多孔介质中流体的若干流动特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔介质广泛存在于自然界、工程材料、生物体和地下结构中,由于其微结构的复杂性,所以流体在多孔介质中的流动问题越来越受到人们的广泛关注。本文首先对多孔介质和分形的基本概念做了简要介绍,然后综述了分形几何理论基础。
     第二部分采用几何分析法研究了二维和三维情况下的球形颗粒、立方体颗粒和板状颗粒多孔介质中流体流线的迂曲度,首先给出多孔介质的理想几何模型,通过分别考虑固体颗粒重叠时、不重叠时以及粒子的不同排列等情形时的流体流线,然后对这些理想代表性流线的迂曲度取几何平均和加权平均,最后推导出流体流过多孔介质的迂曲度解析表达式。本模型与实验数据和数值模拟结果均吻合很好,且迂曲度仅仅是孔隙率的函数,没有经验常数,因而有助于人们理解多孔介质中弯曲流线迂曲度的物理机理。
     第三部分研究了幂律流体和宾汉姆流体在多孔介质中的流动。考虑到实际毛细管的弯曲性和毛细管管径的分形分布,给出了单毛细管中幂律流体的流量、水力传导系数和视粘度的分形表达式;给出了多孔介质中幂律流体的流量、流速、视粘度和有效渗透率的分形表达式;给出了多孔介质中宾汉姆流体的流量、流速和启动压力梯度的分形表达式且详细分析了启动压力梯度的影响因素。本模型将非牛顿流体与多孔介质的微结构参数有机联系起来,使我们更能深刻理解非牛顿流体在多孔介质中流动的内在机理。
     第四部分研究了分形多孔介质中牛顿流体的平面径向和平行流动,考虑到实际毛细管的弯曲性和毛细管管径的分形分布,给出了径向和平行流动时的孔隙数目、孔隙率、流量、流速和渗透率的分形表达式;得到了分形多孔介质中微可压缩流体的压力分布方程;得到了无量纲的渗透率、压力和流速的解析表达式。分形多孔介质中径向和平行流动的压力分布方程在形式上与传统方法所得一致。
     本文最后指出了采用分形理论和方法有可能解决的多孔介质其它输运性质参数的课题和方向。
Porous media exist everywhere in nature such as engineering materials, organs, oil and water reservoirs etc. Due to the structural complexity of porous media, the studies of flow behavior for fluid flow in porous media have steadily received much attention. First, we briefly introduce the concepts about porous media and fractal, and summarize the theory basis of fractal geometry.
     In chapter 2, we focus on derivation of the tortuosity models for flow of Newtonian incompressible fluid in two- and three-dimensional porous media with spherical, cubic and plate-like particles by applying the geometrical method. We first present the ideal geometrical models of porous media to show the ideal and representative streamlines based on the assumption that some particles in porous media are unrestrictedly overlapped and hence of different configurations, then the average tortuosity is derived by geometrically and weightedly averaging these representative flow paths. The model predictions agree well with the available correlations obtained numerically and experimentally, they are expressed as a function of porosity with no empirical constant, and they are helpful for understanding the physical mechanism for tortuosity of flow paths in porous media.
     In chapter 3, the power-law and Bingham fluid flow in porous media are studied. Based on the assumption that the porous medium consists of a bundle/set of tortuous streamlines/capillaries and on the fractal characteristics of pore size distribution in porous media, we develop the fractal expressions for flow rate, hydraulic conductivity and apparent viscosity for Power-law fluid flow in a single capillary, we develop the fractal expressions for flow rate, velocity, apparent viscosity and effective permeability for Power-law fluid flow in porous media, and develop the fractal expressions for flow rate, velocity and starting pressure gradient for Bingham fluid flow in porous media. The present models relate non-Newtonian fluids to the structural parameters of prous media, then the physical mechanism for non-Newtonian fluid flow in porous media is well understood.
