68]Martineau L, Shek PN. Evaluation of a bilayer wound dressing for burn care. Ⅱ. In vitro and in vivo bactericidal properties. Burns 2006,32:172-179.
    [69]Liu Y, Ahmad S, Shu XZ, Sanders RK, Kopesec SA, Prestwich GD. Accelerated repair of cortical bone defects using a synthetic extracellular matrix to deliver human demineralized bone matrix. J. Orthop. Res.2006,24:1454-1462.
    [70]Zarini E, Supino R, Pratesi G, Laccabue D, Tortoreto M, Scanziani E, Ghisleni G, Paltrinieri S, Tunesi G, Nava M. Biocompatibility and tissue interactions of a new filler material for medical use. Plast. Reconstr. Surg.2004,114:934-942.
    [71]Niechajev I. Lip enhancement:Surgical alternatives and histologic aspects. Plast. Reconstr. Surg.2000,105:1173-1183.
    [72]Bacskulin A, Vogel M, Wiese KG, Gundlach K, Hingst V, Guthoff R. New osmotically active hydrogel expander for enlargement of the contracted anophthalmic socket. Graefes. Arch Clin. Exp. Ophthalmol.2000,238:24-27.
    [73]Das T, Namperumalsamy P. Scleral buckling with hydrogel implant. Indian J. Ophthalmol.1991,39:41-43.
    [74]D'Hermies F, Korobelnik JF, Savoldelli M, Chauvaud D, Pouliquen Y. Miragel versus silastic used as episcleral implants in rabbits. An experimental and histopathologic comparative study. Retina 1995,15:62-67.
    [75]D'Hermies F, Korobelnik JF, Meyer A, Chauvaud D, Pouliquen Y, Renard G. Experimental encircling scleral buckle with silicone and hydrogel: Histopathologic and comparative study of 26 rabbit eyes. Retina 1999, 19:148-157.
    [76]Mazzoli RA, Raymond WR, Ainbinder DJ, Hansen EA. Use of self-expanding, hydrophilic osmotic expanders (hydrogel) in the reconstruction of congenital clinical anophthalmos. Curr. Opin. Ophthalmol.2004,15:426-431.
    [77]Ramakumar S, Roberts WW, Fugita OE, Colegrove P, Nicol TM, Jarrett TW, Kavoussi LR, Slepian MJ. Local hemostasis during laparoscopic partial nephrectomy using biodegradable hydrogels:Initial porcine results. J. Endourol. 2002,16:489-494.
    [78]Elisseeff J, Puleo C, Yang F, Sharma B. Advances in skeletal tissue engineering with hydrogels. Orthod. Craniofac. Res.2005,8:150-161.
    [79]Barralet JE, Wang L, Lawson M, Triffitt JT, Cooper PR, Shelton RM. Comparison of bone marrow cell growth on 2D and 3D alginate hydrogels.J. Mater. Sci. Mater. Med.2005,16:515-519.
    [80]Lawson MA, Barralet JE, Wang L, Shelton RM, Triffitt JT. Adhesion and growth of bone marrow stromal cells on modified alginate hydrogels. Tissue Eng.2004, 10:1480-1491.
    [81]Uludag H, De Vos P, Tresco PA. Technology of mammalian cell encapsulation. Adv. Drug Deliv. Rev.2000,42:29-64.
    [82]Baruch L, Machluf M. Alginate-chitosan complex coacervation for cell encapsulation:Effect on mechanical properties and on long-term viability. Biopolymers 2006,82:570-579.
    [83]Hou QP, Bae YH. Biohybrid artificial pancreas based on macrocapsule device. Adv. Drug Del. Rev.1999,35:271-287.
    [84]Brahim S, Narinesingh D, Guiseppi-Elie A. Bio-smart hydrogels:co-joined molecular recognition and signal transduction in biosensor fabrication and drug delivery. Biosens. Bioelectron.2002,17:973-981.
    [85]Qi M, Gu Y, Sakata N, Kim D, Shirouzu Y, Yamamoto C, Hiura A, Sumi S, Inoue K. PVA hydrogel sheet macroencapsulation for the bioartificial pancreas. Biomaterials 2004,25:5885-5892.
    [86]Ilmain F, Tanaka T, Kokufuta E. Volume transition in a gel driven by hydrogen bonding. Nature 1991,349:400-401.
    [87]Percot A, Zhu XX, Lafleur M. A simple FTIR spectroscopic method for the determination of the lower critical solution temperature of N-isopropylacrylamide copolymers and related hydrogels. J. Polym. Sci., Part B: Polym. Phys.2000,38:907-915.
    [88]Benrebouh A, Avoce D, Zhu XX. Thermo-and pH-sensitive polymers containing cholic acid derivatives. Polymer 2001,42:4031-4038.
    [89]Bhattarai N, Matsen FA, Zhang MQ. PEG-grafted chitosan as an injectable thermoreversible hydrogel. Macromol. Biosci.2005,5:107-111.
    [90]Jeong B, Kim SW, Bae YH. Thermosensitive sol-gel reversible hydrogels. Adv. Drug Deliv. Rev.2002,54:37-51.
    [91]Tanaka T. Gels. Scientific American 1981,224:110-123.
    [92]Dinarvand R, D'Emanuele A. The use of thermoresponsive hydrogels for on-off release of molecules. J. Control. Release 1995,36:221-227.
    [93]Ooya T, Arizono K, Yui N. Preparation and characterization of molecular tube constructed by a-cyclodextrins and its inclusion complexation with sodium dodecylsulfate. Polym. Adv.Technol.2000,1:642-651.
    [94]Wulff M, Alden M. Solid state studies of drug-cyclodextrin inclusion complexes in PEG 6000 prepared by a new method. Eur. J. Pharm. Sci.1999,8:269-281.
    [95]Li J, Li X, Ni XP, Wang X, Li HZ, Leong KW. Self-assembled supramolecular hydrogels formed by biodegradable PEO-PHB-PEO triblock copolymers and a-cyclodextrin for controlled drug delivery. Biomaterials 2006,27:4132-4140.
    [96]Guo M, Jiang M, Pispas S, Yu W, Zhou C. Supramolecular hydrogels made of end-functionalized low-molecular-weight PEG and a-cyclodextrin and their hybridization with SiO2 nanoparticles through host-guest interaction. Macromolecules 2008,41:9744-9749.
    [97]Shapira-Schweitzer K, Habib M, Gepstein L, Seliktar D. A photopolymerizable hydrogel for 3-D culture of human embryonic stem cell-derived cardiomyocytes and rat neonatal cardiac cells. J. Mol. Cell. Cardiol.2009, 46:213-224.
    [98]Patel A, Mequanint K. Novel physically crosslinked Polyurethane-block-Poly(vinyl pyrrolidone) hydrogel biomaterials. Macromol. Biosci.2007,7:727-737.
    [99]Vinatier C, Gauthier O, Fatimi A, MerceronC, Masson M, Moreau A. An Injectable Cellulose-Based Hydrogel for the M Transfer of Autologous Nasal Chondrocytes in Articular Cartilage Defects. Biotechnol. Bioeng.2009,102: 1259-1267.
    [100]Park H, Guo X, Temenoff JS, Tabata Y, Caplan AI, Kasper FK, Mikos AG. Effect of swelling ratio of injectable hydrogel composites on chondrogenic differentiation of encapsulated rabbit marrow mesenchymal stem cellsin vitro. Biomacromolecules 2009,10:541-546.
    [101]Nishiyama N, Kataoka K. Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol. Ther. 2006,112:630-648.
    [102]Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect inmacromolecular therapeutics:a review. J. Control. Release 2000,65:271-284.
    [103]Kim D, Lee ES, Oh KT, Gao ZG, Bae YH. Doxorubicin-loaded polymeric micelle overcomes multidrug resistance of cancer by double-targeting folate receptor and early endosomal pH. Small 2008,4:2043-2050.
    [104]Panyam J, Labhasetwar V. Targeting intracellular targets. Curr. Drug Deliv. 2004,1:235-247.
    [105]Zhao HZ, Yue L, Yung L. Selectivity of folate conjugated polymer micelles against different tumor cells. Int. J. Pharma.2008,349:256-268.
    [106]Lee H, Ahn CH, Park TG. Poly[lactic-co-(glycolic acid)]-grafted hyaluronic acid copolymer micelle nanoparticles for target-specific delivery of doxorubicin. Macromol. Biosci.2009,9:336-342.
    [107]Yasugi K, Nakamura T, Nagasaki Y, Kato M, Kataoka K. Sugar-installed polymer micelles:synthesis and micellization of Poly(ethylene glycol)-Poly (D, L-lactide) block copolymers having sugar groups at the PEG chain end. Macromolecules 1999,32:8024-8032.
    [108]Na K, Sethuraman VA, Bae YH. Stimuli-sensitive polymeric micelles as anticancer drug carriers. Anti. Canc. Agents Med. Chem.2006,6:525-535.
    [109]Oh KT, Lee ES, Kim D, Bae YH. L-Histidine-based pH-sensitive anticancer drug carrier micelle:Reconstitution and brief evaluation of its systemic toxicity. Inter. J. Pharma.2008,358:177-183.
    [110]Bae Y, Jang W, Nishiyama N, Fukushima S, Kataoka K. Multifunctional polymeric micelles with folate-mediated cancer cell targeting and pH-triggered drug releasing properties for active intracellular drug delivery. Mol. Biosyst. 2005,1:242-250.
    [111]Bae Y, Fukushima S, Harada A, Kataoka K. Design of environment-sensitive supramolecular assemblies for intracellular drug delivery, polymeric micelles that are responsive to intracellular pH change. Angew. Chem. Int. Ed. Engl. 2003,42:4640-4643.
