人类神经生长抑制因子的结构、性质与功能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类神经生长抑制因子(human neuronal growth inhibitory factor,hGIF)属于金属硫蛋白家族,又称金属硫蛋白-3(metallothionein-3,MT3)。它由68个氨基酸组成,包含20个保守的半胱氨酸。和其它金属硫蛋白成员一样,hGlF能结合7份二价d~(10)金属离子诸如Zn~(2+)、Cd~(2+),形成两个相对独立的结构域,每个结构域分别包裹着一个金属硫簇,结构域之间由一段3个氨基酸组成的linker联接,整个分子呈哑铃形状。hGIF主要在中枢神经系统表达,有研究显示大脑皮层拥有大量富含游离锌的神经元,hGIF的分布同这些神经元的分布基本一致,暗示hGIF可能参与游离Zn~(2+)的细胞内传递与调控。老年痴呆症是一种神经退行性疾病,病人脑提取液中hGIF的表达水平明显低于正常人,这导致神经元不受约束的生长,过度消耗了营养,最终使神经元调亡;此外,对动物模型的研究显示,当大脑受到损伤后hGIF的表达量出现明显变化。这些研究说明hGIF可能与神经元的生长调控和修复有关。尽管关于hGIF抑制神经元生长的机理以及它的靶分子尚且不清楚,种种迹象表明多种因素共同参与调节其生理活性。
     本实验室已有多年研究金属硫蛋白的历史,曾经在大肠杆菌中构建了金属硫蛋白的高效表达体系,并且优化了纯化步骤,获得很高的蛋白产量;通过基因工程技术,本实验室还曾经构建了一系列hGIF的突变体,并且详细研究了结构与蛋白稳定性、反应性之间的关系。在此基础上,为进一步阐明hGIF结构、性质和功能之间的关系,我们全面而系统的考察了hGIF一系列位点上的突变对神经元生长抑制活性的影响。这些突变体包括:1)针对肽链N端β结构域(1-30)保守的Thr5设计的突变体(AT5、T5A、T5S);2)针对肽链N端β结构域保守的CPCP序列的突变(P7S/PgA)3)围绕保守的Glu4位点的突变(E4W、△E4、P3S/E4R);4)NO反应的酸碱催化位点的突变(E23K);5)围绕肽链C端α结构域(34-68)的EAAEAE插入段设计的突变体(△55-60、E58K、E55/58/60Q、G53/54A):6)对linker进行改造(△31-34、△32-33、KKS-SP);7)结构域间的转换杂合(△34-36、βMT3-βMT3、βMT3-αMT1);8)单结构域(β-domain、α-domain)等。
     活性测试研究表明,1)β结构域对hGIF的神经元抑制活性是必须的,其中hGIF独有的保守T(5)CPCP(9)序列尤其重要。2)我们还发现,Thr5侧链上的羟基基团同生理活性密切相关,人为地除去羟基将导致突变体生物活性严重丧失。参考突变体蛋白结构和反应性的结果,我们认为一方面Thr5的羟基可能通过形成分子内氢键帮助稳定hGIF的结构,另一方面Thr5也是一个潜在地磷酸化位点。3)再次,虽然保留了TCPCP序列,但是E23K突变体完全失去了神经元生长抑制功能。以往的研究指出,E23K除了金属硫簇的暴露程度提高,其光谱学性质和反应性均和野生型hGIF相似。尽管E23K丧失生理活性的原因有待进一步研究,我们的结果说明除了TCPCP序列,β结构域中的其它残基也可以影响hGIF执行其功能。4)我们还发现,在α结构域中,改变E(55)AAEAE(60)插入段的电荷分布,或者增加它形成α螺旋的倾向,并不太多地影响整个突变体蛋白的生物活性。然而,EAAEAE插入段缺失干扰了蛋白的正常活性。对α结构域的结构解析表明,EAAEAE插入段在hGIF蛋白中是一段非常松散、不受约束的无规卷曲,它使得α结构域的动力学性质更加活泼。进一步,α结构域也通过结构域间的相互作用,影响到β结构域,间接的改变了β结构域的动力学性质和其它相关性质,从而干扰了hGIF蛋白的生理活性。5)最后,在hGIF中linker的部分或完全缺失对活性没有太大的影响,可是,当用SP(甲壳纲动物MT的linker)取代KKS(哺乳动物MT的linker)作为linker时,突变体KKS-SP的生物活性就基本丧失了。从进化的角度看,这也是自然界为什么选用保守的KKS作为linker的一个原因。
     有研究指出,在酵母双杂交实验中hGIF能与Rab3A蛋白相互作用,并且hGIF和GDP/Rab3A的结合具有特异性(K_D=2.6μM)。Rab3A属于Ras家族,能够结合GTP,并具有GTP水解酶活性。当Rab3A与GTP结合时,GTP/Rab3A形成具有活性的蛋白构象,通过和下游蛋白相互作用引发一系列过程,调节神经元突触囊泡的运输;当Rab3A将结合的GTP水解成GDP后,GDP/Rab3A结构的构象发生变化,蛋白失去活性。同时,Rab3A和GDP或GTP的这种结合也受到多种蛋白的调控,包括GEPs(guanine nucleotide exchange proteins)、GAPs(GTPase-activating proteins)和GDIs(GDP dissociation inhibitors)等。目前为止,对Rab3A和hGIF之间关系的了解还非常少。为了探索它们之间的相互作用,我们运用分子克隆构建了GST-Rab3A融合蛋白表达系统质粒,蛋白在大肠杆菌中表达,纯化后蛋白分子量经MS验证正确无误。随后,我们对hGIF和Rab3A的相互作用进行了初步的研究。
     GIF(即MT3)和金属硫蛋白Ⅰ和Ⅳ(MT1,MT4)都属于金属硫蛋白家族,它们的一级序列具有很高的同源性,可是,只有GIF表现出神经生长抑制活性。GIF的这种生理活性是否同它金属硫簇的结构、性质有关呢?为此,我们考察了hGIF金属硫簇的结构、性质,并同人类MT1g(hMT1g)、小鼠MT4(mMT4)进行了比较。结果表明,hMT1g和mMT4的金属硫簇具有相似的结构和稳定性,而相比之下,hGIF金属硫簇结构有所差异,且稳定性降低;其次,hGIF和hMT1g、mMT4之间金属硫簇结构和稳定性的差异,导致其和巯基试剂的反应性也受到影响;最后,不同蛋白传递金属离子至EDTA的能力依次为hGIF>hMT1g>mMT4。总体来看,hGIF在溶液中结构比hMT1g和mMT4更加松散。我们认为,hGIF的这种性质是几个因素共同作用的结果:hGIF相对较多的负电荷,EAAEAE插入段,CPCP保守序列,以及结构域之间的相互作用等,都可能对hGIF的金属硫簇结构和性质产生影响,并进一步影响其功能。
     总之,通过构建突变体蛋白、神经元培养和活性考察、结构性质研究等一系列手段,我们研究了可能影响hGIF神经元生长抑制活性的各结构基元和特定的氨基酸残基,认为hGIF的生理活性受到多种因素调控,包括Trh5羟基基团、CPCP保守序列、结构域间的相互作用、linker影响、金属硫簇的结构性质等等。
Human neuronal growth inhibitory factor (hGIF), also named as metallothionein-3 (MT3), is a member of metallothionein (MT) family. This protein consists of 68 amino acid residues, including 20 conserved cysteine residues similar to the other members of MT family. Moreover, human GIF can bind 7 divalent metal ions such as Zn~(2+) and Cd~(2+), and forms two relatively independent domains, each wrapping around a metal-thiolate cluster. There is a 3-amino-acid linker between these two domains, and the whole molecule presents a dumbbell-like shape. Human GIF is mainly expressed in the central nerves system. In the brain cortex, the distribution of zinc-rich neurons is in accordance with that of human GIF protein, suggesting that human GIF may participate in transport and homeostasis of cellular zinc ions. Alzheimer's disease (AD) is a neuron degenerative disease. It was reported that the level of human GIF in the brain extract of patients with AD is significantly lower than that of healthy people, which can stimulate overgrowth of neuron cells and finally lead to neuron death because of exhaustion of neurotrophic factor. Moreover, animal models show that the expression level of GIF obviously alters after brain injury, indicating that human GIF may take part in the process of neuron growth and regeneration. Although the mechanism of neuron inhibitory activity of human GIF is unclear and the target of human GIF is uncertain, more and more evidences indicate that the bioactivity of human GIF is regulated by several factors cooperatively.
    This lab has studied the structural-functional relationship of MTs for many years: An MT expression system in E coli with high yield has been established, and the purification process has been optimized; a series of human GIF mutants was generated by molecular biology method, and their structure, stability and reactivity were investigated in detail. To further clarify the connections between protein structure, biochemical properties and bioactivity, we have conducted a systematical study on the effects of mutations at different sites of human GIF on the inhibitory activity toward neurons. These mutants include: 1) Thr5 insert mutants in the β-domain, i.e. ΔT5, T5S, T5A; 2) mutant focuses on the conserved CPCP motif in the
    β-domain, i.e. P7S/P9A; 3) Glu4 mutants in the β-domain, including E4W, ΔE4 and P3S/E4R; 4) mutant focuses on the acid-base catalytic site of nitrosylation in the β-domain, i.e. E23K; 5) the hexapeptide insert mutants in the α-domain of hGIF, including Δ55-60, E58K, E55/58/60Q and G53/54A etc.; 6) the linker mutants, including Δ31-34, Δ32-33 and KKP-SP; 7) domain hybridized mutants, i.e. Δ34-36, βGIF-βGIF, and βGIF-α-MT1; 8) single domain, i.e. β-domain and α-domain of human GIF.
    Results of the neuron culture assay proved that 1) the β-domain is indispensable for the neuronal inhibitory activity of human GIF, and the conserved CPCP motif in the β-domain is particularly important. 2) We also found out that the hydroxyl group in Thr5 is critical for the bioactivity. Deleting the hydroxyl group leads to almost completely loss of bioactivity of the T5A mutant. Based on the structure and reactivity information, we conclude that the hydroxyl group in Thr5 may stabilize the solution structure of human GIF by forming intra-molecular hydrogen bond. On the other hand, Thr5 can also serve as a potential phosphorylation site. 3) The mutant E23K loses its bioactivity, although it keeps the critical TCPCP motif. It was pointed out that except the increasing solvent accessibility of the metal-thiolate clusters, the spectroscopic properties and the reactivity of E23K are similar to those of human GIF. It can be inferred that besides the TCPCP motif, other residues in the β-domain also contribute to the bioactivity of human GIF. 4) As we observed, changing charge distribution or increasing α-helix inclination of the EAAEAE insert in the α-domain has little effect on the bioactivity of human GIF. However, deleting this hexapeptide will impair seriously the bioactivity of human GIF. Structural analysis of the α-domain of human GIF reveals that the EAAEAE insert in the α-domain lies on an extremely flexible loop with no constraint by the metal-thiolate cluster, leading to enhancement of dynamics in the α-domain of human GIF. The increased dynamics of the α-domain will affect the properties of the β-domain through inter-domain interaction, and therefore the bioactivity of human GIF β-domain is regulated by the α-domain. 5) Finally, it is observed that the absence of linker between two domains does not significantly alter the bioactivity of mutants (in the Δ31-34 and Δ32-33 mutants of
    hGIF). However, replacement of KKS (mammalian MT linker) with SP (crustacean MT linker) causes total loss of the bioactivity. The mechanism for this phenomenon is not sure, but from the point of view of evolution, this may provide a reason for why mammalian MTs choose KKS as the linker.
    It was reported that human GIF can interact with Rab3A in the two-hybrid-yeast screen. Moreover, human GIF binds to GDP/Rab3A specifically (K_d - 2.6 μM). Rab3A belongs to Ras family. It can bind GTP and has GTP hydrolyzing activity. When Rab3A forms GTP/Rab3A, it can interact with downward targets to regulate trafficking of synaptic vesicle. After GTP is hydrolyzed to GDP, the GDP/Rab3A is inactive. The GDP/GTP exchange rate in Rab3A is controlled by several proteins, including guanine nucleotide exchange proteins (GEPs), GTPase-activating proteins (GAPs), and GDP dissociation inhibitors (GDIs). Till now little is known about the interaction between Rab3A and human GIF. To study the mechanism of their interaction in vitro, we cloned Rab3A cDNA into GST fusion protein expression plasmid, and the GST-Rab3A fusion protein was expressed in E coli. After purification the molecular weight of GST-Rab3A is verified by mass spectroscopy, and the interaction between human GIF and Rab3A was investigated.
    GIF, MT1, and MT4 all belong to MT family. They exhibit high sequence identity, while only GIF has the unique neuronal growth inhibitory activity. Is the bioactivity of human GIF related to the structure and properties of its metal-thiolate clusters? Therefore we investigated the structure and properties of metal-thiolate clusters in human GIF, and compared with those of clusters in human MT1 and mouse MT4. The results show that human MT1 and mouse MT4 have similar cluster structure and stability, while the clusters in human GIF have different structure and lower stability. The ability of human GIF clusters to interact with thiol regents is also affected by the alteration of cluster structure and stability. Furthermore, the metal transfer ability of the three proteins follows human GIF > human MT1 > mouse MT4. These results indicate that the solution structure of human GIF is much looser than those of the other two MTs. Several cooperative factors may be attributed to the effect: the overall more negative charge of human GIF, the EAAEAE insert, the CPCP motif, and the
    inter-domain interaction et al.
    In summary, we have studied the structure-reactivity-function relationship of human GIF using chemical and biological tools, including protein engineering, spectroscopic characterization, and primary neuron culture assay and so on. The neuronal growth inhibitory activity of human GIF is regulated by multiple factors cooperatively, including the hydroxyl group in Thr5, the conservative CPCP motif, the inter-domain interaction, the linker, and the metal-thiolate clusters etc.
引文
[1] Brouwer, M., and Brouwer, T. H. (1998) Biochemical defense mechanisms against copper-induced oxidative damage in the blue crab, callinectes sapidus. Archives of Biochemistry and Biophysics 351, 257-264.
    [2] Sturzenbaum, S. R., Winters, C., Galay, M., Morgan, A. J., and Kille, P. (2001) Metal ion trafficking in earthworms - identification of a cadmium-specific metallothionein. Journal of Biological Chemistry 276, 34013-34018.
    [3] Margoshes, M., and Vallee, B. L. (1957) A cadmium protein from equine kidney cortex. J. Am. Chem. Soc. 79, 4813-4814.
    [4] Kojima, Y., Binz, P. A., and Kagi, J. H. (1999) Nomenclature of metallothionein: Proposal for a revision, Birlhauser Verlag Basel, Switzerland.
    [5] Vasak, M., and Kagi, J. H. (1983) Spectroscopic properties of metallothionein, Marcel Dekker Inc., New York.
    [6] Binz, P. A., and Kagi, J. H. (1999) Metallothionein: Molecular evolution and classification, Birkhauser Verlag Basel, Switzerland.
    [7] Coyle, P., Philcox, J. C., Carey, L. C., and Rofe, A. M. (2002) Metallothionein: The multipurpose protein. Cellular and Molecular Life Sciences 59, 627-647.
    [8] Suzuki, K. T., and Imura, N. (1993) Biological roles and medical implications.
    [9] Richards, M. P. (1989) Recent development in trace element metabolism and function: Role of metallothionein in copper and zinc metabolism. J Nutr 119, 1062-1070.
    [10] Nath, R., Kambadur, R., Gulati, S., Paliwal, V. K., and Sharma, M. (1988) Molecular aspects, physiological function and clinical significance of metallothioneins. CRC Crit Rev Food Sci Nutr 27, 41-85.
    [11] Sadhu, C., and Gedamu, L. (1988) Regulation of human metallothionein (mt) genes. J Biol Chem 263, 2679-2684.
    [12] Stennard, F. A., Holloway, A. F., Hamilton, J., and West, A. K. (1994) Characterization of 6 additional human metallothionein genes. Biochimica et Biophysica Acta-Gene Structure and Expression 1218, 357-365.
    [13] West, A. K., Stennard, F. A., and Tohyama, C. (1995) Metallothioneins: New tricks for an old dog. Today's Life Sci 7, 46-49.
    [14] Moffatt, P., and Seguin, C. (1998) Expression of the gene encoding metallothionein-3 in organs of the reproductive system. Dna and Cell Biology 77,501-510.
    [15] Hoey, J. G., Garrett, S. H., Sens, M. A., Todd, J. H., and Sens, D. A. (1997)Expression of mt-3 mrna in human kidney, proximal tubule cell cultures, and renal cell carcinoma. Toxicology Letters 92, 149-160.
    [16] Masters, B. A., Quaife, C. J., Erickson, J. C., Kelly, E. J., Froelick, G. J., Zambrowicz, B. P., Brinster, R. L., and Palmiter,.R. D. (1994) Metallothionein-iii is expressed in neurons that sequester zinc in synaptic vesicles. Journal of Neuroscience 14, 5844-5857.
    [17] Quaife, C. J., Findley, S. D., Erickson, J. C., Froelick, G. J., Kelly, E. J., Zambrowicz, B. P., and Palmiter, R. D. (1994) Induction of a new metallothionein isoform (mt-iv) occurs during differentiation of stratified squamous epithelia. Biochemistry 33, 7250-7259.
    [18] Liang, L. C., Fu, K., Lee, D. K., Sobieski, R. J., Dalton, T., and Andrews, G. K. (1996) Activation of the complete mouse metallothionein gene locus in the maternal deciduum. Molecular Reproduction and Development 43, 25-37.
    