     In chapter 4, the plane-radial and plane-parallel flows for Newtonian fluid in fractal porous media are analyzed. Based on the same assumption as that in chapter 3, the expressions for porosity, flow rate, velocity and permeability for both radial and parallel flows are developed. The proposed expressions are expressed as a function of tortuosity, fractal dimension, maximum and minimum pore diameters, and there are no empirical constant and every parameter has clear physical meaning in the proposed expressions. The pressure distribution equations for slightly compressible fluid flow in fractal porous media for the plane-radial and plane-parallel flows are presented, and they are found to be formally the same as those obtained by the conventional method.
     Finally, some possible research directions for future study are suggested regarding the other transport parameters in porous media.
引文
[1] Bear J. Dynamics of fluids in porous media. Elsevier, NewYork, 1972
    [2]刘伟,范爱武,黄晓明.多孔介质传热与传质理论与应用.科学出版社,北京, 2006
    [3] Chinife J, In: Mujumdar A S. Advance in Drying. Washington, Hemisphere Pub. Corp., 1983, 2: 73–102
    [4]谢和平,薛秀谦.分形应用中的数学基础与方法.科学出版社,北京, 1997
    [5] Falconer K J. The hausdorff dimension of self-affine fractals. Math. Proc. Camb Philos. Soc., 1998, 103: 339–350
    [6]李栔,朱金兆,朱清科.分形维数的计算方法研究进展.北京林业大学学报, 2002, 24(2): 71–78
    [7]姜志强.分形理论应用研究若干问题及现状与前景分析.吉林大学学报, 2004, 22(1): 57–61
    [8] Falconer K J. Techniques in fractal geometry. Chichester: John Wiley & Sons, 1997
    [9]张济忠.分形.清华大学出版社,北京, 1995
    [10] Mandelbrot B B, Fractal: Form, Chance and Dimension. San Francisco: Freeman, 1977
    [11] Mandelbrot B B. The fractal geometry of nature. New York, Freeman, 1982
    [12]孙洪军,赵丽红.分形理论的产生及其应用.辽宁工学院学报, 2005, 2(2): 113–117
    [13]肯尼思·法尔科内[英].分形几何—数学基础及其应用.东北大学出版社, 1991
    [14]谢和平,薛秀谦.分形应用中的数学基础与方法.科学出版社,北京, 1997
    [15]谢和平,张永平,宋晓秋,徐汉涛.分形几何—数学基础与应用.重庆大学出版社, 1991
    [16]辛厚文.分形理论及其应用.中国科学技术出版社, 1993
    [17] [加拿大]凯(B.H.Kaye)著.徐新阳等译.分形漫步.东北大学出版社, 1994
    [18]李世愚,陈运泰.分形断层的隧道效应和平面内剪切断层的跨S波速破裂.地震学报, 1993, 15(1): 9–14
    [19]龙期威.金属中的分形与复杂性.上海科学技术出版社, 1999
    [20]王域辉,廖淑华.分形与石油.石油工业出版社,北京, 1994
    [21] Feder J. Fractals. Plenum Press, New York, 1988
    [22] Yu B M, Cheng P. A fractal model for permeability of bi-dispersed porous media. Int. J. Heat and Mass Transfer, 2002, 45(14): 2983–2993
    [23] Yu B M, Cheng P. Fractal models for the effective thermal conductivity of bi-dispersed porous media. J Therntophysics and Heat Transfer, 2002, 16(1): 22–29
    [24] Yu B M, Lee J H, Lee Z H, Zou M Q. Permeabilities of unsaturated fractal porous media. Int. Journal of Multiphase Flow, 2003, 29(10): 1625–1642
    [25] Yu B M, Li J H. Some fractal characters of porous media. Fractals, 2001, 9(3):365–372
    [26] Wheatcraft S W, Tyler S W. An explanation of scale-dependent dispersivity in heterogeneous aquifers using concepts of fractal geometry. Water Res. Researches, 1988, 24(4): 566–578
    [27] Yu B M. Fractal character for tortuous streamtubes in Porous Media. Chin. Phys. Lett., 2005, 22(1): 158–160
    [28] Yu B M, Li J H. A geometry model for tortuosity of flow path in porous media. Chin. Phys. Lett., 2004, 21(8): 1569–1571
    [29] Dullien F A L. Porous Media, Fluid Transport and Pore Structure. San Diego: Academic, 1979
    [30] Koponen A, Kataja M, Timonen J. Tortuous flow in porous media. Phys. Rev. E, 1996, 54(1): 406–410