    [112]Bae Y, Nishiyama N, Fukushima S, Koyama H, Matsumura Y, Kataoka K. Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property:tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjugate Chem.2005,16:122-130.
    [113]Borisov OV, Zhulina EB. Reentrant morphological transitions in copolymer micelles with pH-sensitive corona. Langmuir 2005,21:3229-3231.
    [114]Oishi M, Kataoka K, Nagasaki Y. pH-responsive three-layered PEGylated polyplex micelle based on a lactosylated ABC triblock copolymer as a targetable and endosome-disruptive nonviral gene vector. Biocongugate Chem. 2006,17:677-688.
    [115]Lee E, Shin H, Na K, Bae Y. Poly(L-histidine)-PEG block copolymer micelles and pH-induced destabilization. J. Control. Release 2003,90:363-374.
    [116]Solomatin S, Bronich T, Eisenberg A, Kabanov V, Kabanov A. Environmentally responsive nanoparticles from block ionomer complexes:effects of pH and ionic strength. Langmuir 2003,19:8069-8076.
    [117]Sethuraman VA, Bae YH. Tat peptide-based micelle system for potential active targeting of anti-cancer agents to acidic solid tumors. J. Control. Release 2007, 118:216-224.
    [118]Kjoniksen AL, Zhu KZ, Pamies R, Nystrom B. Temperature-induced formation and contraction of micelle-like aggregates in aqueous solutions of thermoresponsive short-chain copolymers.J. Phys. Chem. B 2008,112: 3294-3299.
    [119]Chung JE, Yokoyama M, Okano T. Inner core segment design for drug delivery control of thermo-responsive polymeric micelles. J. Control. Release 2000, 65:93-103.
    [120]Zhang J, Gassmann M, Chen XM, Burger C, Rong LX, Ying QC, Chu B. Characterization of a reversible thermoresponsive gel and its application to oligonucleotide separation. Macromolecules 2007,40:5537-5544.
    [121]Wang Y, Wei GW, Zhang WQ, Jiang XW, Zheng PW, Shi LQ, Dong AJ. Responsive catalysis of thermoresponsive micelle-supported gold nanoparticles. J. Mol. Catal. A-Chem.2007,266:233-238.
    [122]Choi SH, Lee JH, Choi SM, Park TG. Thermally reversible pluronic/heparin nanocapsules exhibiting 1000-fold volume transition. Langmuir 2006, 22:1758-1762.
    [123]Chiappetta DA, Sosnik A. Poly(ethylene oxide)-poly(propylene oxide) block copolymer micelles as drug delivery agents:improved hydrosolubility, stability and bioavailability of drugs. Eur. J. Pharm. Biopharm.2007,33:303-317.
    [124]Jun YJ, Toti US, Kim HY, Yu JY, Jeong B, Jun MJ. Thermoresponsive micelles from oligopeptide-grafted cyclotriphosphazenes. Angew. Chem. Int. Ed. Engl. 2006,45:6173-6176.
    [125]Nakayama M, Okano T. Unique thermoresponsive polymeric micelle behavior via cooperative polymer corona phase transitions. Macromolecules 2008, 41:504-507.
    [126]Kim IS, Jeong YI, Lee YH, Kim SH. Drug release from thermo-responsive self-assembled polymeric micelles composed of cholic acid and poly(N-isopropylacrylamide). Arch Pharm. Res.2000,23:367-373.
    [127]Kohori F, Sakai K, Aoyagi T, Yokoyama M, Sakurai Y, Okano T. Preparation and characterization of thermally responsive block copolymer micelles comprising poly(Nisopropylacrylamide-b-DL-lactide). J. Control. Release 1998, 55:87-98.
    [128]Li C, Buurma NJ, Haq I, Turner C, Armes SP, Castelletto V. Synthesis and characterization of biocompatible, thermoresponsive ABC and ABA triblock copolymer gelators. Langmuir 2005,21:11026-11033.
    [129]Li YY, Zhang XZ, Cheng H, Kim GC, Cheng SX, Zhuo RX. Novel stimuli-responsive micelle self-assembled from Y-shaped P(UA-Y-NIPAAm) copolymer for drug delivery. Biomacromolecules 2006,7:2956-2960.
    [130]Liu XM, Yang YY, Leong KW. Thermally responsive polymeric micellar nanoparticles self-assembled from cholesteryl end-capped random poly(N-isopropylacrylamideco-N,N-dimethylacrylamide):synthesis, temperature-sensitivity, and morphologies. J. Colloid Interface Sci.2003, 266:295-303.
    [131]Liu XM, Pramoda KP, Yang YY, Chow SY, He C. Cholesteryl-grafted functional amphiphilic poly(N-isopropylacrylamide-co-N-hydroxylmethylacrylamide):synthesis, temperature-sensitivity, self-assembly and encapsulation of a hydrophobic agent. Biomaterials 2004,25:2619-2628.
    [132]Cheng C, Wei H, Shi BX, Cheng H, Li C, Gu ZW, Cheng SX, Zhang XZ, Zhuo RX. Biotinylated thermoresponsive micelle self-assembled from double-hydrophilic block copolymer for drug delivery and tumor target. Biomaterials 2008,29:497-505.
    [133]Nakayama M, Okano T. Polymer terminal group effects on properties of thermoresponsive polymeric micelles with controlled outer-shell chain lengths. Biomacromolecules 2005,6:2320-2327.
    [134]Wei H, Zhang XZ, Zhou Y, Cheng SX, Zhuo RX. Self-assembled thermoresponsive micelles of poly(N-isopropylacrylamide-b-methyl methacrylate). Biomaterials 2006,27:2028-2034.
    [135]Nowakowska M, Szczubialka K, Grebosz M. Interactions of temperature-responsive anionic polyelectrolytes with a cationic surfactant. J. Colloid Interface Sci.2003,265:214-219.
    [136]Park JS, Akiyama Y, Yamasaki Y, Kataoka K. Preparation and characterization of polyion complex micelles with a novel thermosensitive poly(2-isopropyl-2-oxazoline) shell via the complexation of oppositely charged block ionomers. Langmuir 2007,23:138-146.
    [137]Pilon LN, Armes SP, Findlay P, Rannard SP. Synthesis and characterization of shell cross-linked micelles with hydroxy-functional coronas:a pragmatic alternative to dendrimers? Langmuir 2005,21:3808-3813.
    [138]Teoh SK, Ravi P, Dai S, Tam KC. Self-assembly of stimuli-responsive water-soluble fullerene end-capped ampholytic block copolymer. J. Phys. Chem. B:2005,109:4431-4438.
    [139]Wasserman AM, Yasina LL, Aliev II, Doseva V, Baranovsky VY. Molecular structure and dynamics of poly(methacrylic acid) and poly(acrylic acid) complexes with dodecyl-substituted poly(ethylene glycol). Colloid Polym. Sci. 2004,282:402-406.
    [140]Nakayama M, Okano T, Miyazaki T, Kohori F, Sakai K, Yokoyama M. Molecular design of biodegradable polymeric micelles for temperature-responsive drug release. J. Control. Release 2006,115:46-56.
    [141]Neradovic D, Soga O, Van Nostrum CF, Hennink WE. The effect of the processing and formulation parameters on the size of nanoparticles based on block copolymers of poly(ethylene glycol) and poly(N-isopropylacrylamide) with and without hydrolytically sensitive groups. Biomaterials 2004, 25:2409-2418.
    [142]Rijcken CJ, Veldhuis TF, Ramzi A, Meeldijk JD, van Nostrum CF, Hennink WE. Novel fast degradable thermosensitive polymeric micelles based on PEG-block-poly(N-(2-hydroxyethyl)methacrylamide-oligolactates). Biomacromolecules 2005,6:2343-2351.
    [143]Soga O, van Nostrum CF, Fens M, Rijcken CJ, Schiffelers RM, Storm G. Thermosensitive and biodegradable polymeric micelles for paclitaxel delivery. J. Control. Release 2005,103:341-353.
    [144]Rapoport N. Stabilization and acoustic activation of pluronic micelles for tumor-targeted drug delivery. Colloids Surf. B:Biointerfaces 1999,3:93-111.
    [145]Pruitt JD, Husseini G, Rapoport N, Pitt WG. Stabilization of pluronic p-105 micelles with an interpenetrating network of N,N'-diethylacrylamide. Macromolecules 2000,33:9306-9309.
    [146]Bae KH, Choi SH, Park SY, Lee Y, Park TG. Thermosensitive pluronic micelles stabilized by shell crosslinking with gold nanoparticles. Langmuir 2006, 22:6380-6384.
    [147]Luo S, Xu J, Zhu Z, Wu C, Liu S. Phase transition behavior of unimolecular micelles with thermoresponsive poly(N-isopropylacrylamide) coronas. J. Phys. Chem. B:2006,110:9132-9139.
    [148]Toti US, Moon SH, Kim HY, Jun YJ, Kim BM, Park YM. Thermosensitive and biocompatible cyclotriphosphazene micelles. J. Control. Release 2007,119: 34-40.
    [149]Lee ES, Na K, Bae YH. Super pH-sensitive multifunctional polymeric micelle. Nano Lett.2005,5:325-329.
    [150]Na K, Lee ES, Bae YH. Polymeric micelle for tumor pH and folate mediated targeting. J. Control. Release 2003,91:103-113.
    [151]Jeong JH, Kim SW, Park TG. Novel intracellular delivery system of antisense oligonucleotide by self-assembled hybrid micelles composed of DNA/PEG conjugate and cationic fusogenic peptide. Bioconjugate Chem.2003,14: 473-479.
    [152]Boussif O, Lezoualcph F, Zanta MA. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo:polyethylenimine. Proc. Natl. Acad. Sci. USA 1995,92:7297-7301.