    [19] Hamer, D. H. (1986) Metallothionein. Ann Rev Biochem 55, 913-951.
    [20] Robbins, A. H., McRee, D. E., Williamson, M., Collett, S. A., Xuong, N. H., Furey, W. F., Wang, B. C., and Stout, C. D. (1991) Refined crystal structure of cd, zn metallothionein at 2.0 a resolution. J Mol Biol 221, 1269-93.
    [21] Kagi, J. H. R., and Kojima, Y. (1987) Chemistry and biochemistry of metallothionein. Experientia Suppl 52, 25-61.
    [22] Chen, P., Munoz, A., Nettesheim, D., Shaw, C. F., and Petering, D. H. (1996) Stoichiometry and cluster specificity of copper binding to metallothionein: Homogeneous metal clusters. Biochemical Journal 317, 395-402.
    [23] Nielson, K. B., and Winge, D. R. (1985) Independence of the domains of metallothionein in metal binding. J Biol Chem 260, 8698-8701.
    [24] Stillman, M. J., Cai, W., and Zelazowski, A. J. (1987) Cadmium binding to metallothioneins. Domain specificity in reactions of alpha and beta fragments, apometallothionein, and zinc metallothionein with cd2+. JBiol Chem 262, 4538-4548.
    [25] Pountney, D. L., Fundel, S. M., Failer, P., Birchler, N. E., Hunziker, P., and Vasak, M. (1994) Isolation, primary structures and metal-binding properties of neuronal growth-inhibitory factor (gif) from bovine and equine brain. FEBS Letters 345, 193-197.
    [26] Robbins, A. H., and Stout, C. D. (1991) X-ray structure of metal lothionein. Methods in Enzymology 205, 485-502.
    [27] Wuthrich, K. (1991) Determination of the 3-dimensional structure of metallothioneins by nuclear-magnetic-resonance spectroscopy in solution. Methods in Enzymology 205, 502-520.
    [28] Schultze, P., Worgotter, E., Braun, W., Wagner, G., Vasak, M., Kagi, J. H., and Wuthrich, K. (1988) Conformation of [cd7]-metailothionein-2 from rat liver in aqueous solution determined by nuclear magnetic resonance spectroscopy. J. Mol. Biol. 203, 251-68.
    [29] Blindauer, C. A., Harrison, M. D., Parkinson, J. A., Robinson, A. K., Cavet, J. S., Robinson, N. J., and Sadler, P. J. (2001) A metallothionein containing a zinc finger within a four-metal cluster protects a bacterium from zinc toxicity. Proceedings of the National Academy of Sciences of the United States of America 98, 9593-9598.
    [30] Calderone, V., Dolderer, B., Hartmann, H. J., Echner, H., Luchinat, C., Del Bianco, C., Mangani, S., and Weser, U. (2005) The crystal structure of yeast copper thionein: The solution of a long-lasting enigma. Proc NatlAcadSci USA 102, 51-6.
    [31] Bertini, I., Hartmann, H. J., Klein, T., Liu, G. H., Luchinat, C., and Weser, U. (2000) High resolution solution structure of the protein part of cu7 metallothionein. European Journal of Biochemistry 267, 1008-1018.
    [32] Luchinat, C., Dolderer, B., Del Bianco, C., Echner, H., Hartmann, H. J., Voelter, W., and Weser, U. (2003) The cu(ⅰ)(7) cluster in yeast copper thionein survives major shortening of the polypeptide backbone as deduced from electronic absorption, circular dichroism, luminescence and h-1 nmr. Journal of Biological Inorganic Chemistry 8, 353-359.
    [33] Peterson, C. W., Narula, S. S., and Armitage, I. M. (1996) 3d solution structure of copper and silver-substituted yeast metallothioneins. FEBS Letters 379,85-93.
    [34] Cobine, P. A., McKay, R. T., Zangger, K., Dameron, C. T., and Armitage, I. M. (2004) Solution structure of cu-6 metallothionein from the fungus neurospora crassa. European Journal of Biochemistry 271, 4213-4221.
    [35] Capasso, C, Carginale, V., Crescenzi, O., Di Maro, D., Parisi, E., Spadaccini, R., and Temussi, P. A. (2003) Solution structure of mt(-)nc, a novel metallothionein from the antarctic fish notothenia coriiceps. Structure 11, 435-443.
    [36] Munoz, A., Forsterling, F. H., Shaw, C. F., and Petering, D. H. (2002) Structure of the cd-113(3)beta domains from homarus americanus metallothionein-1: Hydrogen bonding and solvent accessibility of sulfur atoms. Journal of Biological Inorganic Chemistry 7, 713-724.
    [37] Narula, S. S., Brouwer, M., Hua, Y. X., and Armitage, I. M. (1995) 3-dimensional solution structure of callinectes-sapidus metallothionein-1determined by homonuclear and heteronuclear magnetic-resonance spectroscopy. Biochemistry 34, 620-631.
    [38] Zangger, K., Oz, G., Otvos, J. D., and Armitage, I. M. (1999) Three-dimensional solution structure of mouse [cd-7]-metallothionein-1 by homonuclear and heteronuclear nmr spectroscopy. Protein Science 8, 2630-2638.
    