    [31] Koponen A, Kataja M, Timonen J. Permeability and effective porosity of porous media. Phys. Rev. E, 1997, 56(3): 3319–3325
    [32] Feng S D, Ren R C, Ji Z Z. Heat flux boundary conditions for a lattice boltzmann equation model. Chin. Phys. Lett., 2002, 19(1): 79–82
    [33] Xu Y S, Wu F M. A new method for the analysis of relative permeability in porous media. Chin. Phys. Lett., 2002, 19(12): 1835–1837
    [34] Nijemeisland M, Dixon A G. CFD Study of Fluid and Wall Heat Transfer in a Fixed Bed of Spheres. AIChE J., 2004, 50(5): 906–921
    [35] Comiti J, Renaud M. A new model for determining mean structure parameters of fixed beds from pressure drop measurements: application to beds packed with parallepipedal particles. Chem. Engin. Sci., 1989, 44: 1539–1545
    [36] Pech D. Etude de la permeabilite des lits compressibles constitutes de copeaux debois partiellement destructures. These de 3eme cycle, INP Grenoble, France, 1984
    [37] Wyllie M R J, Gregory A R. Fluid flow through unconsolidated porous aggregates. Int. Eng. Chem. Process Des. Dev., 1955, 47: 1379–1388
    [38] Kong X Y. Advanced mechanics of fluids in porous media. Press of University of Science and Technology of China, Hefei, China, 1999
    [39] Das B. Non-Newtonian flow of blood in an arteriosclerotic blood vessel with rigid permeable walls. Journal of Theoretical Biology, 1995, 175: 1–11
    [40] Velten K, Lutz A, Friedrich K. Quantitative characterization of porous materials in polymer processing. Composites Science and Technology, 1999, 59: 495–504
    [41] Chang J, Yortsos Y C. Pressure-transient analysis of fractal reservoirs. SPEFE, 1990, 5(1): 31–38
    [42] Acuna J A, Iraj Ershaghi, Yortsos Y C. Practical application of fractal pressure transient analysis of naturally fractured reservoirs. SPEFE, 1995, 10(3): 173–179
    [43] Scheidegger A E. The Physics of Flow through Porous Media. University of Toronto Press, Toronto, Ontario, 1974
    [44] Dullien F A L. Porous Media: Fluid Ttransport and Pore Structure. New York, Elsevier, 1992
    [45] Nield D A, Bejan A. Convection in Porous Media. Springer-Verlag, New York, Inc., 1992
    [46] Majumdar A. Role of Fractal Geometry in the Study of Thermal Phenomena. Annual Review of Heat Transfer, 1992, 4: 51–110
    [47] Kaviany M. Principles of Heat Transfer in Porous Media. 2nd, Springer-Verlag New York, Inc., 1995
    [48] Chen Z Q, Cheng P, Zhao T S. An experimental study of two phase flow andboiling heat transfer in bi-dispersed porous channels. Int. Commun. Heat Mass Transfer, 2000, 27(3): 293–302
    [49] Abrate S. Resin flow in fiber perform. Appl. Mech. Rev., 2002, 55(6): 579–599
    [50] Pearson J R A, Tardy P M J. Models for flow of non-Newtonian and complex fluids through porous media. J. Non-Newtonian Fluid Mech., 2002, 102(2): 447–473
    [51] Karacan C Q, Halleck P M. A fractal model for predicting permeability around perforation tunnel using size distribution of fragmented grains. J. Pet. Sci. Eng., 2003, 40(3): 159–176
    [52] Woods J K, Spelt P D M, Lee P D, Selerland T. Lawrence C J. Creeping flows of power-law fluids through periodic arrays of elliptical cylinders. J. Non-Newtonian Fluid Mech., 2003, 111: 211–228
    [53] Lysenko V, Vitiello J, Remaki B, Barbier D. Gas permeability of porous silicon nanostructures. Phys. Rev. E, 2004, 70(1): 017301-1–4
    [54]江体乾,方图南,陈国豪.幂律流体流变特性的研究.华东理工大学学报, 1982, 1: 25–34