    [153]Wang J, Mongayt D, Torchilin VP. Polymeric micelles for delivery of poorly soluble drugs:preparation and anticancer activity in vitro of paclitaxel incorporated into mixed micelles based on poly (ethylene glycol) lipid conjugate and positively charged lipids. J. Drug Target 2005,13:73-80.
    [154]Dolmans DEJGJ, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nature 2003,3:380-387.
    [155]Ishiyama N, Kataoka K. Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol. Ther. 2006,112:630-648.
    [156]Macdonald IJ, Dougherty TJ. Basic principles of photodynamic therapy. J. Porphyrins Phthalo. cyanines.2001,5:105-129.
    [157]Maziere JC, Morliere P, Santus R. The role of the low density lipoprotein receptor pathway in the delivery of lipophilic photosensitizers in the photodynamic therapy of tumors. J. Photochem. Photobiol. B:Biol.1991, 8:351-360.
    [158]Hamblin MR, Newman EL. Photosensitizer targeting in photodynamic therapy Ⅱ.Conjugates of hematoporphyrin with serum lipoproteins. J. Photochem. Photobiol. B:Biol.1994,26:147-157.
    [159]Nakajima S, Sakata I, Takemura T. Anti-tumour effect of second generation photosensitizer ATX-S10Na(Ⅱ). J. Clin. Exp. Med.1997,180:689-690.
    [160]Masumoto K, Yamada I, Tanaka H, Fujise Y, Hashimoto K. Tissue distribution of a new photosensitizer ATX-S10Na(Ⅱ) and effect of a diode laser (670 nm) in photodynamic therapy. Lasers. Med. Sci.2003,18:134-138.
    [161]Dolmans DEJGJ, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat.Rev. Cancer 2003,3:380-387.
    [162]Castano AP, Mroz P, Hamblin MR. Photodynamic therapy and anti-tumour immunity. Nat. Rev. Cancer 2006,6:535-545.
    [163]Kabanov AV, Batrakova EV, Alakhov VY. Pluronic block copolymers as novel polymer therapeutics for drug and gene delivery. J. Control. Release 2002, 82:189-212.
    [164]Hioka N, Chowdhary RK, Chansarkar N, Delmarre D, Sternberg E, Dolphin D. Studies of a benzoporphyrin derivative with Pluronics. Can. J. Chem.2002,80: 1321-1326.
    [165]Zhang JX, Hansen CB, Allen TM, Boey A, Boch R. Lipid-derivatized poly(ethylene glycol) micellar formulations of benzoporphyrin derivatives. J. Control. Release 2003,86:323-338.
    [166]Le Garrec D, Taillefer J, van Lier JE, Lenaerts V, Leroux JC. Optimizing pH-responsive polymeric micelles for drug delivery in a cancer photodynamic therapy model.J. Drug Targeting 2002,10:429-437.
    [167]Stubbs M, McSheehy PM, Griffiths JR, Bashford CL. Causes and consequences of tumor acidity and implications for treatment. Mol. Med. Today 2000, 6:15-19.
    [168]Meyer O, Papahadjopoulos D, Leroux JC. Copolymers of N-isopropylacrylamide can trigger pH sensitivity to stable liposomes. FEBS Lett.19984,2:61-64.
    [169]Chung JE, Yokoyama M, Yamato M, Aoyagi T, Sakurai Y, Okano T. Thermo-responsive drug delivery from polymeric micelles constructed using block copolymers of poly(N-isopropylacrylamide) and poly(butylmethacrylate). J. Control. Release 1999,62:115-127.
    [170]Taillefer J, Jones MC, Brasseur N, van Lier JE, Leroux JC. Preparation and characterization of pH-responsive polymeric micelles for the delivery of photosensitizing anticancer drugs. J. Pharm. Sci.2000,89:52-62.
    [171]Leroux JC, Roux E, Le Garrec D, Hong KL, Drummond DC. N-isopropylacrylamide copolymers for the preparation of pH-sensitive liposomes and polymeric micelles. J. Control. Release 2001,72:71-84.
    [172]Taillefer J, Brasseur N, van Lier JE, Lenaerts V, Le Garrec D, Leroux JC. In vitro and in vivo evaluation of pH-responsive polymeric micelles in a photodynamic cancer therapy model. J. Pharm. Pharmacol.2001,53:155-166.
    [173]Zhang GD, Nishiyama N, Harada A, Jiang DL, Aida T, Kataoka K. pH-sensitive assembly of light-harvesting dendrimer dendrimer zinc porphyrin bearing peripheral groups of primary amine with poly(ethylene glycol)-b-poly(aspartic acid) in aqueous solution. Macromolecules 2003,36:1304-1309.
    [174]Zhang GD, Harada A, Nishiyama N, Jiang DL, Aida T, Kataoka K. Polyion complex micelles entrapping cationic dendrimer porphyrin:effective photosensitizer for photodynamic therapy of cancer. J. Control. Release 2003, 93:141-150.
    [175]Yamazaki A, Winnik FM, Cornelius RM, Brash JL. Modification of liposomes with N-substituted polyacrylamides:identification of proteins adsorbed from plasma. Biochim. Biophys. Acta 1999,1421:103-115.
    [176]Ishihara K, Iwasaki Y, Ebihara S, Shindo Y, Nakabayashi N. Photoinduced graft polymerization of 2-methacryloyloxyethyl phosphorylcholine on polyethylene membrane surface for obtaining blood cell adhesion resistance. Coll. Surf. B Biointerf.2000,18:325-335.
    [177]Kakizawa Y, Kataoka K. Block copolymer micelles for delivery of gene and related compounds. Adv. Drug Deliv. Rev.2002,54:203-222.
    [1]Rowley JA, Madlambayan G, Mooney DJ. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 1999,20:45-53.
    [2]Nguyen KT, West JL. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 2002,23:4307-4314.
    [3]Elisseeff J, Ferran A, Hwang S, Varghese S, Zhang Z. The role of biomaterials in stem cell differentiation:Applications in the musculoskeletal system. Stem Cells Develop.2006,15:295-303.
    [4]Iemma F, Spizzirri UG, Puoci F. pH-Sensitive hydrogels based on bovine serum albumin for oral drug delivery. Int. J. Pharma.2006,312:151-157.
    [5]Sefton MV, Stevenson WTK. Microencapsulation of live animal cells using polyacrylates. Adv. Polym. Sci.1993,107:145-198.
    [6]Zhang XZ, Wu DQ, Chu CC. Synthesis, characterization and controlled drug release of thermosensitive IPN-PNIPAAm hydrogels. Biomaterials 2004,25: 3793-3805.
    [7]Bhattarai N, Ramay HR, Gunn J. PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release.J. Control. Release 2005, 103:609-624.
    [8]Matsusaki M, Akashi M. Novel functional biodegradable polymer IV:pH-Sensitive controlled release of fibroblast growth factor-2 from a poly(gamma-glutamic acid)-sulfonate matrix for tissue engineering. Biomacromolecules 2005, 6:3351-3356.
    [9]Balakrishnan B, Jayakrishnan A. Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds. Biomaterials 2005,26:3941-3951.
    [10]Yan H, Saiani A, Gough JE, Miller AF. Thermoreversible protein hydrogel as cell scaffold. Biomacromolecules 2006,7:2776-2782
    [11]Park KH, Na K, Kim SW, Jung SY, Park KH, Chung HM. Phenotype of hepatocyte spheroids behavior within thermo-sensitive Poly(NiPAAm-co-PEG-g-GRGDS) hydrogel as a cell delivery vehicle. Biotech. Lett.2005,27:1081-1086.
    [12]Zhang XZ, Yang YY, Wang FJ, Chung TS. Thermosensitive poly(N-isopropylacrylamide-co-acrylic acid) hydrogels with expanded network structures and improved oscillating swelling-deswelling properties. Langmuir 2002,18:2013-2018.
    [13]Yoo MK, Sung YK, Cho CS, Lee YM. Effect of polymer complex formation on the cloud-point of poly(N-isopropyl acrylamide) (PNIPAAm) in the poly(NIPAAm-co-acrylic acid):polyelectrolyte complex between poly(acrylic acid) and poly(allylamine). Polymer 1997,38:2759-2765.
    [14]Yoo MK, Sung YK, Lee YM, Cho CS. Effect of polyelectrolyte on the lower critical solution temperature of poly(N-isopropyl acrylamide) in the poly(NIPAAm-co-acrylic acid) hydrogel. Polymer 2000,41:5713-5719.
    [15]Wachiralarpphaithoon C, Iwasaki Y, Akiyoshi K. Enzyme-degradable phosphorylcholine porous hydrogels cross-linked with polyphosphoesters for cell matrices. Biomaterials 2007,28:984-993.
    [16]Metters A, Hubbell J. Network formation and degradation behavior of hydrogels formed by Michael-type addition reactions. Biomacromolecules 2005,6:290-301.
    [17]John G, Morita M. Synthesis and characterization of photo-cross-linked networks based on L-lactide/serine copolymers. Macromolecules 1999,32:1853-1858.
    [18]Metters AT, Bowman CN, Anseth KS. A statistical kinetic model for the bulk degradation of PLA-b-PEG-b-PLA hydrogel networks. J. Phys. Chem. B 2000, 104:7043-7049.
    [19]Ng CS, Teoh SH, Chung TS, Hutmacher DW. Simultaneous biaxial drawing of poly (epsilon-caprolactone) films. Polymer 2000,41:5855-5864.
    [20]Olabarrieta I, Forsstrom D, Gedde UW, Hedenqvist MS. Transport properties of chitosan and whey blended with poly(epsilon-caprolactone) assessed by standard permeability measurements and microcalorimetry. Polymer 2001,42:4401-4408.