    [39] Oz, G., Zangger, K., and Armitage, I. M. (2001) Three-dimensional structure and dynamics of a brain specific growth inhibitory factor: Metallothionein-3. Biochemistry 40, 11433-11441.
    [40] Riek, R., Precheur, B., Wang, Y, Mackay, E. A., Wider, G., Guntert, P., Liu, A., Kagi, J. H., and Wuthrich, K. (1999) Nmr structure of the sea urchin (strongylocentrotus purpuratus) metallothionein mta. J. Mol. Biol. 291, 417-28.
    [41] Braun, W., Vasak, M., Robbins, A. H., Stout, C. D., Wagner, G., Kagi, J. H. R., and Wuthrich, K. (1992) Comparison of the nmr solution structure and the x-ray crystal-structure of rat metallothionein-2. Proceedings of the National Academy of Sciences of the United States of America 89, 10124-10128.
    [42] Robbins, A. H., McRee, D. E., Williamson, M., Collett, S. A., Xuong, N. H., Furey, W. F., Wang, B. C., and Stout, C. D. (1991) Refined crystal-structure of cd, zn metallothionein at 2.0 a resolution. Journal of Molecular Biology 221, 1269-1293.
    [43] Furey, W. F., Robbins, A. H., Clancy, L. L., Winge, D. R., Wang, B. C., and Stout, C. D. (1986) Crystal structure of cd,zn metallothionein. Science 231, 704-10.
    [44] Melis, K. A., Carter, D. C., Stout, C. D., and Winge, D. R. (1983) Single crystals of cadmium, zinc metallothionein, J. Biol. Chem. 258, 6255-7.
    [45] Arseniev, A., Schultze, P., Worgotter, E., Braun, W., Wagner, G., Vasak, M., Kagi, J. H., and Wuthrich, K. (1988) Three-dimensional structure of rabbit liver [cd7]metallothionein-2a in aqueous solution determined by nuclear magnetic resonance. J.. Mol. Biol. 201, 637-57.
    [46] Vasak, M., Worgotter, E., Wagner, G., Kagi, J. H., and Wuthrich, K. (1987) Metal co-ordination in rat liver metallothionein-2 prepared with or without reconstitution of the metal clusters, and comparison with rabbit liver metallothionein-2. J. Mol. Biol. 196, 711-9.
    [47] Worgotter, E., Wagner, G., Vasak, M., Kagi, J. H., and Wuthrich, K. (1987) Sequence-specific 1h-nmr assignments in rat-liver metailothionein-2. Eur. J. Biochem. 167, 457-66.
    [48] Braun, W., Wagner, G., Worgotter, E., Vasak, M., Kagi, J. H., and Wuthrich, K. (1986) Polypeptide fold in the two metal clusters of metallothionein-2 by nuclear magnetic resonance in solution. J. Mol. Biol. 187, 125-9.
    [49] Neuhaus, D., Wagner, G., Vasak, M., Kagi, J. H., and Wuthrich, K. (1985) Systematic application of high-resolution, phase-sensitive two-dimensional 1h-nmr techniques for the identification of the amino-acid-proton spin systems in proteins. Rabbit metallothionein-2. Eur. J. Biochem. 151, 257-73.
    [50] Wagner, G., Neuhaus, D., Worgotter, E., Vasak, M., Kagi, J. H., and Wuthrich, K. (1986) Nuclear magnetic resonance identification of "half-turn" and 3(10)-helix secondary structure in rabbit liver metallothionein-2. J. Mol. Biol. 187, 131-5.
    [51] Wagner, G., Neuhaus, D., Worgotter, E., Vasak, M., Kagi, J. H., and Wuthrich, K. (1986) Sequence-specific lh-nmr assignments in rabbit-liver metallothionein-2. Eur. J. Biochem. 157, 275-89.
    [52] Messerle, B. A., Schaffer, A., Vasak, M., Kagi, J. H., and Wuthrich, K. (1990) Three-dimensional structure of human [113cd7]metallothionein-2 in solution determined by nuclear magnetic resonance spectroscopy. J. Mol. Biol. 214, 765-79.
    [53] Bremner, I. (1987) Nutritional and physiological significance of metallothionein. Experientia Suppl 52, 81-107.
    [54] Langmade, S. J., Ravindra, R., Daniels, P. J., and Andrews, G. K. (2000) The transcription factor mtf-1 mediates metal regulation of the mouse zntl gene. Journal of Biological Chemistry 275, 34803-34809.
    [55] Palmiter, R. D. (1994) Regulation of metallothionein genes by heavy-metals appears to be mediated by a zinc-sensitive inhibitor that interacts with a constitutively active transcription factor, mtf-1. Proceedings of the National Academy of Sciences of the United States of America 91, 1219-1223.
    [56] Otsuka, F., Okugaito, I., Ohsawa, M., Iwamatsu, A., Suzuki, K., and Koizumi, S. (2000) Novel responses of zrf, a variant of human mtf-1, to in vivo treatment with heavy metals. Biochimica et Biophysica Acta-Gene Structure and Expression 1492, 330-340.
    [57] Lichtlen, P., Wang, Y., Belser, T., Georgiev, O., Certa, U., Sack, R., and Schaffner, W. (2001) Target gene search for the metal-responsive transcription factor mtf-1. Nucleic Acids Research 29, 1514-1523.
    [58] Gunes, C., Heuchel, R., Georgiev, O., Muller, K. H., Lichtlen, P., Bluthmann, H., Marino, S., Aguzzi, A., and Schaffher, W. (1998) Embryonic lethality and liver degeneration in mice lacking the metal-responsive transcriptional activator mtf-1. Embo Journal 17, 2846-2854.
    
    [59] Koizumi, S., Suzuki, K., Ogra, Y., Yamada, H., and Otsuka, F. (1999) Transcriptional activity and regulatory protein binding of metal-responsive elements of the human metallothionein-iia gene. European Journal of Biochemistry 259, 635-642.
    
    [60] Andrews, G. K. (2000) Regulation of metallothionein gene expression by oxidative stress and metal ions. Biochemical Pharmacology 59, 95-104.
    
    [61] Yu, C. W., Chen, J. H., and Lin, L. Y. (1997) Metal-induced metallothionein gene expression can be inactivated by protein kinase c inhibitor. FEBS Letters 420, 69-73.
    
    [62] Ogra, Y., Suzuki, K., Gong, P. F., Otsuka, F., and Koizumi, S. (2001) Negative regulatory role of sp1 in metal responsive element-mediated transcriptional activation. Journal of Biological Chemistry 276, 16534-16539.
    
    [63] Miles, A. T., Hawksworth, G. M., Beattie, J. H., and Rodilla, V. (2000) Induction, regulation, degradation and biological significance of mammalian metallothionein. Crit Rev Biochem Mol Biol 35, 35-70.
    
    [64] Tang, C. M., Westling, J., and Seto, E. (1999) Trans repression of the human metallothionein iia gene promoter by pz120, a novel 120-kilodalton zinc finger protein. Molecular and Cellular Biology 19, 680-689.
    
    [65] Plisov, S. Y., Merkulova, T. I., and Shkapenko, A. L. (1994) Short glucocorticoid-responsive element in the 5'-flanking region of murine metallothionein-i gene. Molecular Biology 28, 274-277.
    
    [66] Kelly, E. J., Sandgren, E. P., Brinster, R. L., and Palmiter, R. D. (1997) A pair of adjacent glucocorticoid response elements regulate expression of two mouse metallothionein genes. Proceedings of the National Academy of Sciences of the United States of America 94, 10045-10050.
    
    [67] Lee, D. K., Carrasco, J., Hidalgo, J., and Andrews, G. K. (1999) Identification of a signal transducer and activator of transcription (stat) binding site in the mouse metallothionein-i promoter involved in interleukin-6-induced gene expression. Biochemical Journal 337, 59-65.
    
    [68] Angel, P., Imagawa, M., Chiu, R., Stein, B., Imbra, R. J., and Rahmsdorf, H. J. (1987) Phorbol ester-induceible genes contain a common cis element recognized by a tpa-modulated transacting factor. Cell 49, 729-739.
    
    [69] Dalton, T., Palmiter, R. D., and Andrews, G. K. (1994) Transcriptional induction of the mouse metallothionein-i gene in hydrogen peroxide-treated hepa cells involves a composite major late transcription factor antioxidant response element and metal response promoter elements. Nucleic Acids Research 22, 5016-5023.
    
    [70] Arizono, K., Peterson, K. L., and Brady, F. O. (1993) Inhibitors of ca2+channels, calmodulin and protein-kinases prevent a23187 and other inductions of metallothionein messenger-rna in ec3 rat hepatoma-cells. Life Sciences 53, 1031-1037.
    
    [71] Ren, Y. F., and Smith, A. (1995) Mechanism of metallothionein gene-regulation by heme-hemopexin - roles of protein-kinase-c, reactive oxygen species, and cis-acting elements. Journal of Biological Chemistry 270, 23988-23995.
    
    [72] Arizono, K., Kagawa, S., Hamada, H., and Ariyoshi, T. (1995) Nitric-oxide mediated metallothionein induction by lipopolysaccharide. Research Communications in Molecular Pathology and Pharmacology 90, 49-58.
    
    [73] Molinero, A., Carrasco, J., Hernandez, J., and Hidalgo, J. (1998) Effect of nitric oxide synthesis inhibition on mouse liver and brain metallothionein expression. Neurochemistry International 33, 559-566.
    
    [74] Moffat, P., Plaa, G. L., and Denizeau, F. (1995) Induction of metallothionein gene-expression by epidermal growth-factor and its inhibition by transforming growth-factor-beta and dexamethasone in rat hepatocytes. Hepatology 21, 1038-1044.
    
    [75] Palmiter, R. D. (1998) The elusive function of metallothioneins. Proceedings of the National Academy of Sciences of the United States of America 95, 8428-8430.
    [76] Conrad, C. C., Walter, C. A., Richardson, A., Hanes, M. A., and Grabowski, D. T. (1997) Cadmium toxicity and distribution in metallothionein-ⅰ and -ⅱ deficient transgenic mice. Journal of Toxicology and Environmental Health 52, 527-543.
    [77] Klaassen, C. D., and Liu, J. (1998) Metallothionein transgene and lnockout mouse models in the study of cadmium toxicity. J Toxicol Sci 23, 97-102.
    [78] Liu, Y. P., Liu, J., Palmiter, R. D., and Klaassen, C. D. (1996) Metallothionein-ⅰ-transgenic mice are not protected from acute cadmium-metallothionein-induced nephrotoxicity. Toxicology and Applied Pharmacology 137, 307-315.
    [79] Michalska, A. E., and Choo, K. H. A. (1993) Targeting and germ-line transmission of a null mutation at the metallothionein ⅰ-loci and ⅱ-loci in mouse. Proceedings of the National Academy of Sciences of the United States of America 90, 8088-8092.
    [80] Masters, B. A., Kelly, E. J., Quaife, C. J., Brinster, R. L., and Palmiter, R. D. (1994) Targeted disruption of metallothionein-ⅰ and metallothionein-ⅱ genes increases sensitivity to cadmium. Proceedings of the National Academy of Sciences of the United States of America 91, 584-588.
    [81] Coyle, P., Niezing, G., Shelton, T. L., Philcox, J. C., and Rofe, A. H. (2000) Tolerance to cadmium hepatotoxicity by metallothionein and zinc: In vivo and in vitro studies with mt-null mice. Toxicology 150, 53-67.
    [82] Kelly, E. J., Quaife, C. J., Froelick, G. J., and Palmiter, R. D. (1996) Metallothionein ⅰ and ⅱ protect against zinc deficiency and zinc toxicity in mice. Journal of Nutrition 126, 1782-1790.
    [83] Palmiter, R. D. (1995) Constitutive expression ofmetallothionein-ⅲ (mt-ⅲ), but not mt-ⅰ, inhibits growth when cells become zinc-deficient. Toxicology and Applied Pharmacology 135, 139-146.
    [84] Kelly, E. J., and Palmiter, R. D. (1996)A murine model of menkes disease reveals a physiological function of metallothionein. Nature Genetics 13, 219-222.
    [85] Koropatnick, J., and Cherian, M. G. (1993) A mutant mouse (tx) with increased hepatic metallothionein stability and accumulation. Biochemical Journal 296, 443-449.
    [86] Kumari, M. V. R., Hiramatsu, M., and Ebadi, M. (2000) Free radical scavenging actions of hippocampal metallothionein isoforms and of antimetallothioneins: An electron spin resonance spectroscopic study. Cellular and Molecular Biology 46, 627-636.
    [87] Chubatsu, L. S., and Meneghini, R. (1993) Metallothionein protects dna from oxidative damage. Biochemical Journal 291, 193-198.
    [88] Sato, M., and Bremner, I. (1993) Oxygen free-radicals and metallothionein. Free Radical Biology and Medicine 14, 325-337.
    [89] Klaassen, C. D., and Liu, J. (1998) Induction of metallothionein as an adaptive mechanism affecting the magnitude and progression of toxicological injury. Environmental Health Perspectives 106, 297-300.
    [90] Davis, S. R., Samuelson, D. A., and Cousins, R. J. (2001) Metallothionein expression protects against carbon tetrachloride-induced hepatotoxicity, but overexpression and dietary zinc supplementation provide no further protection in metallothionein transgenic and knockout mice. Journal of Nutrition 131, 215-222.
    [91] Itoh, N., Kimura, T., Nakanishi, H., Muto, N., Kobayashi, M., Kitagawa, I., and Tanaka, K. (1997) Metallothionein-independent hepatoprotection by zinc and sakuraso-saponin. Toxicology Letters 93, 135-140.
    [92] Liu, Y. P., Hartley, D. P., and Liu, J. (1998) Protection against carbon tetrachloride hepatotoxicity by oleanolic acid is not mediated through metallothionein. Toxicology Letters 95, 77-85.
    [93] Conrad, C. C., Grabowski, D. T., Walter, C. A., Sabia, M., and Richardson, A. (2000) Using mt-/(-) mice to study metallothionein and oxidative stress. Free Radical Biology and Medicine 28, 447-462.
    [94] Reeve, V. E., Nishimura, N., Bosnic, M., Michalska, A. E., and Choo, K. H. A. (2000) Lack of metallothionein-i and -ii exacerbates the immunosuppressive effect of ultraviolet b radiation and cis-urocanic acid in mice. Immunology 100,399-404.
    [95] Hanada, K. (2000) Photoprotective role of metallothionein in uv-injury - metallothionein-null mouse exhibits reduced tolerance against ultraviolet-b. Journal of Dermatological Science 23, S51-S56.
    [96] Hanada, K., Sawamura, D., Hashimoto, I., Kida, K., and Naganuma, A. (1998) Epidermal proliferation of the skin in metallothionein-null mice. Journal of Investigative Dermatology 110, 259-262.
    