    [55]雷树业,王利群,贾兰庆,夏春梅.颗粒床孔隙率与渗透率的关系.清华大学学报, 1998, 38(5): 20–28
    [56] Adler P M, Thovert J F. Real porous media: local geometry and macroscopic properties. Appl Mech Rev, 1998, 51(9): 537–585
    [57]张立娟,岳湘安,刘中春,候吉瑞.聚合物溶液在孔隙介质中渗流机理.石油大学学报(自然科学版), 2005, 29(1): 51–55
    [58]王新海,高红岩,赵郭平.非牛顿幂律流体渗流模拟研究.钻采工艺, 1996, 19(6): 38–40
    [59] Kaviany M. Principles of Heat Transfer in Porous Media, 2nd, Springer-Verlag New York, Inc., 1995
    [60] Martys N S, Chen H. Simulation of multicomponent fluids in complex three dimensional geometries by lattice Boltzmann method. Phys Rev. E, 1996, 53(1): 743–750
    [61] Chen S, Doolen G D. Lattice Boltzmann method for fluids flows. Annul Rev FluidNech, 1998, 30: 329–364
    [62] Scheidegger A E. The Physics of flow through Porous Media. 3rd edition, University of Toronto Press, Toronto, Ontario, 1974
    [63] Yu B M, Lee L J. A simplified in-plane permeability model for textile fabrics. Polymer Composites, 2000, 21(5): 660–685
    [64] Adler P M. Transports in fractal porous media. Journal of Hydrology, 1996, 187: 195–213
    [65] Govier G W, Aziz K. The flow of complex mixtures in pipes. New York, Litton Edu. Pub. Inc., 1972, 143–144
    [66] Balhoff M T, Thompson K E. A macroscopic model for shear-thinning flow in packed bed based on network modeling. Chem. Eng. Sci., 2006, 61(2): 698–719
    [67] Zhang B, Yu B M, Wang H X, Yun M J. A fractal analysis of permeability for power-law fluids in porous media. Fractals, 2006, 14(3): 171–177
    [68] Barenblatt G E, Entov B M, Rizhik B M. Flow of liquids and gases in natural formations. Nedra, Moscow, 1984
    [69] Vradis G C, Dougher J, Kumar S. Entrance pipe flow and heat transfer for a Bingham plastic, Int. J. Heat Mass Transfer, 1993, 36(3): 543–552
    [70] Hammad K J, Vradis G C. Creeping flow of a Bingham plastic through axisymmetric sudden contractions with viscous dissipation. Int. J. Heat Mass Transfer, 1996, 39(8): 1555–1567
    [71] Nascimento U C S, Macêdo E N, Quaresma J N N. Thermal entry region analysis through the finite integral transform technique in laminar flow of Bingham fluids within concentric annular ducts. Int. J. Heat Mass Transfer, 2002, 45(4): 923–929
    [72] Khatyr R, Ouldhadda D, Idrissi A II. Viscous dissipation effects on the asymptotic behaviour of laminar forced convection for Bingham plastics in circular ducts. Int. J. Heat Mass Transfer, 2003, 46: 589–598
    [73] Wu Y S, Pruess K, Witherspoon P A. Flow and displacement of Bingham non-Newtonian fluids in porous media. SPERE, 1992, 7(3): 369–376
    [74] Blackery J, Mitsoulis E. Creeping motion of a sphere in tubes filled with a Bingham plastic material. J. Non-Newtonian Fluid Mech., 1997, 70: 59–77
    [75] Roquet N, Saramito P. An adaptive finite element method for Bingham fluid flowsaround a cylinder. Comput. Methods Appl. Mech. Eng., 2003, 192(31): 3317–3341
    [76] Balhoff M T, Thompson K E. Modeling the steady flow of yield-stress fluids in packed beds. AICHE J., 2004, 50(12): 3034–3048
    [77] Bird R B, Stewart W E, Lightfoot E N. Transport phenomena. Wiley, New York, 1960
    [78] Prada A, Civan F. Modification of Darcy’s law for the threshold pressure gradient. J. Petro. Sci. Eng., 1999, 22(4): 237–240
    [79] Wang S J, Huang Y Z, Civan F. Experimental and theoretical investigation of the Zaoyuan field heavy oil flow through porous media. J. Petro. Sci. Eng., 2006, 50(2): 83–101