    [21]van Dijk-Wolthuls WNE, Tsang SKY, Kettenes-van den Bosch JJ, Hennink WE. A new class of polymerizable dextrans with hydrolyzable groups:hydroxyethyl methacrylated dextran with and without oligolactate spacer. Polymer 1997, 38:6235-6242.
    [22]Lu SX, Anseth KS. Release behavior of high molecular weight solutes from poly(ethylene glycol)-based degradable networks. Macromolecules 2000,33: 2509-2515.
    [23]van Dijk-Wolthuis WNE, Hoogeboom JAM, van Steenbergen MJ, Tsang SKY, Hennink WE. Degradation and release behavior of dextran-based hydrogels. Macromolecules 1997,30:4639-4645.
    [24]Eichenbaum KD, Thomas AA, Eichenbaum GM, Gibney BR, Needham D, Kiser PF. Oligo-α-hydroxy ester cross-linkers:impact of cross-linker structure on biodegradable hydrogel networks. Macromolecules 2005,38:10757-10762.
    [25]Gan Z, Liang Q, Zhang J, Jing X. Enzymatic degradation of poly(ε-caprolactone) film in phosphate buffer solution containing lipases. Polym. Degrad. Stabil.1997, 56:209-213.
    [26]Gan Z, Yu D, Zhong Z, Liang Q, Jing X. Enzymatic degradation of poly(ε-caprolactone)/poly(DL-lactide) blends in phosphate buffer solution Polymer 1999,40:2859-2862.
    [27]Mochizuki M, Hirano M, Kanmuri Y, Kudo K, Tokiwa Y. Hydrolysis of polycaprolactone fibers by lipase:Effects of draw ratio on enzymatic degradation.J. Appl. Polym. Sci.1995,55:289-296.
    [28]Fukuzaki H, Yoshida M, Asano M, Kumakura M. Synthesis of low-molecular-weight copoly(1-lactic acid/ε-caprolactone) by direct copolycondensation in the absence of catalysts, and enzymatic degradation of the polymers. Polymer 1990,31:2006-2014.
    [29]Lee KY, Mooney DJ. Hydrogels for tissue engineering. Chem. Rev.2001,101: 1869-1880.
    [30]Hoffman AS. Hydrogels for biomedical applications. Adv. Drug Delivery Rev. 2002,54:3-12.
    [31]Chen YM, Shiraishi N, Satokawa H, Kakugo A, Narita T, Gong JP. Cultivation of endothelial cells on adhesive protein-free synthetic polymer gels. Biomaterials 2005,26:4588-4596.
    [32]Cretua A, Gattina R, Brachais L, Barbier-Baudry D. Synthesis and degradation of poly(2-hydroxyethyl methacrylate)-graft-poly(ε-caprolactone) copolymers. Polym. Degrad. Stabil.2004,83:399-404.
    [33]Chiu HC, Lin YF, Huang SH. Equilibrium swelling of copolymerized acrylic acid-methacrylated dextran networks:Effects of pH and neutral salt. Macromolecules 2002,35:5235-5242.
    [34]Jarry C, Chaput C, Chenite A, Renaud MA, Buschmann M, Leroux JC. Effects of steam sterilization on thermogelling chitosan-based gels. J. Biomed. Mater. Res. 2001,58A:127-135.
    [35]Itoa T, Yeoa Y, Highleya CB, Bellasa E, Kohane DS. Dextran-based in situ cross-linked injectable hydrogels to prevent peritoneal adhesions. Biomaterials 2007,28:3418-3426.
    [36]Lee HI, Jakubowski W, Matyjaszewski K, Yu S, Sheiko SS. Cylindrical core-shell brushes prepared by a combination of ROP and ATRP. Macromolecules 2006, 39:4983-4989.
    [37]He B, Chan-Park MB. Synthesis and characterization of functionalizable and photopatternable poly(epsilon-caprolactone-co-RS-beta-malic acid) Macromolecules 2005,38:8227-8234.
    [38]Wiltshire JT, Qiao GG. Selectively degradable core cross-linked star polymers. Macromolecules 2006,39:9018-9027.
    [39]Alvarez-Lorenzo C, Concheiro A. Reversible adsorption by a pH-and temperature-sensitive acrylic hydrogel. J. Control. Release 2002,80:247-257.
    [40]Flory PJ. Principles of Polymer Chemistry, Cornell University Press, Ithaca, NY, 1953.
    [41]Bromberg L, Grosberg AY, Matsuo ES, Suzuki Y, Tanaka T. Dependency of swelling on the length of subchain in poly(N,N-dimethylacrylamide)-based gels. J. Chem. Phys.1997,106:2906-2910.
    [42]Patil NS, Dordick JS, Rethwisch DG. Macroporous poly(sucrose acrylate) hydrogel for controlled release of macromolecules. Biomaterials 1996,17: 2343-2450.
    [43]Chiba M, Hanes J, Langer R. Controlled protein delivery from biodegradable tyrosine-containing poly(anhydride-co-imide) microspheres. Biomaterials 1997, 18:893-901.
    [44]Zhan YL, Chu CC. Biodegradation of hydrophilic-hydrophobic hydrogels and its effect on albumin release. J. Mater. Sci. Mater. Med.2002,13:667-676.
    [45]Anseth KS, Bowman CN, Brannon-Peppas L. Mechanical properties of hydrogels and their experimental determination. Biomaterials 1996,17:1647-1657.
    [46]Underhill GH, Chen AA, Albrecht DR, Bhatia SN. Assessment of hepatocellular function within PEG hydrogels. Biomaterials 2007,28:256-270.
    [1]Shim WS, Kim JH, Park H, Kim K, Kwon IC, Lee DS. Biodegradability and biocompatibility of a pH-and thermo-sensitive hydrogel formed from a sulfonamide-modified poly(epsilon-caprolactone-co-lactide)-poly(ethylene glycol)-poly(epsilon-caprolactone-co-lactide) block copolymer. Biomaterials 2006,27:5178-5185.
    [2]Gonen-Wadmany M, Oss-Ronen L, Seliktar D. Protein-polymer conjugates for forming photopolymerizable biomimetic hydrogels for tissue engineering. Biomaterials 2007,28:3876-3886.
    [3]Zhang YJ, Wang SP, Eghtedari M, Motamedi M, Kotov NA. Inverted-colloidal-crystal hydrogel matrices as three-dimensional cell scaffolds. Adv. Funct. Mater.2005,15:725-731.
    [4]Liu YC, Shu XZ, Prestwich GD. Biocompatibility and stability of disulfide-crosslinked hyaluronan films. Biomaterials 2005,26:4737-4746.
    [5]Rowley JA, Madlambayan G, Mooney DJ. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 1999,20:45-53.
    [6]Rowley JA, West JL. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 2002,23:4307-4314.
    [7]Elisseeff J, Ferran A, Hwang S, Varghese S, Zhang Z. The role of biomaterials in stem cell differentiation:Applications in the musculoskeletal system. Stem Cells Develop.2006,15:295-303.
    [8]Iemma F, Spizzirri UG, Puoci F. pH-Sensitive hydrogels based on bovine serum albumin for oral drug delivery. Int. J. Pharma.2006,312:151-157.
    [9]Zhu AP, Chan-Park MB, Gao JX. Foldable micropatterned hydrogel film made from biocompatible PCL-b-PEG-b-PCL diacrylate by UV embossing. J. Biomed Mater. Res. Part B 76B 2006,1:76-84.
    [10]Cho CS, Han SY, Ha JH, Kim SH, Lim DY. Clonazepam release from bioerodible hydrogels based on semi-interpenetrating polymer networks composed of poly(epsilon-caprolactone) and poly(ethylene glycol) macromer. Int. J. Pharma.1999,18:235-242.
    [11]Du JZ, Sun TM, Weng SQ, Chen XS, Wang J. Synthesis and characterization of photo-cross-linked hydrogels based on biodegradable polyphosphoesters and poly(ethylene glycol) copolymers. Biomacromolecules 2007,8:3375-3381.
    [12]Zhang XZ, Chu CC. Fabrication and characterization of microgel-impregnated, thermosensitive PNIPAAm hydrogels. Polymer 2005,46:9664-9673.
    [13]Moffat KL, Marra KG. Biodegradable poly(ethylene glycol) hydrogels crosslinked with genipin for tissue engineering applications. J. Biomed. Mater. Res., Part B:Appl. Biomater.2004,71B:181-187.
    [14]Alexandridis P, Hatton TA. Poly(ethylene oxide)-poly(propyleneoxide)-poly(ethylene oxide) block copolymer surfactants in aqueoussolutions and at interfaces:thermodynamics, structure, dynamics, and modeling. Colloid Surf. 1995,96:1-46.
    [15]Bromberg LE, Ron ES. Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery. Adv. Drug Deliv. Rev.1998, 31:197-221.
    [16]Yu L, Chang GT, Zhang H, Ding JD. Temperature-induced spontaneous sol-gel transitions of poly(D,L-lactic acid-co-glycolic acid)-b-poly(ethylene glycol)-b-poly(D,L-lactic acid-co-glycolic acid) triblock copolymers and their end-capped derivatives in water. J. Polym. Sci. Pol. Chem.2007,45:1122-1133.
    [17]Shim WS, Kim SW, Lee DS. Sulfonamide-based pH-and temperature-sensitive biodegradable block copolymer hydrogels. Biomacromolecules 2006, 7:1935-1941.
    [18]Shim WS, Yoo JS, Bae YH, Lee DS. Novel injectable pH and temperature sensitive block copolymer hydrogel. Biomacromolecules 2005,6:2930-2934.