    [97] Shimoda, R., Achanzar, W. E., Qu, W., Nagamine, T., Takagi, H., Mori, M., and Waalkes, M. P. (2003) Metallothionein is a potential negative regulator of apoptosis. Toxicological Sciences 73, 294-300.
    [98] Wang, G. W., Klein, J. B., and Kang, Y. J. (2001) Metallothionein inhibits doxorubicin-induced mitochondrial cytochrome c release and caspase-3 activation in cardiomyocytes. Journal of Pharmacology and Experimental Therapeutics 298, 461-468.
    
    [99] Kawai, K., Liu, S. X., Tyurin, V. A., Boriesnko, G. G., and Jiang, J. F. (2000) Antioxidant and antiapoptotic function of metallothioneins in hl-60 cells challenged with copper nitrilotriacetate. Chem Res Toxicol 13, 1275-1286.
    [100] Wang, G. W., Zhou, Z. X., Klein, J. B., and Kang, Y. J. (2001) Inhibition of hypoxia/reoxygenation-induced apoptosis in metallothionein-overexpressing cardiomyocytes. American Journal of Physiology-Heart and Circulatory Physiology 280, H2292-H2299.
    [101] Baba, T., Nakano, H., Tamai, K., Sawamura, D., Hanada, K., Hashimoto, I., and Arima, Y. (1998) Inhibitory effect of beta-thujaplicin on ultraviolet b-induced apoptosis in mouse keratinocytes. Journal of Investigative Dermatology 110, 24-28.
    [102] Jia, G., Gu, Y. Q., Chen, K. T., Lu, Y. Y., Yan, L., Wang, J. L., Su, Y. P., and Wu,J. C. G. (2004) Protective role of metallothionein (i/ii) against pathological damage and apoptosis induced by dimethylarsinic acid. World Journal of Gastroenterology 10, 91-95.
    [103] Deng, D. X., Chakrabarti, S., Waalkes, M. P., and Cherian, M. G. (1998) Metallothionein and apoptosis in primary human hepatocellular carcinoma and metastatic adenocarcinoma. Histopathology 32, 340-347.
    [104] Hellquist, H. B. (1997) Apoptosis in epithelial hyperplastic laryngeal lesions. Acta Oto-Laryngologica, 25-29.
    [105] Tsangaris, G. T., Vamvoukakis, J., Politis, I., Kattamis, A. C., and Tzortzatou-Stathopoulou, F. (2000) Metallothionein expression prevents apoptosis. Ii: Evaluation of the role of metallothionein expression on the chemotherapy-induced apoptosis during the treatment of acute leukemia. Anticancer Research 20, 4407-4411.
    [106] Baichwal, V. R., and Baeuerle, P. A. (1997) Apoptosis: Activate nf-Kb or die. Curr Biol 7, 94-96.
    [107] Abdel-Mageed, A. B., and Agrawal, K. C. (1998) Activation of nuclear factor kappa b: Potential role in metallothionein-mediated mitogenic response. Cancer Research 58, 2335-2338.
    [108] Richards, M. P., and Cousins, R. J. (1975) Mammalian zinc homeostasis reqrirements for rna and metallothionein synthesis. Biochem Biophys Res Commun 64, 1215-1223.
    [109] Richards, M. P., and Cousins, R. J. (1976) Etalothionein and its relationship to the metabolism of dietary zinc in rats. JNutr 106, 1591-1599.
    [110] Lonnerdal, B. (1989) Intestinal absorption of zinc, Springer, London.
    [111] Cousins, R. J. (1985) Absorption, transport and hepatic metabolosm of copper and zinc. Physiol Rev 65, 238-309.
    [112] Davis, S. R., McMahon, R. J., and Cousins, R. J. (1998) Metallothionein knockout and transgenic mice exhibit altered intestinal processing of zinc with uniform zinc-dependent zinc transporter-1 expression. Journal of Nutrition 128, 825-831.
    [113] Coyle, P., Philcox, J. C., and Rofe, A. M. (1999) Metallothionein-null mice absorb less zn from an egg-white diet, but a similar amount from solutions, although with altered intertissue zn distribution. Journal of Nutrition 129, 372-379.
    [114] Coyle, P., Philcox, J. C., and Rofe, A. M. (2000) Zn-depleted mice absorb more of an intragastric zn solution by a metallothionein-enhanced process than do zn-replete mice. Journal of Nutrition 130, 835-842.
    [115] McClain, C. J. (1990) The pancreas and zinc homeostasis, J Lab Clin Med 116, 275-276.
    [116] Lee, D. Y., Prasad, A. S., Hydrick-Adair, C., Brewer, G. J., and Johnson, P. E. (1993) Homeostasis of zinc in marginal human zinc deficiency: Role of absorption and endogenous excretion of zinc. J Lab Clin Med 122, 549-556.
    [117] Onosaka, S., MIn, K. S., Fujita, Y., Tanaka, K., Iguchi, S., and Okada, Y. (1988) High concentration of pancreatic metallothionein in normal mice. Toxicology 50, 27-35.
    [118] Onosaka, S., and Cherian, M. G. (1981)The induced synthesis of metallothionein in various tissues of rat in response to metals. Ii. Influence of zinc status and specific effect on pancreas metallotionein. Toxicology 22, 91-101.
    [119] Dalton, T., Fu, K., Palmiter, R. D., and Andrews, G. K. (1996) Transgenic mice that overexpress metailothionein-ⅰ resist dietary zinc deficiency. Journal of Nutrition 126, 825-833.
    [120] De Lisle, R. C., Sarras, M. P., Hidalgo, J., and Andrews, G. K. (1996) Metallothionein is a component ofexocrine pancreas secretion: Inplications for zinc homeostasis. Am J Physiol 271, 1103-1110.
    [121] Andrews, G. K., Kage, K., Palmiterthomas, P., and Sarras, M. P. (1990) Metal-ions induce expression of metallothionein in pancreatic exocrine and endocrine-cells. Pancreas 5, 548-554.
    [122] Quaife, C. J., Kelly, E. J., Masters, B. A., Brinster, R. L., and Palmiter, R. D. (1998) Ectopic expression of metallothionein-ⅲ causes pancreatic acinar cell necrosis in transgenic mice. Toxicology and Applied Pharmacology 148, 148-157.
    [123] Teplow, D. B. (1998) Structrual and kinetic features of amyloid alzheimer's disease and related disorders association of new south wales - protein fibrilogenesis. Amyloid: Int J Exp Clin Invest 5, 121-142.
    [124] Hebert, L. E., Scherr, P. A., Bienias, J. L., Bennett, D. A., and Evans, D. A. (2003) Alzheimer's disease in the u. S. Population: Prevalence estimates using the 2000 census. Arch Neurol 60, 1119-1122.
    [125] Evans, D. A., Funkenstein, H. H., and Albert, M. S. (1989) Prevalence of alzheimer's disease in a community population of older persons: Higher than previosly reported. JAMA 262, 2552-2556.
    [126] Ernst, R. L., and Hay, J. W. (1994) The u. S. Economic and social costs of alzheimer's disease revisited. Am J Pub Healt 84, 1261-1264.
    [127] Mirra, S. S., and Markesbery, W. R. (1996) The neuropjathology of alzheimer's disease: Diagnostic features and standardization, CRC Press, Boca Raton, FL.
    [128] Tanzi, R. E., Gusella, J. F., Watkins, P. C., Bruns, G. A. P., St-George-Hyslop, P., Keuren, M. L. V., Patterson, D., Pagan, S., Kurnit, D. M., and Neve, R. L. (1987) Amyloid β protein gene: Cdna, mrna distribution and genetic linkage near the alzheimer's disease. Science 235, 880-884.
    [129] Mattson, M. P. (1997) Cellular actions of P-amyloid precursor protein and its soluble and fibrilogenic derivatives. Physiol Rev 77, 1081-1132.
    [130] Jarrett, J. T., Berger, E. P., and Lansbury, P. T. (1993) The carboxy terminus of the p amyloid protein is critical for the seeding of amyloid formation: Implications for the pathogenesis of alzheimer's disease. Biochemistry 32, 4693-4697.
    [131] Bush, A. I., Pettingell, W. H., Multhaup, G., Paradis, M. D., Vonsattel, J. P., Gusella, J., Beyreuther, K., Masters, C. L., and Tanzi, R. E. (1994) Rapid induction of alzheimer aβ amyloid formation by zinc. Science 265, 1464-1467.
    [132] Mantyh, P. W., Ghilardi, J. R., Rogers, S., DeMaster, E., Allen, C. J., Stimson, E. R., and Maggio, J. E. (1993) Aluminum, ion, and zinc ions promote aggregation of physiological concentrations of β-amyloid peptide. J Neurochem 61, 1171-1174.
    [133] Lovell, M. A., Robertson, J. D., Teesdale, W. J., Campbell, J. L., and Markesbery, W. R. (1998) Copper, iron and zinc in alzheimer's disease senile plaques. J Neurol Sci 158, 47-52.
    [134] Bush, A. I., Multhaup, G., Moir, R. D., Williamson, T. G., Small, D. H., Rumble, B., Pollwein, P., Beyreuther, K., and asters, C. L. (1993) A novel zinc(ii) binding site modulates the function of the βa4 amyloid protein presursor of alzheimer's disease. J Biol Chem 268, 16109-16112.
    [135] Esler, W. P., Stimson, E. R., Jennings, J. M., Ghilardi, J. R., Mantyh, P. W., andMaggio, J. E. (1996) Zinc-induced aggregation of human and rat p-amyloid peptides in vitro. J Neurochem 66, 723-732.
    [136] Huang, X., Atwood, C. S., Moir, R. D., Hartshorn, M. A., vonsattel, J. P., Tanzi, R. E., and Bush, A. I. (1997) Zinc-induced alzheimer's aβ1-40 aggregation is mediated by conformational factors. J Biol Chem 272, 26464-26470.
    [137] Atwood, C. S., Huang, X., Moir, R. D., Tanzi, R. E., and Bush, A. I. (1997) In alzheimer's disease: Biology, diagnosis and therapeutics, Wiely, Chichester.
    [138] Fraser, P. E., Nguyen, J. T., McLachlan, D. R., Abraham, C. R., and Kirschner, D. A. (1993) A1-antichimotrypsin binding to alzheimer aβ peptides is sequence specific and induces fibril disaggregation in vitro. J Neurochem 61, 298-305.
    [139] Eriksson, S., Janciauskiene, S., and Lannfelt, L. (1995) Al-antichimotrypsin regulates alzheimer β-amyloid peptide fibril formation. Proc Natl Acad Sci USA 92, 2313-2317.
    [140] Bohrmann, B., Tjernberg, L., Kuner, P., Poli, S., Levet-Trafit, B., Naslund, J.,Richards, G., Huber, W., Dobeli, H., and Nordstedt, C. (1999) Endogenous proteins controlling amyloid p-peptide polymerisation. J Biol Chem 274, 15990-15995.
    [141] Duong, T., Pommier, E. C., and Scheibel, A. B. (1989) Immunodetection of the amyloid p component in alzheimer's disease. Acta Neuropathol (Berl) 78, 429-437.
    
    [142] Du, Y., Bales, K. R., Dodel, R. C, Liu, X., Glinn, M. A., Horn, J. W., Little, S. P., and Paul, S. M. (1998) B_2-macroglobulin attenuates β-amyloid peptide 1-40 fibril formation and associated neurotoxicity of cultured fetal rat cortical neurons. J Neurochem 70, 1182-1188.
    
    [143] Hughes, S. R., Khorlova, O., Goyal, S., Knaeblein, J., Heroux, J., Riedel, N. G., and Sahasrabudhe, S. (1998) B_2-macroglobulin associates with β-amyloid peptide and prevent fibril formation. Proc Natl Acad Sci USA 95, 3275-3280.
    
    [144] Verbeek, M. M., Otte-Holler, I., and van de Waal, R. M. (1999) Agrin is a major heparan sulfate proteoglycan accumulating in alzheimer's disease brain. Am J Pathol 155, 2115-2125.
    
    [145] Castillo, G. M., Ngo, C., Cummings, J., Wight, T. N., and Snow, A. D. (1997) Perlecan binds to the β-amyloid proteins (aβ) of alzheimer's disease,accelerates aβ fibril formation, and maintains β fibril stability. J Neurochem 69, 2452-2465.
    
    [146] DeWitt, D. A., Silver, J., Canning, D. R., and Perry, G. (1993) Chondroitin sulfate proteoglycans are associated with the lesions of alzheimer's disease. Exp Neurol 121, 149-152.
    
    [147] Inestrosa, N. C., Alvarez, A., Perez, C. A., Moreno, R. D., Vicente, M., Linker, C., Casanueva, O. I., Soto, C., and Garrido, J. (1996) Acetylcholinesterase accelerates assembly of amyloid-β-peptides into alzheimer's fibrils: Possible role of the peripheral site of the enzyme. Neuron 16, 881-891.
    