    [80] Feder J, Aharony A. Fractals in Physics. North-Holland, 1989
    [81] Katz A J, Thompson A H. Fractal sandstone pores: Implications for conductivity and pore formation. Phys. Rev. Lett., 1985, 54(12): 1325–1328
    [82] Krohn C E, Thompson A H. Fractal sandstone pores: Automated measurements using scanning-electron-microscope images. Phys. Rev. B, 1986, 33(9): 6366–6374
    [83] Mandelbrot B B, Passoja D E, Paullay A J. Nature, 1984, 308(5961): 721–722
    [84] Xie H, Bhaskar R, Li J. Generation of fractal models for characterization of pulverized materials. Minerals and Metallurgical Processing, 1993, 2: 36–42
    [85] Sahimi M. Flow phenomena in rocks: from continuum models to fractals, percolation, cellular automata, and simulated annealing. Rev. Mod. Phys., 1993, 65(4): 1393–1534
    [86] Karacan C O, Halleck P M. A fractal model for predicting permeability around perforation tunnels using size distribution of fragmented grains. J Petrol Sci Eng, 2003, 40(18): 159–176
    [87] Yu B M. Fractal dimensions for multiphase fractal media. Fractals, 2006, 14(2): 111–118
    [88] Li X Y, Logan B E. Permeability of fractal aggregates. Water Res., 2001, 35(14): 3373–3380
    [89] Liu Y J, Yu B M. A fractal model for relative permeability of unsaturated porous media with capillary pressure effect. Fractals, 2007, 15(3): 217–222
    [90] Bayles G A, Klinzing G E, Chiang S H. Fractal mathematics applied to flow in porous systems. Part. Part. Syst. Charact., 1989, 6(1): 168–175
    [91] Wu J S, Yu B M. A fractal resistance model for flow through porous media. Int. J. Heat and Mass Transfer, 2007, 50(19): 3925–3932
    [92] Yu B M, Lee L J, Cao H Q. A fractal in-plane permeability model for fabrics. Polym. Compos., 2002, 23(2): 201–221
    [93] Ahn K J, Seferis J C, Berg J C. Simultaneous measurements of permeability and capillary pressure of thermosetting matrices in woven fabric reinforcements. Polym. Compos., 1991, 12(3): 146–152
    [94] Amico S, Lekakou C. An experimental study of the permeability and capillary pressure in resin-transfer moulding. Comp. Sci. Tech., 2001, 61(13): 1945–1959
    [95] Tong D K, Zhang H Q. The flow problem of fluids flow in a fractal reservoir with double porosity. Applied Mathematics and Mechanics, 2001, 22(10): 1118–1126
    [96] Kong X Y, Li D L, Lu D T. Basis formulas of fractal seepage and type-curves of fractal reservoirs. Journal of Xian Shiyou University, 2007, 22: 1–5
    [97] Beier R A. Pressure-transient model for a vertically fractured well in a fractal reservoir. SPEFE, 1994, 9: 122–128
    [98] Acuna J A, Ershagghi I, Yortsos Y C. Practical application of fractal pressure transient analysis of naturally fractured reservoir. SPEFE, 1995, 10(3): 173–179
    [99] Tian J, Tong D K. The flow analysis of fluids in fractal reservoir with the fractional derivative. Journal of hydrodynamics, 2006, 18(3): 287–293
    [100] Hall H N. Compressibility of reservoir rocks. Trans. AIME, 1953, 198: 309–316
    [101] Yun M J, Yu B M, Zhang B, Huang M T. A geometry model for tortuosity of streamtubes in porous media with spherical particles. Chin. Phys. Lett., 2005, 22(6): 1464–1467
    [102] Yun M J, Yu B M, Xu P, Wu J S. Geometrical models for tortuosity of streamlines in three dimensional porous media. Can J Chem Eng, 2006, 84: 301–309
    [103] Denn M M. Process fluid mechanics. New Jersey, Prentice-Hall, 1980

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700