    [19]Yu L, Zhang H, Ding JD. A subtle end-group effect on macroscopic physical gelation of triblock copolymer aqueous solutions. Angew. Chem. Int. Ed.2006, 45:2232-2235.
    [20]Szejtli J. Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 1998,98:1743-1754.
    [21]Harada A, Li J, KamachiM. Double stranded inclusion complexes of cyclodextrin threaded on poly(ethylene glycol). Nature 1994,370:126-128.
    [22]Wenz G. Cyclodextrins as building-blocks for supramolecular structures and functional units. Angew. Chem. Int. Ed.1994,33:803-822.
    [23]Won CY, Chu CC, Lee JD. Synthesis and characterization of biodegradable poly(L-aspartic acid-co-PEG). J. Polym. Sci:Part A:Polym. Chem.1998,36: 2949-2959.
    [24]Won CY, Chu CC, Lee JD. Novel biodegradable copolymers containing pendant amine functional groups based on aspartic acid and poly(ethylene glycol). Polymer 1998,25:6677-6681.
    [25]Chandy T, Mooradian DL, Ral GH. Chitosan/polyethylene glycol-alginate microcapsules for oral delivery of hirudin.J. Appl. Polym. Sci.1998, 70:2143-2153.
    [26]Guo WX, Huang KX. Preparation and properties of poly (dimer acid-dodecanedioic acid) copolymer and poly (dimmer acid-tetradecanedioic acid) copolymer. Polym. Degrad. Stab.2004,84:375-381.
    [27]Rhee SH, Choi JY, Kim HM. Preparation of a bioactive and degradable poly(ε-caprolactone)/silica hybrid through a sol-gel method. Biomaterials 2002, 23:4915-4921.
    [28]Kweon HY, Yoo MK, Park IK, Kim TH, Lee HC, Lee HS, Oh JS, Akaike T, Cho, CS. A novel degradable polycaprolactone networks for tissue engineering. Biomaterials 2003,24:801-808.
    [29]Prabu P, Dharmarj N, Aryal S, Lee BM, Ramesh V, Kim HY. Preparation and drug release activity of scaffolds containing collagen and poly(ε-caprolactone). J. Biomed. Mater. Res. Part A.2006,79A:153-158.
    [30]Gilbert RD, Stannett V, Pitt CG, Schindler A. In Thedesign of biodegradable polymers:two approaches in development in polymer degradation; Grassie, N., Ed.; Elsevier:Amsterdam,1982, pp 259-293.
    [31]Jeong B, Bae YH, Lee DS, Kim SW. Biodegradable block copolymers as injectable drug-delivery systems. Nature 1997,388:860-862.
    [32]Wilhelm M, Zhao C, Wang Y, Xu R, Winnik MA, Mura JL. Polymer micelle formation 3. poly(styrene-ethylene oxide) block copolymer micelle formation in water-a fluorescence probe study. Macromolecules 1991,24:1033-1040.
    [33]Li J, Ni X, Li X, Tan NK, Lim CT, Ramakrishna S. Micellization phenomena of biodegradable amphiphilic triblock copolymers consisting of poly(b-hydroxyalkanoic acid) and poly(ethylene oxide). Langmuir 2005, 21:8681-8685.
    [34]Letch ford K, Burt H. A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures:micelles, nanospheres, nanocapsules and polymersomes. Eur. J. Pharm. Biopharm.2007,65:259-269.
    [35]Harada A, Li J, Kamachi M. Preparation and properties of inclusion complexes of polyethylene glycol with alpha-cyclodextrin. Macromolecules 1993,26: 5698-5703.
    [36]Li J, Li X, Zhou ZH, Ni XP, Leong KW. Formation of supramolecular hydrogels induced by inclusion complexation between pluronics and alpha-cyclodextrin. Macromolecules 2001,34:7236-7237.
    [37]Ho E, Lowman A, Marcolongo M. Synthesis and characterization of an injectable hydrogel with tunable mechanical properties for soft tissue repair. Biomacromolecules 2006,7:3223-3228.
    [38]Trojani C, Boukhechba F, Scimeca JC, Vandenbos F, Michiels JF, Daculsi G, Boileau P, Weiss P,Carle GF, Rochet N. Ectopic bone formation using an injectable biphasic calcium phosphate/Si-HPMC hydrogel composite loaded with undifferentiated bone marrow stromal cells. Biomaterials 2006,27:3256-3264.
    [39]Metzmacher I, Radu F, Bause M, Knabner P, Friess W. A model describing the effect of enzymatic degradation on drug release from collagen minirods. Eur. J. Pharm. Biopharm.2007,67:349-360.
    [40]Li J, Li X, Ni XP, Wang X, Li HZ, Leong KW. Self-assembled supramolecular hydrogels formed by biodegradable PEO-PHB-PEO triblock copolymers and a-cyclodextrin for controlled drug delivery. Biomaterials 2006,27:4132-4140.
    [41]Roos A, Klee D, Schuermann K, Hocker H. Development of a temperature sensitive drug release system for polymeric implant devices. Biomaterials 2003, 24:4417-4423.
    [42]Burkea MD, Parkb JO, Srinivasaraob M, Khan SA. A novel enzymatic technique for limiting drug mobility in a hydrogel matrix. J. Control. Release 2005, 104:141-153.
    [43]Koennings S, Sapin A, Blunk T, Menei P, Goepferich A.Towards controlled release of BDNF-Manufacturing strategies for protein-loaded lipid implants and biocompatibility evaluation in the brain. J. Control. Release 2007,119:163-172.
    [44]Fukuzaki H, Yoshida M, Asano M, Kumakura M. Synthesis of low-molecular-weight copoly(L-lactic acid/ε-caprolactone) by direct copolycondensation in the absence of catalysts, and enzymatic degradation of the polymers. Polymer 1990,31:2006-2014.
    [45]Ponsart S, Coudane J, Saulnier B, Morgat JL,Vert M. Biodegradation of [H-3]poly(epsilon-caprolactone) in the presence of active sludge extracts. Biomacromolecules 2001,2:373-377.
    [1]Bae YH, Kim SW. Hydrogel delivery systems based on polymer blends, block-coplymers or interpenetratingnetworks. Adv. Drug Deliv. Rev.1993, 11:109-135.
    [2]Peppas NA, Sahlin JJ. Hydrogels as mucoadhesive and bioadhesive materials:a review. Biomaterials 1996,17:1553-1561.
    [3]Chen G, ImanishiY, Ito Y. pH-Sensitive thin hydrogel microfabricated by photolithography. Langmuir 1998,14:6610-6612.
    [4]Torres-Lugo M, Peppas NA. Molecular design and in vitro studies of novel pH-sensitive hydrogels for the oral delivery of calcitonin. Macromolecules 1999, 32:6646-51.
    [5]Wu DQ, Sun YX, Xu XD, Cheng SX, Zhang XZ, Zhuo, RX. Biodegradable and pH-Sensitive hydrogels for cell encapsulation and controlled drug release. Biomacromolecules 2008,9:1155-1162.
    [6]Hoffman AS. Application of thermally reversible polymers and hydrogels in therapeutics and diagnostics. J. Control. Release 1987,6:297-305.
    [7]Zhang XZ, Yang YY, Wang FJ, Chung TS. Thermosensitive Poly(N-isopropylacrylamide-co-acrylic acid) hydrogels with expanded network structures and improved oscillating swelling-deswelling properties. Langmuir 2002,18:2013-2018.
    [8]Park JS, Akiyama Y, Winnik FM, Kataoka K. Versatile synthesis of end-functionalized thermosensitive poly(2-isopropyl-2-oxazolines). Macromolecules 2004,37:6786-6792.
    [9]Miyata T, Asami N, Uragami T. A reversibly antigen-responsive hydrogel. Nature 1999,399:766-769.
    [10]Li H, Chen J, Lam KY. A transient simulation to predict the kinetic behavior of hydrogels responsive to electric stimulus. Biomacromolecules 2006,7: 1951-1959.
    [11]Stayton PS, Shimobji T, LongC, Chilkoti A, Chen G, Harris JM, Hoffman AS. Control of protein-ligand recognition using a stimuli-responsive polymer. Nature 1995,378:472-474.
    [12]Taguchi T, Xu L, Kobayashi H, Taniguchi A, Kataoka K, Tanaka J. Encapsulation of chondrocytes in injectable alkali-treated collagen gels prepared using poly(ethylene glycol)-based 4-armed star polymer. Biomaterials 2005,26: 1247-1252.
    [13]Jackson JK, Liang LS, Hunter W L, Reynolds M, Sandberg J A, Springate C, Burt H M. The encapsulation of ribozymes in biodegradable polymeric matrices. Int. J.Pharma.2002,243:43-55.
    [14]Temenoff JS, Park H, Jabbari E, Conway DE, Sheffield TL, Ambrose CG, Mikos AG. Thermally cross-linked oligo(poly(ethylene glycol) fumarate) hydrogels support osteogenic differentiation of encapsulated marrow stromal cells in vitro. Biomacromolecules 2004,5:5-10.
    [15]Jeong B, Bae YH, Kim SW. Drug release from of biodegradable injectable thermosensitive hydrogel PEG-PLGA-PEG triblock copolymers. J. Control. Release 2000,63:155-163.
    [16]Westhaus E, Messersmith P B. Triggered release of calcium from lipid vesicles:a bioinspired strategy for rapid gelation of polysaccharide and protein hydrogels. Biomaterials 2001,22:453-462.
    [17]Park H, Temenoff JS, Holland TA, Tabata Y, Mikos AG. Delivery of TGF-β1 and chondrocytes via injectable, biodegradable hydrogels for cartilage tissue engineering applications. Biomaterials 2005,26:7095-7103.