    [148] Yasuhara, O., Muramatsu, H., Kim, S. U., Musamatsu, T., Maruta, H., and McGeer, P. L. (1993) Midkine, a novel neurotrophic factor, is present in senile plaques of alzheimer disease. Biochem Biophys Res Commun 192, 246-251.
    
    [149] Kiuchi, Y., Isobe, Y., and Fukushima, K. (2001) Entactin-induced inhibition of human amyloid β-protein fibril formation in vitro. Neurosci Lett 305, 119-122.
    
    [150] Evans, K. C., Berger, E. P., Cho, C. G., Weisgraber, K. H., and Lansbury Jr, P. T. (1995) Apolipoprotein e is a kinetic but not a thermodynamic inhibitor of amyloid formation: Implications for the pathogenesis and treatment of alzheimer disease. Proc Natl Acad Sci USA 92, 763-767.
    [151] Wisniewski, T., Castano, E. M., Golabek, A., Vogel, T., and Frangione, B. (1994) Acceleration of alzheimer's fibril formation by apolioprotein e in vitro.Am J Pathol 145, 1030-1035.
    [152] Matsubara, E., Soto, C., Govemale, S., Frangione, B., and Ghiso, J. (1996) Apolipoprotein j and alzheimer's amyloid β solubility. Biochem J 316, 671-679.
    [153] DeMattos, R. B., O'dell, M. A., Parsadanian, M., Talor, J. W., Harmony, J. A., Bales, K. R., Paul, S. M., Aronow, B. J., and Holtzman, D. M. (2002) Clusterin romotes amyloid plaque formation and is critical for neuritic toxicity in a mouse model of alzheimer's disease. Proc Natl Acad Sci USA 6,19843-10848.
    [154] McLaurin, J., Franklin, T., Chakrabartty, A., and Fraser, P. E. (1998) Phosphatidylinositol and inositol involvement in alzheimer amyloid-p fibril growth and arrest. J Mol Biol 278, 183-194.
    [155] Choo-Smith, L. P., and Surewicz, W. K. (1997) Acceleration of amyloid fibril formation by specific binding of a β_(1-40) peptide to ganglioside-containing membrane vesicles. J Biol Chem 272, 22987-22990.
    [156] Mizuno, T., Nakata, M., Naiki, H., Michikawa, M., Wang, R., Haass, C., and Yanagisawa, K. (1999) Cholesteol-dependent generation of a seeding amyloid P-protein in cell culture. J Biol Chem 274, 15110-15114.
    [157] Atwood, C. S., Moir, R. D., Huang, X., Scarpa, R. C., Bacarra, N. M., Romano, D. M., Hartshorn, M. A., Tanzi, R. E., and Bush, A. I. (1998) Dramatic aggregation of alzheimer aβ by cu(ii) is induced by conditions representing physiological acidosis. J Biol Chem 273, 12817-12826.
    [158] Shivers, B. D., Hilbich, C., Multhaup, G., Salbaum, M., Beyreuther, K., and Seeburg, P. H. (1988) Alzheimer's disease amyloidogenic glycoprotein: Expression pattern in rat brains suggest a role in cell contact. EMBO J 7,1365-1370.
    [159] Johnstone, E. M., Chaney, M. O., Norris, F. H., Pascual, R., and Little, S. P. (1991) Conservation of the sequence of the alzheimer's disease amyloid peptide in dog, polar bear and five other mammals by cross-species polymerase chain reaction analysis. Mol Brain Res 10, 299-305.
    [160] Atwood, C. S., Scarpa, R. C, Huang, X., Moir, R. D., Tanzi, R. E., and Bush, A. I. (2000) Self-aggregation of alzheimer's aβ is induced by attomolar affinity copper binding. J Neurochem 75, 1219-1233.
    [161] Clippingdale, A. B., Wade, J. D., and Barrow, C. J. (2001) The amyloid-β peptide and its role in alzheimer's disease. J Peptide Sci 7, 227-249.
    
    [162] Appel, S. H. (1981) A unifying hypothesis for the cause of amyotrophic lateral sclerosis parkinsonism and alzheimer's disease. Ann Neurol 10, 499-505.
    [163] Ihara, Y. (1988) Massive somatodendritic sprouting of cortical neurons in alzheimer's disease. Brain Res 459, 138-144.
    [164] Uchida, Y., and Tomonaga, M. (1989) Neurotropic action of alzheimer's disease brain extract is due to the loss of inhibitory factors for survival and neurite formation of cerebral cortical neurons. Brain Res 481, 190-193.
    [165] Uchida, Y., Takio, K., Titani, K., Ihara, Y., and Tomonaga, M. (1991) The growth inhibitory factor that is deficient in the alzheimers-disease brain is a 68-amino acid metallothionein-like protein. Neuron 7, 337-347.
    [166] Amoureux, M. C., Van Gool, D., Herrero, M. T., Dom, R., Colpaert, F. C., and Pauwels, P. J. (1997) Regulation of metallothionein-iii (gif) mrna in the brain of patients with alzheimer disease is not impaired. Molecular and Chemical Neuropathology 32, 101 -121.
    [167] Yu, W. H., Lukiw, W. J., Bergeron, C., Niznik, H. B., and Fraser, P. E. (2001) Metallothionein iii is reduced in alzheimer's disease. Brain Research 894,37-45.
    [168] Tsuji, S., Kobayashi, H., Uchida, Y., Ihara, Y., and Miyatake, T. (1992) Molecular-cloning of human growth inhibitory factor cdna and its down-regulation in alzheimers-disease. EMBO Journal 11, 4843-4850.
    [169] Yankner, B. A., Duffy, L. K., and Kirschner, D. A. (1990) Neurotropic and neurotoxic effects of amyloid protein: Reversal by tachykinin neuropeptides. Science 250, 279-282.
    [170] Irie, Y., and Keung, W. M. (2001) Metallothionein-ⅲ antagonizes the neurotoxic and neurotrophic effects of amyloid beta peptides. Biochemical and Biophysical Research Communications 282, 416-420.
    [171] Irie, Y., and Keung, W. M. (2003) Anti-amyloid beta activity of metallothionein-ⅲ is different from its neuronal growth inhibitory activity: Structure-activity studies. Brain Research 960, 228-234.
    [172] Palmiter, R. D., Findley, S. D., Whitmore, T. E., and Durnam, D. M. (1992) Mt-ⅲ, a brain-specific member of the metallothionein gene family. Proceedings of the National Academy of Sciences of the United States of America 89, 6333-6337.
    [173] Naruse, S., Igarashi, S., Furuya, T., Kobayashi, H., Miyatake, T., and Tsuji, S. (1994) Structures of the human and mouse growth-inhibitory factor-encoding genes. Gene 144, 283-287.
    [174] Chapman, G. A., Kay, J., and Kille, P. (1999) Structural and functional analysis of the rat metallothionein ⅲ genomic locus. Biochimica et Biophysica Acta-Gene Structure and Expression 1445, 321-329.
    [175] Imagawa, M., Ishikawa, Y., Shimano, H., Osada, S., and Nishihara, T. (1995) Ctg triplet repeat in mouse growth-inhibitory factor metallothionein-ⅲ gene promoter represses the transcriptional activity of the heterologous promoters. Journal of Biological Chemistry 2 70, 20898-20900.
    [176] Kobayashi, H., Uchida, Y., Ihara, Y., Nakajima, K., Kohsaka, S., Miyatake, T., and Tsuji, S. (1993) Molecular-cloning of rat growth-inhibitory factor cdna and the expression in the central-nervous-system. Molecular Brain Research 19, 188-194.
    [177] Wang, S. H., Chang, C. Y., Chen, C. F., Tam, M. F., Shih, Y. H., and Lin, L. Y. (1997) Cloning of porcine neuron growth inhibitory factor (metallothionein ⅲ) cdna and expression of the gene in saccharomyces cerevisiae. Gene 203, 189-197.
    [178] Chung, R. S., Holloway, A. F., Eckhardt, B. L., Harris, J. A., Vickers, J. C., Chuah, M. I., and West, A. K. (2002) Sheep have an unusual variant of the brain-specific metallothionein, metallothionein-iii. Biochemical Journal 365, 23-328.
    [179] Garrett, S. H., Sens, M. A., Todd, J. H., Somji, S., and Sens, D. A. (1999) Expression of mt-3 protein in the human kidney. Toxicology Letters 105,207-214.
    [180] Mididoddi, S., McGuirt, J. P., Sens, M. A., Todd, J. H., and Sens, D. A. (1996) Isoform-specific expression of metallothionein mrna in the developing and adult human kidney. Toxicology Letters 85, 17-27.
    [181] Garrett, S. H., Sens, M. A., Shukla, D., Nestor, S., Somji, S., Todd, J. H., and Sens, D. A. (1999) Metallothionein isoform 3 expression in the human prostate and cancer-derived cell lines. Prostate 41, 196-202.
    [182] Hidalgo, J., Aschner, M., Zatta, P., and Vasak, M. (2001) Roles of the metallothionein family of proteins in the central nervous system. Brain Research Bulletin 55, 133-145.
    [183] Cheoudhuri, S., Krumer, K. K., Berman, N. E., Dalton, T. P., Andrews, G. K., and Klaasen, C. D. (1995) Constitutive expression of metallothionein genes in mouse brain. Toxicol Appl Pharmacol 131, 144-154.
    [184] Carrasco, J., Hernandez, J., Gonzalez, B., Campbell, I. L., and Hidalgo, J. (1998) Localization of metallothionein-i and -iii expression in the cns of transgenic mice with astrocyte-targeted expression of interleukin 6. Experimental Neurology 153, 184-194.
    [185] Penkowa, M., Nielsen, H., Hidalgo, J., Bernth, N., and Moos, Y. (1999) Distribution of metallothionein i+ii and vesicular zinc in the developing central nervous system: Correlative study in the rat.J Comp Neurol 412, 303-318.
    [186] Acarin, L., Carrasco, J., Gonzalez, B., Hidalgo, J., and Castellano, B. (1999) Expression of growth inhibitory factor (metallothionein-iii) mrna and protein following excitotoxic immature brain injury. Journal of Neuropathology and Experimental Neurology 58, 389-397.
    [187] Yuguchi, T., Kohmura, E., Sakaki, T., Nonaka, M., Yamada, K., Yamashita, T., Kishiguchi, T., Sakaguchi, T., and Hayakawa, T. (1997) Expression of growth inhibitory factor mrna after focal ischemia in rat brain. Journal of Cerebral Blood Flow and Metabolism 17, 745-752.
    
    [188] Zheng, H., Berman, N. E. J., and Klassen, C. D. (1995) Chemical modulation of metallothionein-i and metallothionein-iii messenger-rna in mouse-brain. Neurochemistry International 27, 43-58.
    [189] Hozumi, I., Inuzuka, T., Ishiguro, H., Hiraiwa, M., Uchida, Y., and Tsuji, S. (1996) Immunoreactivity of growth inhibitory factor in normal rat brain and after stab wounds - an immunocytochemical study using confocal laser scan microscope. Brain Research 741, 197-204.
    [190] Yamada, M., Hayashi, S., Hozumi, I., Inuzuka, T., Tsuji, S., and Takahashi, H. (1996) Subcellular localization of growth inhibitory factor in rat brain: Light and electron microscopic immunohistochemical studies. Brain Research 735, 257-264.
    [191] Cyr, D. G., Dufresne, J., Pillet, S., Alfieri, J., and Hermo, L. (2001) Expression and regulation of metallothioneins in the rat epididymis. Journal of Andrology 22, 124-135.
    [192] Kramer, K. K., Liu, J., Choudhuri, S., and Klaassen, C. D. (1996) Induction of metallothionein mrna and protein in murine astrocyte cultures. Toxicology and Applied Pharmacology 136, 94-100.
    [193] Kramer, K. K., Zoelle, J. T., and Klaassen, C. D. (1996) Induction of metallothionein mrna and protein in primary murine neuron cultures.Toxicology and Applied Pharmacology 141, 1-7.
    [194] Giralt, M., Molinero, A., Carrasco, J., and Hidalgo, J. (2000) Effect of dietary zinc deficiency on brain metallothionein-i and -iii mrna levels during stress and inflammation. Neurochemistry International 36, 555-562.
    [195] Jacob, S. T., Ghoshal, K., and Sheridan, J. F. (1999) Induction of metallothionein by stress and its molecular mechanisms. Gene Expression 7, 301-310.
    [196] Dufresne, J., and Cyr, D. G. (1999) Effects of short-term methylmercury exposure on metallothionein mrna levels in the testis and epididymis of the rat. Journal of Andrology 20, 769-778.
    