    [18]Van Tomme SR, van Nostrum CF, de Smedt SC, Hennink W E. Degradation behavior of dextran hydrogels composed of positively and negatively charged microspheres. Biomaterials 2006,27:4141-4148.
    [19]Qiao MX, Chen DW, Ma XC, Liu YJ. Injectable biodegradable temperature-responsive PLGA-PEG-PLGA copolymers:Synthesis and effect of copolymer composition on the drug release from the copolymer-based hydrogels. Int. J. Pharma.2005,294:103-112.
    [20]Stile RA, Burghardt WR, Healy KE. Synthesis and characterization of Injectable poly(N-isopropylacrylamide)-based hydrogels that support tissue formation in vitro. Macromolecules 1999,32:7370-7379.
    [21]Ho E, Lowman A, Marcolongo M. Synthesis and characterization of an injectable hydrogel with tunable mechanical properties for soft tissue repair. Biomacromolecules 2006,7:3223-3228.
    [22]Holland TA, Mikos AG. Advances in drug delivery for articular cartilage. J.Control. Release 2003;86:1-14.
    [23]Hwang MJ, Suh JM, Bae YH, Kim SW, Jeong B. Caprolactonic poloxamer analog:PEG-PCL-PEG. Biomacromolecules 2005,6:885-890.
    [24]Bae SJ, Suh JM, Sohn YS, Bae Y, Kim SW, Jeong B. Thermogelling Poly(caprolactone-b-ethyleneglycol-b-caprolactone) aqueous solutions. Macromolecules 2005,38:5260-5265.
    [25]Hoffman AS. Environmentally sensitive polymers and hydrogels smart biomaterials. MRS Bull 1991,16:42-46.
    [26]Gil ES, Hudson SM. Stimuli-reponsive polymers and their bioconjugates. Prog. Polym. Sci.2004,29:1173-1222.
    [27]Tsuda Y, Kikuchi A, Yamato M, Sakurai Y, Umezu M, Okano T. Control of cell adhesion and detachment using temperature and thermoresponsive copolymer grafted culture surfaces. J. Biomed. Mater. Res.2004,69A:70-78.
    [28]Liu Y, Lu WL, Wang JC, Zhang X, Zhang H, Wang XQ, Zhou TY, Zhang Q. Controlled delivery of recombinant hirudin based on thermo-sensitive Pluronic (R) F127 hydrogel for subcutaneous administration:In vitro and in vivo characterization.J. Control. Release 2007,117:387-395.
    [29]Dong J, Chen L, Ding YM, Han WJ. Swelling and mechanical properties of a temperature-sensitive dextran hydrogel and its bioseparation applications. Macromol. Chem. Phys.2005,206:1973-1980.
    [30]Ouchi T, Kontani T, Aoki R, Saito T, Ohya YJ. Characteristic properties of film prepared from poly(L-lactide)-grafted dextran of a relatively high sugar unit content as a degradable biomaterial. Polym. Sci.,Part A:Polym. Chem.2006, 44:6402-6409.
    [31]Graham DL, Ferreira H, Bernardo J, Freitas PP, Cabral JMS. Single magnetic microsphere placement and detection on-chip using current line designs with integrated spin valve sensors:Biotechnological applications. J. Appl. Physics 2002,91:7786-7788.
    [32]Izutsu KI, Aoyagi N, Kojima S. Effect of polymer size and cosolutes on phase separation of poly(vinylpyrrolidone) (PVP) and dextran in frozen solutions. J. Pharma. Sci.2005,94:709-717.
    [33]Rheea SH, Choib JY, Kim HM. Preparation of a bioactive and degradable poly(ε-caprolactone)/silica hybrid through a sol-gel method. Biomaterials 2002, 23:4915-4921.
    [34]Kweon HY, Yoo MK, Park IK, Kim TH, Lee HC, Lee HS, Oh JS, Akaike T, Cho CS. A novel degradable polycaprolactone networks for tissue engineering. Biomaterials 2003,24:801-808.
    [35]Prabu P, Dharmarj N, AralS, Lee BM, Ramesh V, Kim HY. Preparation and drug release activity of scaffolds containing collagen and poly(caprolactone). J. biomed. Mater. Resear.part A 79A 2006,1:153-158
    [36]Gilbert RD, Stannet V, Pitt CG, Schindler A. In:Grassie N, editor. The design of biodegradable polymers:two approaches in development in polymer degradation. Amsterdam:Elsevier,1982. p.259-93.
    [34]Fredric M. Menger and Kevin L. Caran, Anatomy of a Gel. Amino acid derivatives that rigidify water at submillimolar concentrations. J. Am. Chem. Soc.2000,122:11679-11691.
    [35]Vemula PK, John G. Smart amphiphiles:hydro/organogelators for in situ reduction of gold. Chem. Commun.2006,20:2218-2220.
    [36]Hirotsu S, Hirokawa Y, Tanaka T. Volume-phase transitions of ionized N-isopropylacrylamide gels. J. Chem. Phys.1987,87:1392-1395.
    [37]de Jong SJ, De Smedt SC, Wahls MWC, Demeester J, Kettenes-van den Bosch JJ, Hennink WE. Novel self-assembled hydrogels by stereocomplex formation in aqueous solution of enantiomeric lactic acid oligomers grafted to dextran. Macromolecules 2000,33:3680-3686.
    [38]Hellio-Serughetti D, Djabourov M. Gelatin hydrogels cross-linked with bisvinyl sulfonemethyl.2. The physical and chemical networks. Langmuir 2006,22: 8516-8522.
    [39]Menger FM, Caran KL. Anatomy of a gel. Amino acid derivatives that rigidify water at submillimolar concentrations. J. Am. Chem. Soc.2000,122: 11679-11691.
    [40]Vemula PK, John G. Smart amphiphiles:hydro/organogelators for in situ reduction of gold. Chem. Commun.2006,21:2218-2220.
    [41]Jarry C, Chaput C, Chenite A, Renaud MA, Buschmann M, Leroux JC. Effects of steam sterilization on thermogelling chitosan-based gels. J. Biomed. Mater. Res. Part B 2001,58:127-135.
    [42]Hirotsu S, Hirokawa Y, Tanaka T. Volume-phase transitions of ionized N-isopropylacrylamide gels. J. Chem. Phys.1987,87:1392-1395.
    [43]Ebara M, Aoyagi T, Sakai K, Okano T. Introducing reactive carboxyl side chains retains phase transition temperature sensitivity in N-Isopropylacrylamide copolymer gels. Macromolecules 2000,33:8312-8316.
    [44]Zhang J, Peppas NA. Synthesis and Characterization of pH-and temperature-sensitive Poly(methacrylic acid)/Poly(N-isopropylacrylamide) interpenetrating polymeric networks. Macromolecules 2000,33:102-107.
    [45]Kobayashi S, Uyama H, Takamoto T. Lipase-catalyzed degradation of polyesters in organic solvents. A new methodology of polymer recycling using enzyme as catalyst. Biomacromolecules 2000,1:3-5.
    [46]Kumashiro Y, Ooya T, Yui N. Dextran hydrogels containing poly(N-isopropylacrylamide) as grafts and cross-linkers exhibiting enzymatic regulation in a specific temperature range. Macromol. Rapid Commun.2004, 25:867-872.
    [47]Kumashiro Y, Lee WK, Ooya T, Yui N. Enzymatic degradation of semi-IPN hydrogels based on N-isopropylacrylamide and dextran at a specific temperature range. Macromol. Rapid. Commun.2002,23:407-410.
    [48]Jeong B, Bae Y H, Lee DS, Kim SW. Biodegradable block copolymers as injectable drug-delivery systems. Nature 1997,28:860-862.
    [49]Zhang XZ, Wu DQ, Chu CC. Synthesis, characterization and controlled drug release of thermosensitive IPN-PNIPAAm hydrogels. Biomaterials 2004,25: 3793-3805.
    [1]Cheng C, Wei H, Shi BX, Cheng H, Li C, Gu ZW, et al. Biotinylated thermoresponsive micelle self-assembled from double-hydrophilic block copolymer for drug delivery and tumor target. Biomaterials 2008,29:497-505.
    [2]Zou T, Li SL, Zhang XZ, Wu XJ, Cheng SX, Zhuo RX. Synthesis and characterization of a biodegradable amphiphilic copolymer based on branched poly(epsilon-caprolactone) and poly(ethylene glycol).J. Polym. Sci. Part A Polym. Chem.2007,45:5256-5265.
    [3]Harada A, Kataoka K. Supramolecular assemblies of block copolymers in aqueous media as nanocontainers relevant to biological applications. Prog. Polym. Sci. 2006,31:949-982.
    [4]Decuzzi P, Ferrari M. Design maps for nanoparticles targeting the diseased microvasculature. Biomaterials 2008,29:377-384.
    [5]Giacomelli C, Schmidt V, Borsali R. Nanocontainers formed by self-assembly of poly(ethylene oxide)-b-poly(glycerol monomethacrylate)-Drug conjugates. Macromolecules 2007,40:2148-2157.
    [6]Park EK, Lee SB, Lee YM. Preparation and characterization of methoxy poly(ethylene glycol)/poly(epsilon-caprolactone) amphiphilic block copolymeric nanospheres for tumor-specific folate-mediated targeting of anticancer drugs. Biomaterials 2005; 26:1053-1061.
    [7]Bae Y, Fukushima S, Harada A, Kataoka K. Design of environment-sensitive supramolecular assemblies for intracellular drug delivery:polymeric micelles that are responsive to intracellular pH change. Angew. Chem. Int. Ed.2003, 42:4640-4643.
    [8]Bertin PA, Watson KJ, Nguyen ST. Indomethacin-containing nanoparticles derived from amphiphilic polynorbornene:A model ROMP-based drug encapsulation system. Macromolecules 2004,37:8364-8372.
    [9]Gupta AK, Curtis ASG. Lactoferrin and ceruloplasmin derivatized superparamagnetic iron oxide nanoparticles for targeting cell surface receptors. Biomaterials 2004,25:3029-3040.
    [10]Bertin PA, Smith DD, Nguyen ST. High-density doxorubicin-conjugated polymeric nanoparticles via ring-opening metathesis polymerization. Chem. Commun.2005,30:3793-3795.
    [11]Jaracz S, Chen J, Kuznetsova VL, Ojima I. Recent advances in tumor-targeting anticancer drug conjugates. Bioorg. Med. Chem.2005,13:5043-54.
    [12]Nasongkla N, Shuai X, Ai H, Weinberg BD, Pink J, Boothman DA. cRGD-functionalized polymer micelles for targeted doxorubicin delivery. Angew. Chem. Int. Ed.2004,43:6323-6327.
    [13]Bertin PA, Gibbs JM, Shen CKF, Thaxton CS, Russin WA, Mirkin CA. Multifunctional polymeric nanoparticles from diverse bioactive agents. J. Am. Chem. Soc.2006,128:4168-4169.
    [14]Torchilin VP, Lukyanov AN, Gao ZG, Papahadjopoulos-Sternberg B. Immunomicelles:targeted pharmaceutical carriers for poorly soluble drugs. Proc. Natl. Acad. Sci. USA 2003,100:6039-6044.
    [15]Fallon RJ, Schwartz AL. Receptor-mediated delivery of drugs to hepatocytes. Adv. Drug Deliv. Rev.1989,4:49-63.
    [16]Donati I, Gamini A, Vetere A, Campa C, Paoletti S. Synthesis, characterization, and preliminary biological study of glycoconjugates of poly(styrene-co-maleic acid). Biomacromolecules 2002,3:805-812.
    [17]Eisenberg C, Seta N, Appel M, Feldmann G, Durand G, Feger J. Asialoglycoprotein receptor in human isolated hepatocytes from normal liver and its apparent increase in liver with histological alterations. J. Hepatol.1991, 13:305-309
    [18]Cho CS, Cho KY, Park IK, Kim SH, Sasagawa T, Uchiyama M, et al. Receptor-mediated delivery of all trans-retinoic acid to hepatocyte using poly(L-lactic acid) nanoparticles coated with galactose-carrying polystyrene. J. Control. Release 2001,77:7-15.
    [19]Cho CS, Kobayashi A, Takei R, Ishihara T, Maruyama A, Akaike T. Receptor-mediated cell modulator delivery to hepatocyte using nanoparticles coated with carbohydrate-carrying polymers. Biomaterials 2001,22:45-51.
    [20]Ashwell G, Harford J. Carbohydrate-specific receptors of the liver. Annu. Rev. Biochem.1982,51:531-554.
    [21]Wu J, Nantz MH, Zern MA. Targeting hepatocytes for drug and gene delivery: emerging novel approaches and application. Front. Biosci.2002; 7:17-25.
    [22]Ouchi T, Kontani T, Aoki R, Saito T, Ohya Y.Characteristic properties of film prepared from poly(L-lactide)-grafted dextran of a relatively high sugar unit content as a degradable biomaterial. J. Polym. Sci. Pol. Chem.2006, 44:6402-6409.
    [23]Graham DL, Ferreira H, Bernardo J, Freitas PP, Cabral JMS. Single magnetic microsphere placement and detection on-chip using current line designs with integrated spin valve sensors:Biotechnological applications. J. Appl. Phys.2002, 91:7786-7788.
    [24]Izutsu KI, Aoyagi N, Kojima S. Effect of polymer size and cosolutes on phase separation of poly(vinylpyrrolidone) (PVP) and dextran in frozen solutions. J. Pharm. Sci-US.2005,94:709-717.
    [25]Rhee SH, Choi JY, Kim HM. Preparation of a bioactive and degradable poly(e-caprolactone)/silica hybrid through a sol-gel method. Biomaterials 2002, 23:4915-4921.
    [26]Kweon HY, Yoo MK, Park IK, Kim TH, Lee HC, Lee HS, et al. A novel degradable polycaprolactone networks for tissue engineering. Biomaterials 2003, 24:801-808.
    [27]Prabu P, Dharmarj N, Aryal S, Lee BM, Ramesh V, Kim HY. Preparation and drug release activity of scaffolds containing collagen and poly(caprolactone). J. Biomed. Mater. Res.Part A 2006,1:153-158.
    [28]Gilbert RD, Stannet V, Pitt CG, Schindler A. In:Grassie N,editor. The design of biodegradable polymers:two approaches in development in polymer degradation. Amsterdam:Elsevier,1982. p.259-93.
    [29]Ydens I, Rutot D, Degee P, Six JL, Dellacherie E, Dubois P. Controlled synthesis of Poly(ε-caprolactone)-grafted dextran copolymers as potential environmentally friendly surfactants. Macromolecules 2000,33:6713-6721.
    [30]Popielarski SR, Hu-Lieskovan S, French SW, Triche TJ, Davis ME. A nanoparticle-based model delivery system to guide the rational design of gene delivery to the liver.2. in vitro and in vivo uptake results. Bioconjugate Chem. 2005,16:1071-1080.
    [31]Yoshimura T, Ishihara K, Esumi K. Sugar-based gemini surfactants with peptide bonds-synthesis, adsorption, micellization, and biodegradability. Langmuir 2005, 21:10409-10415.
    [32]Ortial S, Durand G, Poeggeler B, Polidori A, Pappolla MA, Hardeland R, et al. Fluorinated amphiphilic amino acid derivatives as antioxidant carriers:a new class of protective agents.J. Med. Chem.2006,49:2812-2820.
    [33]Ikeda T, Yoshida K, Schneider HJ. Anthryl (alkylamino) cyclodextrin complexes as chemically switched DNA intercalators. J. Am. Chem. Soc.1995, 117:1453-1454
    [34]Huh KM, Ooya T, Lee WK, Sasaki S, Kwon IC, Jeong SY. Supramolecular-structured hydrogels showing a reversible phase transition by inclusion complexation between poly(ethylene glycol) grafted dextran and a-cyclodextrin. Macromolecules 2001,34:8657-8662.
    [35]Inoue T, Chen G, Nakamae K, Hoffman AS. An AB block copolymer of oligo(methyl methacrylate) and poly(acrylic acid) for micellar delivery of hydrophobic drugs. J. Control. Release 1998,51:221-229.
    [36]Miao ZM, Cheng SX, Zhang XZ, Zhuo RX. Study on drug release behaviors of Poly-a,β,-[N-(2-hydroxyethyl)-L-aspartamide]-g-poly(e-caprolactone) nano-and microparticles. Biomacromolecules 2006,7:2020-2026.
    [37]Morita T, Horikiri Y, Suzuki T, Yoshino H. Preparation of gelatin microparticles by co-lyophilization with poly(ethylene glycol):characterization and application to entrapment into biodegradable microspheres. Int. J. Pharm.2001,219:127-137.
    [38]Giacomelli C, Schmidt V, Borsali R. Nanocontainers formed by self-assembly of poly(ethylene oxide)-b-poly(glycerol monomethacrylate)-drug conjugates. Macromolecules 2007,40:2148-2157.
    [39]Han JH, Oh YK, Kim DS, Kim CK. Enhanced hepatocyte uptake and liver targeting of methotrexate using galactosylated albumin as a carrier. Int. J. Pharm.1999,188:39-47.
    [40]Hu Y, Ding Y, Ding D, Sun M, Zhang L, Jiang X, et al. Hollow Chitosan/Poly(acrylic acid) Nanospheres as Drug Carriers. Biomacromolecules 2007,8:1069-1076
    [1]Detty MR, Gibson SL, Wagner SJ. Current clinical and preclinical photosensitizers for use in photodynamic therapy. J. Med. Chem.2004,47:3897-3915.
    [2]Kessel D. Relocalization of cationic porphyrins during photodynamic therapy. Photochem. Photobiol. Sci.2002,11:837-840.
    [3]Banfi S, Caruso E, Caprioli S, Mazzagatti L, Canti G, Ravizza R, Gariboldi M, Monti E. Photodynamic effects of porphyrin and chlorin photosensitizers in human colon adenocarcinoma cells. Bioorg. Med. Chem.2004,12:4853.
    [4]Castano AP, Liu Q, Hamblin MR. A green fluorescent protein-expressing murine tumour but not its wild-type counterpart is cured by photodynamic therapy. Br. J. Cancer 2006,13:391-397.
    [5]Nishiyama N, Stapert HR, Zhang GD, Takasu D, Jiang DL, Nagano T, Aida T, Kataoka K. Light-harvesting ionic dendrimer porphyrins as new photosensitizers for photodynamic therapy. Bioconjugate Chem.2003,14:58-66.
    [6]Sharman WM, Allen CM, van Lier JE. Photodynamic therapeutics:basic principles and clinical applications. Drug Discov. Today 1999,11:507-517.
    [7]Desjardins A, Flemming J, Sternberg ED and Dolphin D. Nitrogen extrusion from pyrazoline-substituted porphyrins and chlorins using long wavelength visible light. Chem. Commun.2002,22:2622-2623.
    [8]Kozyrev AN, Alderfer JL, Dougherty TJ, and Pandey RK. Synthesis of verdinochlorins:a new class of long-wavelength absorbing photosensitizers. Chem. Commun.1998,10:1083-1084.
    [9]Li GL, Mehta R, Srikrishnan T, Nurco DJ, Tabaczynski WA, Alderfer JL, Smith KM, Dougherty TJ and Pandey RK. A novel synthetic route to fused propenochlorin and benzochlorin photodynamic therapy probes. Chem. Commun. 2002,11:1172-1173.