    [197] Garrett, S. H., Belcastro, M., Sens, M. A., Somji, S., and Sens, D. A. (2001) Acute exposure to arsenite induces metallothionein isoform-specific gene expression in human proximal tubule cells. Journal of Toxicology and Environmental Health-Part A 64, 343-355.
    
    [198] Cai, L., Cherian, M. G., Iskander, S., Leblanc, M., and Hammond, R. R. (2000) Metallothionein induction in human cns in vitro: Neuroprotection from ionizing radiation. International Journal of Radiation Biology 76, 1009-1017.
    
    [199] Ono, S., Cai, L., Koropatnick, J., and Cherian, M. G. (2000) Radiation exposure does not alter metallothionein iii isoform expression in mouse brain. Biological Trace Element Research 74, 23-30.
    
    [200] Carrasco, J., Hernandez, J., Bluethmann, H., and Hidalgo, J. (1998) Interleukin-6 and tumor necrosis factor-alpha type 1 receptor deficient mice reveal a role of il-6 and tnf-alpha on brain metallothionein-i and -iii regulation. Molecular Brain Research 57, 221-234.
    
    [201] Uchida, Y. (1999) Regulation of growth inhibitory factor expression by epidermal growth factor and interleukin-1 beta in cultured rat astrocytes. Journal of Neurochemistry 73, 1945-1953.
    
    [202] Aoki, C, Nakanishi, T., Sogawa, N., Ishii, K., Ogawa, N., Takigawa, M., and Furuta, H. (1998) Stimulatory effects of 4-methylcatechol, dopamine and levodopa on the expression of metallothionein-iii (gtf) mrna in immortalized mouse brain glial cells (vr-2g). Brain Research 792, 335-339.
    
    [203] Sogawa, C. A., Miyazaki, I., Sogawa, N., Asanuma, M., Ogawa, N., and Furuta, H. (2000) Antioxidants protect against dopamine-induced metallothionein-iii (gif) mrna expression in mouse glial cell line (vr-2g). Brain Research 853, 310-316.
    
    [204] Anjiki, N., Hoshino, R., Ohnishi, Y., Hioki, K., Irie, Y., Ishige, A., and Watanabe, K. (2005) Akampo formula juzen-taiho-to induces expression of metallothioneins in mice. Phytotherapy Research 19, 915-917.
    [205] Belloso, E., Hernandez, J., Giralt, M., Kille, P., and Hidalgo, J. (1996) Effect of stress on mouse and rat brain metallothionein i and iii mrna levels. Neuroendocrinology 64,430-439.
    [206] Hernandez, J., Carrasco, J., Arbones, M. L., and Hidalgo, J. (1997) Ifn-gamma x-/- mice show an enhanced liver and brain metallothionein i+ii response to endotoxin but not to immobilization stress. Journal of Endotoxin Research 4, 363-370.
    [207] Loney, K. D., Uddin, R. K., and Singh, S. M. (2006) Analysis of metallothionein brain gene expression in relation to ethanol preference in mice using cosegregation and gene knockouts. Alcoholism-Clinical and Experimental Research 30, 15-25.
    [208] Yeiser, E. C., Fitch, C. A., Horning, M. S., Rutkoski, N., and Levenson, C. W.(1999) Regulation of metallothionein-3 mrna by thyroid hormone in developing rat brain and primary cultures of rat astrocytes and neurons. Developmental Brain Research 115, 195-200.
    [209] Bogumil, R., Faller, P., Pountney, D. L., and Vasak, M. (1996) Evidence for cu(i) clusters and zn(ii) clusters in neuronal growth-inhibitory factor isolated from bovine brain. European Journal of Biochemistry 238, 698-705.
    [210] Bogumil, R., Faller, P., Binz, P. A., Vasak, M., Charnock, J. M., and Garner, C. D. (1998) Structural characterization of cu(i) and zn(ii) sites in neuronal-growth-inhibitory factor by extended x-ray absorption fine structure (exafs). European Journal of Biochemistry 255, 172-177.
    
    [211] Roschitzki, B., and Vasak, M. (2002) A distinct cu-4-thiolate cluster of human metallothionein-3 is located in the n-terminal domain. Journal of Biological Inorganic Chemistry 7, 611-616.
    [212] Faller, P., and Vasak, M. (1997) Distinct metal-thiolate clusters in the n-terminal domain of neuronal growth inhibitory factor. Biochemistry 36, 13341-13348.
    [213] Roschitzki, B., and Vasak, M. (2003) Redox labile site in a zn-4 cluster of cu-4,zn-4-metallothionein-3. Biochemistry 42, 9822-9828.
    [214] Hasler, D. W., Failer, P., and Vasak, M. (1998) Metal-thiolate clusters in the c-terminal domain of human neuronal growth inhibitory factor (gif). Biochemistry 37, 14966-14973.
    [215] Failer, P., Hasler, D. W., Zerbe, O., Klauser, S., Winge, D. R., and Vasak, M. (1999) Evidence for a dynamic structure of human neuronal growth inhibitory factor and for major rearrangements of its metal-thiolate clusters. Biochemistry 38, 10158-10167.
    [216] Palumaa, P., Eriste, E., Njunkova, O., Pokras, L., Jornvall, H., and Sillard, R. (2002) Brain-specific metallothionein-3 has higher metal-binding capacity than ubiquitous metallothioneins and binds metals noncooperatively. Biochemistry 41, 6158-6163.
    [217] Palumaa, P., Njunkova, O., Pokras, L., Eriste, E., Jornvall, H., and Sillard, R. (2002) Evidence for non-isostructural replacement of zn2+ with cd2+ in the beta-domain of brain-specific metallothionein-3. FEBS Letters 527, 76-80.
    [218] Palumaa, P., Tammiste, I., Kruusel, K., Kangur, L., Jornvall, H., and Sillard, R. (2005) Metal binding of metallothionein-3 versus metallothionein-2: Lower affinity and higher plasticity. Biochimica et Biophysica Acta-Proteins and Proteomics 1747, 205-211.
    [219] Aschner, M. (1996) The functional significance of brain metallothioneins. FASEB Journal 10, 1129-1136.
    [220] Chung, R. S., Vickers, J. C., Chuah, M. I., Eckhardt, B. L., and West, A. K. (2002) Metallothionein-ⅲ inhibits initial neurite formation in developing neurons as well as postinjury, regenerative neurite sprouting. Experimental Neurology 178, 1-12.
    [221] Ceballos, D., Lago, N., Verdu, E., Penkowa, M., Carrasco, J., Navarro, X., Palmiter, R. D., and Hidalgo, J. (2003) Role of metallothioneins in peripheral nerve function and regeneration. Cellular and Molecular Life Sciences 60, 1209-1216.
    [222] Uchida, Y., and Ihara, Y. (1995) The n-terminal portion of growth-inhibitory factor is sufficient for biological-activity. Journal of Biological Chemistry 270, 3365-3369.
    
    [223] Sewell, A. K., Jensen, L. T., Erickson, J. C., Palmiter, R. D., and Winge, D. R.(1995) Bioactivity of metallothionein-3 correlates with its novel beta-domain sequence rather than metal-binding properties. Biochemistry 34, 4740-4747.
    
    [224] Hasler, D. W., Jensen, L. T., Zerbe, O., Winge, D. R., and Vasak, M. (2000) Effect of the two conserved prolines of human growth inhibitory factor (metallothionein-3) on its biological activity and structure fluctuation: Comparison with a mutant protein. Biochemistry 39, 14567-14575.
    
    [225] Romero-Isart, N., Jensen, L. T., Zerbe, O., Winge, D. R., and Vasak, M. (2002) Engineering of metallothionein-3 neuroinhibitory activity into the inactive isoform metallothionein-1. Journal of Biological Chemistry 277, 37023-37028.
    
    [226] Amoureux, M. C., Wurch, T., and Pauwels, P. J. (1995) Expression of human metallothionein-iii confers protection against serum-free exposure of stably transfected Chinese hamster ovary cho-k1 cells. Neuroscience Letters 201,61-64.
    
    [227] Dutta, R., Sens, D. A., Somji, S., Sens, M. A., and Garrett, S. H. (2002) Metallothionein isoform 3 expression inhibits cell growth and increases drug resistance of pc-3 prostate cancer cells. Prostate 52, 89-97.
    
    [228] Gurel, V., Sens, D. A., Somji, S., Garrett, S. H., Nath, J., and Sens, M. A. (2003) Stable transfection and overexpression of metallothionein isoform 3 inhibits the growth of mcf-7 and hs578t cells but not that of t-47d or mda-mb-231 cells. Breast Cancer Research and Treatment 80, 181-191.
    
    [229] Hozumi, I., Inuzuka, T., Hiraiwa, M., Uchida, Y., Anezaki, T., Ishiguro, H., Kobayashi, H., Uda, Y., Miyatake, T., and Tsuji, S. (1995) Changes of growth-inhibitory factor after stab wounds in rat-brain. Brain Research 688,143-148.
    
    [230] Hozumi, I., Uchida, Y, Watabe, K., Sakamoto, T., and Inuzuka, T. (2006) Growth inhibitory factor (gif) can protect from brain damage due to stab wounds in rat brain. Neuroscience Letters 395, 220-223.
    [231] Sakamoto, T., Kawazoe, Y., Uchida, Y., Hozumi, I., Inuzuka, T., and Watabe, K. (2003) Growth inhibitory factor prevents degeneration of injured adult rat motoneurons. Neuroreport 14, 2147-2151.
    [232] Inuzuka, T., Hozumi, I., Tamura, A., Hiraiwa, M., and Tsuji, S. (1996) Patterns of growth inhibitory factor (gif) and glial fibrillary acidic protein relative level changes differ following left middle cerebral artery occlusion in rats. Brain Research 709, 151-153.
    [233] Yanagitani, S., Miyazaki, H., Nakahashi, Y., Kuno, K., Ueno, Y., Matsushita, M., Naitoh, Y., Taketani, S., and Inoue, K. (1999) Ischemia induces metallothionein iii expression in neurons of rat brain. Life Sciences 64,707-715.
    [234] Kohmura, E., Yuguchi, T., Sakaki, T., Yamashita, T., Nonaka, M., and Hayakawa, T. (1997) Altered expression of growth inhibitory factor (gif/mt-iii) mrna in the rat facial nucleus after facial nerve injury is closely related with facial function. Restorative Neurology and Neuroscience 11, 169-175.
    [235] McGeer, P. L., Rogers, J., and McGeer, E. G. (1994) Neuroimmune mechanisms in alzheimer's disease pathogenesis. Alzheimer Dis Assoc Disord 8, 149-158.
    [236] You, H. J., Lee, K. J., and Jeong, H. G. (2002) Overexpression of human metallothionein-iii prevents hydrogen peroxide-induced oxidative stress in human fibroblasts. FEBS Letters 521, 175-179.
    [237] You, H. J., Oh, D. H., Choi, C. Y., Lee, D. G., Hahm, K. S., Moon, A. R., and Jeong, H. G. (2002) Protective effect of metallothionein-iii on DNA damage in response to reactive oxygen species. Biochimica et Biophysica Acta-General Subjects 1573, 33-38.
    [238] Ren, H. W., Ji, Q. Z., Liu, Y, and Ru, B. G (2001) Different protective roles in vitro of alpha- and beta-domains of growth inhibitory factor (gif) on neuron injuries caused by oxygen free radicals. Biochimica et Biophysica Acta-General Subjects 1568,129-134.
    [239] Shi, Y. B., Wang, W. F., Mo, J. J., Du, L., Yao, S., and Tang, W. X. (2003) Interactions of growth inhibitory factor with hydroxyl and superoxide radicals. Biometals 16, 383-389.
    
    [240] Uchida, Y, Gomi, F., Masumizu, T., and Miura, Y. (2002) Growth inhibitory factor prevents neurite extension and the death of cortical neurons caused by high oxygen exposure through hydroxyl radical scavenging. Journal of Biological Chemistry 277, 32353-32359.
    [241] Montoliu, C, Monfort, P., Carrasco, J., Palacios, O., Capdevila, M., Hidalgo, J., and Felipo, V. (2000) Metallothionein-iii prevents glutamate and nitric oxide neurotoxicity in primary cultures of cerebellar neurons. Journal of Neurochemistry 75, 266-273.
    [242] Chen, Y, Irie, Y, Keung, W. M., and Maret, W. (2002) S-nitrosothiols react preferentially with zinc thiolate clusters of metallothionein iii through transnitrosation. Biochemistry 41, 8360-8367.
    [243] Teng, X. C., Zheng, Q., Cai, B., Ni, F. Y., Xie, Y, Sun, H. Z., Zhang, M. J., and Huang, Z. X. (2005) An insight of s-nitrosylation of human gif. Chinese Journal of Chemistry 23, 1545-1551.
    [244] Erickson, J. C., Hollopeter, G., Thomas, S. A., Froelick, G. J., and Palmiter, R. D. (1997) Disruption of the metallothionein-iii gene in mice: Analysis of brain zinc, behavior, and neuron vulnerability to metals, aging, and seizures. Journal of Neuroscience 17, 1271 -1281.
    [245] Lee, J. Y., Kim, J. H., Palmiter, R. D., and Koh, J. Y. (2003) Zinc released from metallothionein-iii may contribute to hippocampal ca1 and thalamic neuronal death following acute brain injury. Experimental Neurology 184, 337-347.
    [246] Tokheim, A. M., Armitage, I. M., and Martin, B. L. (2005) Antiserum specific for the intact isoform-3 of metallothionein. Journal of Biochemical and Biophysical Methods 63, 43-52.
    [247] Kang, Q. H., Chen, Q. L., Ren, H. W., and Ru, B. G. (2001) Growth inhibitory factor (gif) directly interacts with g-protein rab3a. Progress in Biochemistry and Biophysics 28, 880-884.
    [248] Lahti, D. W., Hoekman, J. D., Tokheim, A. M., Martin, B. L., and Armitage, Ⅰ. M. (2005) Identification of mouse brain proteins associated with isoform 3 of metallothionein. Protein Science 14, 1151-1157.
    [1] Coyle, P., Philcox, J. C., Carey, L. C., and Rofe, A. M. (2002) Metallothionein: the multipurpose protein. Cellular and Molecular Life Sciences 59, 627-647.
    [2] Deng, D. X., Cai, L., Chakrabarti, S., and Cherian, M. G. (1999) Increased radiation-induced apoptosis in mouse thymus in the absence of metallothionein. Toxicology 134, 39-49.
    [3] Deng, D. X., Chakrabarti, S., Waalkes, M. P., and Cherian, M. G. (1998) Metallothionein and apoptosis in primary human hepatoceilular carcinoma and metastatic adenocarcinoma. Histopathology 32, 340-347.
    [4] Deng, D. X., Ono, S., Koropatnick, J., and Cherian, M. G. (1998) Metallothionein and apoptosis in the toxic milk mutant mouse. Laboratory Investigation 78, 175-183.
    [5] Tsangaris, G. T., and Tzortzatou-Stathopoulou, F. (1998) Metallothionein expression prevents apoptosis: a study with antisense phosphorothioate oligodeoxynucleotides in a human T cell line. Anticancer Research 18,2423-2433.
    [6] Tsangaris, G T., Vamvoukakis, J., Botsonis, A., and Tzortzatou-Stathopoulou, F. (1998) Induction of apoptosis by treating a human T cell line with metallothionein antisense oligonucleotides. British Journal of Haematology 102, 168-168.
    [7] Tsangaris, G. T., Vamvoukakis, J., Politis, I., Kattamis, A. C., and Tzortzatou-Stathopoulou, F. (2000) Metallothionein expression prevents apoptosis. II: Evaluation of the role of metallothionein expression on the chemotherapy-induced apoptosis during the treatment of acute leukemia. Anticancer Research 20, 4407-4411.
    [8] Uchida, Y., Takio, K., Titani, K., Ihara, Y., and Tomonaga, M. (1991) The growth inhibitory factor that is deficient in the Alzheimers-disease brain is a 68-amino acid metallothionein-like protein. Neuron 7, 337-347.
    [9] Yu, W. H., Lukiw, W. J., Bergeron, C., Niznik, H. B., and Fraser, P. E. (2001) Metallothionein III is reduced in Alzheimer's disease. Brain Research 894, 37-45.
    [10] Quaife, C. J., Findley, S. D., Erickson, J. C., Froelick, G. J., Kelly, E. J., Zambrowicz, B. E, and Palmiter, R. D. (1994) Induction of a new metallothionein isoform (MT-Ⅳ) occurs during differentiation of stratified squamous epithelia. Biochemistry 33, 7250-7259.
    [11] Liang, L. C., Fu, K., Lee, D. K., Sobieski, R. J., Dalton, T., and Andrews, G. K. (1996) Activation of the complete mouse metallothionein gene locus in the maternal deciduum. Molecular Reproduction and Development 43, 25-37.
    [12] Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Clone: A Laboratory Manual, 2 nd ed., Cold Spring Harbor Laboratory Press.
    [13] Yu, W. H., Cai, B., Gao, Y., Chen, D., and Huang, Z. X. (2003) Effect of mutation of Cys33 and Cys34 in the alpha-domain of monkey metallothionein- 1 on the protein stability. Chemical Journal of Chinese Universities-Chinese 24, 569-575.
    [14] Yu, W. H., Cai, B., Gao, Y., Xie, Y., and Huang, Z. X. (2002) Expression, characterization, and reaction of recombinant monkey metallothionein-1 and its C33M mutant. Journal of Protein Chemistry 21, 177-185.
    [15] Schaffer, A. (1991) Absorption, circular-dichroism, and magnetic circular-dichroism spectroscopy of metallothionein. Methods In Enzymology 205, 529-540.
    [16] 孙崇荣,and 李玉民.(1991)蛋白质化学导论.pp153.
    [17] Kagi, J. H. R., and Valle, B. (1960) J Biol Chem 235, 3460-3465.
    [18] Neuhaus, D., Wagner, G., Vasak, M., Kagi, J. H., and Wuthrich, K. (1985) Systematic application of high-resolution, phase-sensitive two-dimensional 1H-NMR techniques for the identification of the amino-acid-proton spin systems in proteins rabbit metallothionein-2. European Journal of Biochemistry 151,257-73.
    [19] Robbins, A. H., McRee, D. E., Williamson, M., Collett, S. A., Xuong, N. H., Furey, W. F., Wang, B. C., and Stout, C. D. (1991) Refined crystal-structure of Cd, Zn-metallothionein at 2.0 A resolution. Journal of Molecular Biology 221, 1269-1293.
    [20] Zangger, K., Oz, G., Otvos, J. D., andArmitage, I. M. (1999) Three-dimensional solution structure of mouse [Cd-7]-metallothionein-1 by homonuclear and heteronuclear NMR spectroscopy. Protein Science 8, 2630-2638.
    [21] Oz, G., Zangger, K., and Arm itage, I. M. (2001) Three-dimensional structure and dynamics of a brain specific growth inhibitory factor: metallothionein-3. Biochemistry 40, 11433-11441.
    [22] Braun, W., Vasak, M., Robbins, A. H., Stout, C. D., Wagner, G., Kagi, J. H. R., and Wuthrich, K. (1992) Comparison of the NMR solution structure and the X-Ray crystal-structure of rat metallothionein-2. Proceedings of the National Academy of Sciences of the United States of America 89, 10124-10128.
    [23] Furey, W. F., Robbins, A. H., Clancy, L. L., Winge, D. R., Wang, B. C., and Stout, C. D. (1986)Crystal structure of Cd,Zn metallothionein. Science 231, 704-10.
    [24] Melis, K. A., Carter, D. C., Stout, C. D., and Winge, D. R. (1983) Single crystals of cadmium, zinc metallothionein. J. Biol. Chem. 258, 6255-7.
    [25] Arseniev, A., Schultze, P., Worgotter, E., Braun, W., Wagner, G., Vasak, M., Kagi, J. H., and Wuthrich, K. (1988)Three-dimensional structure of rabbit liver [Cd7]metallothionein-2a in aqueous solution determined by nuclear magnetic resonance. J. Mol. Biol. 201,637-57.
    [26] Vasak, M., Worgotter, E., Wagner, G., Kagi, J. H., and Wuthrich, K. (1987) Metal co-ordination in rat liver metaiiothionein-2 prepared with or without reconstitution of the metal clusters, and comparison with rabbit liver metallothionein-2. J. Mol. Biol. 196, 711-9.
    [27] Worgotter, E., Wagner, G., Vasak, M., Kagi, J. H., and Wuthrich, K. (1987) Sequence-specific ~1H-NMR assignments in rat-liver metallothionein-2. European Journal of Biochemistry 167, 457-66.
    [28] Braun, W., Wagner, G., Worgotter, E., Vasak, M., Kagi, J. H., and Wuthrich, K. (1986) Polypeptide fold in the two metal clusters of metallothionein-2 by nuclear magnetic resonance in solution. J. Mol. Biol. 187, 125-9.
    [29] Wagner, G., Neuhaus, D., Worgotter, E., Vasak, M., Kagi, J. H., and Wuthrich, K. (1986) Nuclear magnetic resonance identification of "half-turn" and 3(10)-helix secondary structure in rabbit liver metallothionein-2. J. Mol. Biol. 187, 131-5.
    [30] Wagner, G., Neuhaus, D., Worgotter, E., Vasak, M., Kagi, J. H., and Wuthrich, K. (1986) Sequence-specific 1H-NMR assignments in rabbit-liver metallothionein-2. European Journal of Biochemistry 157, 275-89.
    [31] Stillman, M. J., Cai, W., and Zelazowski, A. J. (1987) Cadmium binding to metallothioneins. Domain specificity in reactions of alpha and beta fragments, apometallothionein, and zinc metallothionein with Cd~(2+). J Biol Chem 262, 4538-4548.
    [32] Stillman, M. J., Cai, W., and Zelazowski, A. J. (1987) Cadmium binding to metallothioneins. J Biol Chem 262, 4538-4548.
    [33] Zelazowski, A. J., Szymanska, J. A., Law, A. Y., and Stillman, M. J. (1984)Spectroscopic properties of the alpha fragment of metallothionein. J Biol Chem 259, 12960-12963.
    [34] Wang, H., Zhang, Q., Cai, B., Li, H. Y., Sze, K. H., Huang, Z. X., Wu, H. M., and Sun, H. Z. (2006) Solution structure and dynamics of human metallothionein-3 (MT-3). FEBS Letters 580, 795-800.
    [35] Vasak, M., Hasler, D. W., and Faller, P. (2000) Metal-thiolate clusters in neuronal growth inhibitory factor (GIF). Journal of Inorganic Biochemistry 79, 7-10.
    [36] Faller, P., Hasler, D. W., Zerbe, O., Klauser, S., Winge, D. R., and Vasak, M. (1999) Evidence for a dynamic structure of human neuronal growth inhibitory factor and for major rearrangements of its metal - Thiolate clusters. Biochemistry 38, 10158-10167.
    [37] Hasler, D. W., Faller, P., and Vasak, M. (1998) Metal-thiolate clusters in the C-terminal domain of human neuronal growth inhibitory factor (GIF).Biochemistry 37, 14966-14973.
    [38] Failer, P., and Vasak, M. (1997) Distinct metal-thiolate clusters in the N-terminal domain of neuronal growth inhibitory factor. Biochemistry 36, 13341-13348.
    [39] Wang, Y. J., Mackay, E. A., Kurasaki, M., and Kagi, J. H. R. (1994) Purification and characterization of recombinant sea-urchin metallothionein expressed in Escherichia-coli. European Journal of Biochemistry 225, 449-457.
    [40] Cismowski, M. J., and Huang, P. C. (1991) Effect of cysteine replacements at position-13 and position-50 on metallothionein structure. Biochemistry 30, 6626-6632.
    [41] Zhu, Z. W., Petering, D. H., and Shaw, C. F. (1995) Electrostatic influences on the kinetics of the reactions of lobster metaliothioneins with the electrophilic disulfides 2,2'-dithiodipyridine (PYSSPY) and 5,5'-dithiobis(2-nitrobenzoic acid) (ESSE). Inorganic Chemistry 34, 4477-4483.
    [42] Zheng, Q., Yang, W. M., Yu, W. H., Cai, B., Teng, X. C., Xie, Y., Sun, H. Z., Zhang, M. J., and Huang, Z. X. (2003) The effect of the EAAEAE insert on the property of human metallothionein-3. Protein Engineering 16, 865-870.
    [43] Li, T. Y., Kraker, A. J., Shaw, C. F., 3rd, and Petering, D. H. (1980) Ligand substitution reactions of metallothioneins with EDTA and apo-carbonic anhydrase. Proc Natl Acad Sci USA 77, 6334-6338.
    [44] Gan, T., Munoz, A., Shaw, C. F., and Petering, D. H. (1995) Reaction of Cd-111 (7)-Metallothionein with EDTA - a reappraisal. Journal of Biological Chemistry 270, 5339-5345.
    [45] Cai, M., Huang, Y., Sakaguchi, K., Clore, G. M., M., G. A., and Vraigie, R. (1998) An efficient and cost-effective isotope labeling protocol for proteins expresed in Escherichia coll. J Biomol NMR 11, 97-102.
    [46] Wang, H., Zhang, Q., Cai, B., Li, H., Sze, K. H., Huang, Z. X., Wu, H. M., and Sun, H. Z. (2006) Solution structure and dynamics of human MT-3. FEBS Lett 580, 795-800.
    [47] 张琪.(2005) (博士论文) .
    