    [10]Li H, Fedorova OS, Trumble WR, Fletcher TR, Czuchajowski L. Site-specific photomodification of DNA by porphyrinoligonucleotide conjugates synthesized via a solid-phase H-phosphonate approach. Bioconjugate Chem.1997,8:49-56.
    [11]Mestre B, Pitie M, Loup C, Claparols C, Pratviel G, Meunier B. Influence of the nature of the porphyrin ligand on the nuclease activity of metalloporphyrin-oligonucleotide conjugates designed with cationic, hydrophobic or anionic metalloporphyrins. Nucleic Acids Res.1997; 25:1022-1027.
    [12]Hamblin MR, Newman EL. Photosensitizer targeting in photodynamic therapy. Ⅱ. Conjugates of haematoporphyrin with serum lipoproteins. J. Photochem. Photobiol. B:Bio.1994,26:147-157.
    [13]Chudinov AV, Rumiantseva VD, Lobanov AV, Chudinova GK, Stomakhin AA, Mironov AF. Synthesis of conjugates of bovine serum albumin with water-soluble ytterbium porphyrins. Bioorg. Khim.2004,30:99-104.
    [14]Soini AE, Yashunsky DV, Meltola NJ, Ponomarev GV. Influence of linker unit on performance of palladium(Ⅱ) coproporphyrin labelling reagent and its bioconjugates. Luminescence 2003,18:182-92.
    [15]Gijsens A, Missiaen L, Merlevede W, de Witte P. Epidermal growth factor-mediated targeting of chlorin e6 selectively potentiates its photodynamic activity. Cancer Res.2000,60:2197-2202.
    [16]Savitsky AA, Gukasova NV, Gumanov SG, Feldman NB, Luk'yanets EA, Mironov AF, Yakubovskaya RI, Lutsenko SV, Severin SE. Cytotoxic action of conjugates of alphafetoprotein and epidermal growth factor with photoheme, chlorines, and phthalocyanines. Biochem.-Moscow 2000,65:732-736.
    [17]Hudson R, Carcenac M, Smith K, Madden L, Clarke OJ, Pelegrin A, Greenman J, Boyle RW. The development and characterization of porphyrin isothiocyanate-monoclonal antibody conjugates for photoimmunotherapy. Br. J. Cancer 2005,92:1442-1449.
    [18]Hamblin MR, Del Governatore M, Rizvi I, Hasan T. Biodistribution of charged 17.1 A photoimmunoconjugates in a murine model of hepatic metastasis of colorectal cancer. Br. J. Cancer 2000,83:1544-1551.
    [19]Bedel-Cloutour CH, Mauclaire L, Saux A, Pereyre M. Synthesis of functionalized indium porphyrins for monoclonal antibody labeling. Bioconjugate Chem.1996; 7:617-627.
    [20]Li G, Pandey SK, GrahamA, Dobhal MP, Mehta R, Chen Y, Gryshuk A, Rittenhouse-Olson K, OseroffA, Pandey RK. Functionalization of OEP-based benzochlorins to develop carbohydrateconjugated photosensitizers. Attempt to target beta-galactosiderecognized proteins. J. Org. Chem.2004,69:158-172.
    [21]Chen X, Hui L, Foster DA, Drain CM. Efficient synthesis and photodynamic activity of porphyrin-saccharide conjugates:targeting and incapacitating cancer cells. Biochemistry 2004,43:10918-10929.
    [22]Chen X, Gentry C, Kopeckova P, Kopecek J. HPMA copolymer-anticancer drug-OV-TL16 antibody conjugates. II. Processing in epithelial ovarian carcinoma cells in vitro. Int. J. Cancer 1998,75:600-608.
    [23]Soukos NS, Hamblin MR, Hasan T. The effect of charge on cellular uptake and phototoxicity of polylysine chlorin(e6) conjugates. Photochem. Photobiol. 1997, 65:723-729.
    [24]Pandey RK, Smith NW, Shiau FY, Dougherty TJ, Smith KM. Syntheses of cationic porphyrins and chlorines. J. Chem. Soc. Chem. Commun.1991,22: 1637-1638.
    [25]Oseroff AR, Ohuoha D, Ara G, McAuliffe D, Cincotta L. Intramitochondrial dyes allow selective in vitro photolysis of carcinoma cells. Proc. Natl. Acad. Sci. USA 1986,83:9729-9733.
    [26]Park EK, Lee SB, Lee YM. Preparation and characterization of methoxy polyethylene glycol)/poly(epsilon-caprolactone) amphiphilic block copolymeric nanospheres for tumor-specific folate-mediated targeting of anticancer drugs. Biomaterials 2005,26:1053-1061.
    [27]Bae Y, Fukushima S, Harada A, Kataoka K. Design of environment-sensitive supramolecular assemblies for intracellular drug delivery:polymeric micelles that are responsive to intracellular pH change. Angew. Chem. Int. Ed.2003, 42:4640-4643.
    [28]Bertin PA, Watson KJ, Nguyen ST. Indomethacin-containing nanoparticles derived from amphiphilic polynorbornene:A model ROMP-based drug encapsulation system. Macromolecules 2004,37:8364-8372.
    [29]Gupta AK, Curtis ASG. Lactoferrin and ceruloplasmin derivatized superparamagnetic iron oxide nanoparticles for targeting cell surface receptors. Biomaterials 2004,25:3029-3040.
    [30]Bertin PA, Smith DD, Nguyen ST. High-density doxorubicin-conjugated polymeric nanoparticles via ring-opening metathesis polymerization. Chem. Commun.2005,30:3793-3795.
    [31]Nasongkla N, Shuai X, Ai H, Weinberg BD, Pink J, Boothman DA, et al. cRGD-functionalized polymer micelles for targeted doxorubicin delivery. Angew. Chem. Int. Ed.2004,43:6323-6327.
    [32]Bertin PA, Gibbs JM, Shen CKF, Thaxton CS, Russin WA, Mirkin CA. Multifunctional polymeric nanoparticles from diverse bioactive agents. J. Am. Chem. Soc.2006,128:4168-4169.
    [33]Torchilin VP, Lukyanov AN, Gao ZG, Papahadjopoulos-Sternberg B. Immunomicelles:targeted pharmaceutical carriers for poorly soluble drugs. Proc. Natl. Acad. Sci. USA 2003,100:6039-6044.
    [34]Fallon RJ, Schwartz AL. Receptor-mediated delivery of drugs to hepatocytes. Adv. Drug Deliv. Rev.1989,4:49-63.
    [35]Donati I, Gamini A, Vetere A, Campa C, Paoletti S. Synthesis, characterization, and preliminary biological study of glycoconjugates of poly(styrene-co-maleic acid). Biomacromolecules 2002,3:805-812.
    [36]Eisenberg C, Seta N, Appel M, Feldmann G, Durand G, Feger J. Asialoglycoprotein receptor in human isolated hepatocytes from normal liver and its apparent increase in liver with histological alterations. J. Hepatol. 1991, 13:305-309.
    [37]Ashwell G, Harford J. Carbohydrate-specific receptors of the liver. Annu. Re Biochem.1982,51:531-554.
    [38]Adler AD, Longo FR, Shergalis W. Mechanistic Investigations of Porphyrin Syntheses. I. Preliminary Studies on ms-Tetraphenylporphin. J. Am. Chem. Soc. 1964,86:3145-3149.
    [39]Kruper WJ, Chamberlin Ta, Kochanny M. Regiospecific Aryl Nitration of Meso-Substituted Tetraarylporphyrins:A Simple Route to Bifunctional Porphyrins.J. Org. Chem.1989,54:2753-2756.
    [40]Wu DQ, Sun YX, Xu XD, Cheng SX, Zhang XZ, Zhuo RX. Biodegradable and pH-sensitive hydrogels for cell encapsulation and controlled drug release. Biomacromolecules 2008,9:1155-1162.
    [41]Velapoldi RA, T(?)nnesen HH. Corrected emission spectra and quantum yields for a series of fluorescent compounds in the visible spectral region. J. Fluoresc. 2004,14:465-472.
    [42]Seybold PG, Gouterman M. Porphyrins:ⅪⅡ:Fluorescence spectra and quantum yields. J. Mol. Spectrosc.1969,31:1-13.
    [43]Inoue T, Chen G, Nakamae K, Hoffman AS. An AB block copolymer of oligo(methyl methacrylate) and poly(acrylic acid) for micellar delivery of hydrophobic drugs. J. Control. Release 1998,51:221-229.
    [44]Morita T, Horikiri Y, Suzuki T, Yoshino H. Preparation of gelatin microparticles by co-lyophilization with poly(ethylene glycol):characterization and application to entrapment into biodegradable microspheres. Int. J. Pharm.2001, 219:127-137.
    [45]Giacomelli C, Schmidt V, Borsali R. Nanocontainers formed by self-assembly of poly(ethylene oxide)-b-poly(glycerol monomethacrylate)-drug conjugates. Macromolecules 2007,40:2148-2157.
    [46]Kanofsky JR. Quenching of singlet oxygen by human plasma. Photochem. Photobiol.1990,51:299-303.
    [47]Kornguth SE, Kalinke T, Robins HI, Cohen JD, Turski P. Preferential binding of radiolabeled Poly-L-lysines to C6 and U87 MG glioblastomas compared with endothelial cells in vitro. Cancer Res.1989,49:6390-6395.
    [48]Sibrian-Vazquez M, Jensen TJ, Fronczek FR, Hammer RP, Vicente MGH. Synthesis and characterization of positively charged porphyrin-peptide conjugates. Bioconjugate Chem.2005,16:852-863.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700