    [48] Hasler, D. W., Jensen, L. T., Zerbe, O., Winge, D. R., and Vasak, M. (2000) Effect of the two conserved prolines of human growth inhibitory factor (metallothionein-3) on its biological activity and structure fluctuation: Comparison with a mutant protein. Biochemistry 39, 14567-14575.
    [49] Ho, S. N., Hunt, H. D., Horton, R. M., Pullen, J. K., and Pease, L. R. (1989) Site-diercted mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 51-9.
    [50] Uchida, Y., and Ihara, Y. (1995) The N-terminal portion of growth-inhibitory factor is sufficient for biological-activity. Journal of Biological Chemistry 270, 3365-3369.
    [51] Romero-Isart, N., Jensen, L. T., Zerbe, O., Winge, D. R., and Vasak, M. (2002) Engineering of metallothionein-3 neuroinhibitory activity into the inactive isoform metallothionein-1. Journal of Biological Chemistry 277, 37023-37028.
    [52] Munoz, A., Petering, D. H., and Shaw, C. F. (2000) Structure-reactivity relationships among metallothionein three-metal domains: Role of non-cysteine amino acid residues in lobster metallothionein and human metallothionein-3. Inorganic Chemistry 39, 6114-6123.
    [1] Uchida, Y., and Tomonaga, M. (1989) Neurotrophic action of alzheimer's disease brain extract is due to the loss of inhibitory factors for survival and neurite formation of cerebral cortical neurons. Brain Res 481, 190-193.
    [2] Uchida, Y., Takio, K., Titani, K., Ihara, Y., and Tomonaga, M. (1991) The growth inhibitory factor that is deficient in the alzheimers-disease brain is a 68-amino acid metallothionein-like protein. Neuron 7, 337-347.
    [3] Hasler, D. W., Jensen, L. T., Zerbe, O., Winge, D. R., and Vasak, M. (2000) Effect of the two conserved prolines of human growth inhibitory factor (metallothionein-3) on its biological activity and structure fluctuation: Comparison with a mutant protein. Biochemistry 39, 14567-14575.
    [4] Romero-Isart, N., Jensen, L. T., Zerbe, O., Winge, D. R., and Vasak, M. (2002) Engineering of metallothionein-3 neuroinhibitory activity into the inactive isoform metallothionein-1. Journal of Biological Chemistry 277, 37023-37028.
    [5] Sewell, A. K., Jensen, L. T., Erickson, J. C., Palmiter, R. D., and Winge, D. R. (1995) Bioactivity of metallothionein-3 correlates with its novel beta-domain sequence rather than metal-binding properties. Biochemistry 34, 4740-4747.
    [6] Zheng, Q., Yang, W. M., Yu, W. H., Cai, B., Teng, X. C., Xie, Y., Sun, H. Z., Zhang, M. J., and Huang, Z. X. (2003) The effect of the eaaeae insert on the property of human metal lothionein-3. Protein Engineering 16, 865-870.
    [7] 郑起.(2003)人脑金属硫蛋白mt3结构对其性质和功能的影响(博士论文).
    [8] Uchida, Y., Ihara, Y., and Tomonaga, M. (1988)Alzheimer's disease brain extract stimulates the survival of cerebral cortical neurons from neonatal rats. Biochem Biophys Res Commun 150, 1263-7.
    [9] Erickson, J. C., Sewell, A. K., Jensen, L. T., Winge, D. R., and Palmiter, R. D. (1994) Enhanced neurotrophic activity in alzheimers-disease cortex is not associated with down-regulation of metallothionein-ⅲ (gif). Brain Research 649, 297-304.
    [10] Masters, B. A., Quaife, C. J., Erickson, J. C., Kelly, E. J., Froelick, G. J., Zambrowicz, B. P., Brinster, R. L., and Palmiter, R. D. (1994) Metallothionein-iii is expressed in neurons that sequester zinc in synaptic vesicles. Journal of Neuroscience 14, 5844-5857.
    [11] Chung, R. S., Vickers, J. C., Chuah, M. L, Eckhardt, B. L., and West, A. K. (2002) Metallothionein-iii inhibits initial neurite formation in developing neurons as well as postinjury, regenerative neurite sprouting. Experimental Neurology 178, 1-12.
    [12] Chung, R. S., Holloway, A. F., Eckhardt, B. L., Harris, J. A., Vickers, J. C., Chuah, M. I., and West, A. K. (2002) Sheep have an unusual variant of the brain-specific metallothionein, metallothionein-iii. Biochemical Journal 365, 323-328.
    [13] Tsuji, S., Kobayashi, H., Uchida, Y, Ihara, Y, and Miyatake, T. (1992) Molecular-cloning of human growth inhibitory factor cdna and its down-regulation in alzheimers-disease. EMBO Journal 11, 4843-4850.
    [14] Ni, F. Y., and al., e. (2006) Structure prediction of the beta-domain of neuronal growth inhibitory factor (manuscript).
    [15] Rupp, H., and Weser, U. (1978) Circular dichroism of metallothioneins. A structural approach. Biochim Biophys Acta 533, 209-226.
    [16] Stillman, M. J., Cai, W., and Zelazowski, A. J. (1987) Cadmium binding to metallothioneins. Domain specificity in reactions of alpha and beta fragments,apometallothionein, and zinc metallothionein with Cd~(2+). J Biol Chem 262, 4538-4548.
    [17] Cismowski, M. J., and Huang, P. C. (1991) Effect of cysteine replacements at position-13 and position-50 on metallothionein structure. Biochemistry 30, 6626-6632.
    [18] Li, T. Y, Minkel, D. T., Shaw, C. F., 3rd, and Petering, D. H. (1981) On the reactivity of metallothioneins with 5,5'-dithiobis-(2-nitrobenzoic acid). Biochem J 193, 441-446.
    [19] Savas, M. M., Petering, D. H., and Shaw, C. F. (1991) On the rapid, monophasic reaction of the rabbit liver metallothionein alpha-domain with 5,5'-dithiobis(2-nitrobenzoic acid) (dtnb). Inorg Chem 30, 581-583.
    [20] Munoz, A., Petering, D. H., and Shaw, C. F. (1999) Reactions of electrophilic reagents that target the thiolate groups of metallothionein clusters: Preferential reaction of the alpha-domain with 5,5 '-dithio-bis(2-nitrobenzoate) (DTNB) and aurothiomalate (AUSTM). Inorg Chem 38, 5655-5659.
    [21] 郑起.(2003)金属硫蛋白3的结构、性质与功能(博士论文).
    [22] Uchida, Y., Gomi, F., Masumizu, T., and Miura, Y. (2002) Growth inhibitory factor prevents neurite extension and the death of cortical neurons caused by high oxygen exposure through hydroxyl radical scavenging. J Biol Chem 277, 32353-32359.
    [23] www.swissmodel.expasy.org.
    [24] Yu, W. H., Cai, B., Gao, Y., Xie, Y., and Huang, Z. X. (2002) Expression, characterization, and reaction of recombinant monkey metailothionein-1 and its c33m mutant. Journal of Protein Chemistry 21, 177-185.
    [25] Yu, W. H., Cai, B., Gao, Y., Chen, D., and Huang, Z. X. (2003) Effect of mutation ofcys33 and cys34 in the alpha-domain of monkey metallothionein-1 on the protein stability. Chemical Journal of Chinese Universities-Chinese 24, 569-575.
    [26] Chernaik, M. L., and Huang, P. C. (1991) Differential effect of cysteine-to-serine substitutions in metallothionein on cadmium resistance. Proc Natl Acad Sci USA 88, 3024-3028.
    [27] Cismowski, M. J., Narula, S. S., Armitage, I. M., Chernaik, M. L., and Huang, P. C. (1991) Mutation of invariant cysteines of mammalian metallothionein alters metal-binding capacity, cadmium resistance, and Cd-113 NMR-spectrum. J Biol Chem 266, 24390-24397.
    [28] 滕昕辰.(2004)Mt-3中linker对其结构、性质的影响以及mt-3与no的反应研究(硕士论文).
    [29] Pande, J., Pande, C., Gilg, D., Vasak, M., Callender, R., and Kagi, J. H. R. (1986) Raman, infrared, and circular dichroism spectroscopic studies on metallothionein: A predominantly "turn"-containing protein. Biochemistry 25, 5526.
    [30] Uchida, Y., and Ihara, Y. (1995) The n-terminal portion of growth-inhibitory factor is sufficient for biological-activity. Journal of Biological Chemistry 270, 3365-3369.
    [31] Pang, L. Y., and Ru, B. G. (2005) Studies on the epitope of neuronal growth inhibitory factor (GIF) with using of the specific antibody. Journal of Biochemistry And Molecular Biology 38, 646-649.
    [32] 张琪.(2005)(博士论文).
    [1] Kang, Q. H., Chen, Q. L., Ren, H. W., and Ru, B. G. (2001) Growth inhibitory factor (GIF) directly interacts with G-protein rab3a. Progress in Biochemistry and Biophysics 28, 880-884.
    
    [2] Farnsworth, C. C., Kawata, M., Yoshida, Y., Takai, Y., Gelb, M. H., and Glomset, J. A. (1991) C terminus of the small GTP-binding protein smg p25a contains 2 geranylgeranylated cysteine residues and a methyl-ester. Proceedings of the National Academy of Sciences of the United States of America 88, 6196-6200.
    
    [3] Shoji, I., Kikuchi, A., Kuroda, S., and Takai, Y. (1989) Kinetic analysis of the binding of guanine nucleotide to bovine brain smg p25a. Biochem Biophys Res Commun 162, 273-281.
    
    [4] Takai, Y, Sasaki, T., Shirataki, H., and Nakanishi, H. (1996) Rab3a small GTP-binding protein in Ca~(2+)-dependent exocytosis. Genes to Cells 1, 615-632.
    
    [5] Araki, S., Kaibuchi, K., Sasaki, T., Hata, Y., and Takai, Y. (1991) Role of the C-terminal region of smg p25a in its interaction with membranes and the GDP/GTP exchange protein. Molecular and Cellular Biology 11, 1438-1447.
    
    [6] Araki, S., Kikuchi, A., Hata, Y., Isomura, M., and Takai, Y. (1990) Regulation of reversible binding of smg p25a, a ras p21-like GTP-binding protein to synaptic plasma membranes and vesicles by its specific regulatory protein,gdp dissociation inhibitor. J Biol Chem 265, 13007-13015.
    
    [7] Miyazaki, A., Sasaki, T., Araki, K., Ueno, N., Imazumi, K., Nagano, F., Takahashi, K., and Takai, Y. (1994) Comparison of kinetic-properties between mss4 and rab3a grf gdp/gtp exchange proteins. FEBS Letters 350, 333-336.
    
    [8] Mullaney, I. (1992) Signal transduction: A practical approach, 2 nd ed., IRL Press, New York.
    
    [9] Knipp, M., Meloni, G., Roschitzki, B., and Vasak, M. (2005) Zn(7)metallothionein-3 and the synaptic vesicle cycle: Interaction of metallothionein-3 with the small GTPase rab3a. Biochemistry 44, 3159-3165.
    
    [10] Grassetti, D. R., and Murray, J. F. (1967) Determination of sulfhydryl groups with 2,2'- or 4,4'-dithiodipyridine. Arch Biochem Biophys 119, 41-49.
    [11] Schmid, F. X. (1997) Protein structure: A practical approach, Oxford University Press, NY.
    [12] Lin, R. C., and Scheller, R. H. (2000) Mechanisms of synaptic vesicle exocytosis. Annual Review of Cell and Developmental Biology 16, 19-49.
    [13] Masters, B. A., Quaife, C. J., Erickson, J. C., Kelly, E. J., Froelick, G. J., Zambrowicz, B. P., Brinster, R. L., and Palmiter, R. D. (1994) Metallothionein-ⅲ is expressed in neurons that sequester zinc in synaptic vesicles. Journal of Neuroscience 14, 5844-5857.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700