基于冲击射流的电子器件冷却方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当今电子器件的正向朝着高集成度、微型化、高功耗的方向发展,其热流密度迅速提高,电子设备过热或热缺陷是电子产品失效的主要原因之一,所以冷却问题成为制约其发展的一个瓶颈。冲击射流作为一种独特的流动方式,具有比常规流动强得多的换热能力,是解决高密度电子器件散热问题的颇具潜力的方案。针对以往对气体冲击射流的研究主要是大孔径和高雷诺数的状况,本文主要研究微小孔径和中低雷诺数空气冲击射流的换热特性及在电子器件冷却的应用,主要工作有:
     (1)系统开展了空气冲击射流换热的实验研究。构建了包含射流发生部分、模拟芯片及温度采集部分的实验测试系统,分析了实验测量误差,发现热沉热阻(θ_(ab))及努塞尔数(Nu)的相对误差分别不超过3.43%和8.77%。通过实验研究了孔径为1mm、2mm和3mm三种的微小孔径圆形单孔平板受限冲击射流、圆形和方形两种排布的1mm孔径圆形多孔受限射流及斜射流的换热特性;分析了相关参数对换热的影响;得到了平板冲击受限射流驻点区的换热准则方程,相同流量下的多孔冲击射流平均换热系数均小于单孔冲击射流、倾斜角主要影响上坡部分的换热等结论。选取三组矩形柱鳍热沉进行了射流冲击实验,分析了影响热阻的相关参数,得到其平均换热的准则方程。实验结果表明空气冲击射流与热沉结合的散热方式较传统空冷有非常显著的优势。
     (2)采用数值模拟的方法,对微小孔径空气受限冲击射流的传热特性进行了深入研究。通过数值计算和实验结果的对比,发现RNGκ-ε模型对冲击射流模拟具有最好的适用性。采用该模型,对喷嘴直径为1-5mm,雷诺数(Re)为1000~15000的微小孔径圆形气体受限冲击射流及旋转射流进行了系统的数值模拟,得到了驻点区和全局换热面上的平均努塞尔特数换热关联式。数值模拟结果表明,微小孔径冲击射流换热表现有一定的尺度效应,有旋转时的板上平均换热系数略小于无旋转时的板上平均换热系数,但换热更为均匀。RNGκ-ε模型同样适合于热沉冲击射流换热的数值模拟,通过数值计算得到了热阻最小时热沉的肋高、列数及其几何形状参数。
     (3)研究了热沉最优化结构设计理论。将序列二次规划法(SQP)算法引入到热沉最优化设计中,并与数值计算方法结合起来,建立空气射流冲击热沉最优化分析和设计的系统方法。该方法可求解含约束的单个或多个目标函数的优化问题,解决了热沉最优化过程中缺乏最优化理论指导的不足。将热阻和压降组合构成多目标函数,当权重系数各为0.5时,得到了一个8×8结构的方柱柱鳍热沉优化后的鳍片宽度为4.16mm、高度19.0mm和基板厚度3.73mm。
     (4)进行了空气射流在电子器件冷却的应用研究及分析和评价。以FC-BGA芯片为冷却对象,建立其简化传热模型,采用热型线法对冲击射流散热方式进行了分析。计算结果表明,当Re分别为4000、8000和12000时,单孔射流直接冲击换热面的散热方式存在一定的局限性,而采用冲击射流与热沉相结合,较没有加装热沉前芯片功率增加了118.8%、116.7%和123.5%,微小孔径空气射流冲击热沉的方法可直接用于中低功率的高密度封装器件的冷却。
     本文的结论为冲击射流应用于电子器件冷却提供了系统的理论和实验依据,具有比较重大的理论意义和实际价值。
     本文工作得到了国家自然科学基金项目(No:50376076)的资助。
The cooling of generally complex electronic systems has become a tough challenge and a development bottleneck indeed, resulting from the combined effects of increasing high-power, heat fluxes, miniaturisation and the striving for zero defects. Electronic equipment overheating or thermal defect has become a major reason for electronic products' failure. The jet impingement heat transfer has become well established as a high performance technique for cooling comparing with normal heat transport methods. It has become a viable candidate for high-powered electronic cooling solutions. Numerous studies have been conducted to investigate the air impinging jet under condition of large aperture and high Reynolds number. However, Air jet coming from tiny diameter circular jet and impinging on the heat transfer surface with middle and low Reynolds number and its application to cooling electronics were studied in this paper. The main works are as follows:
     (1) Heat transfer of air impinging jet has been studied by experiment systematically. The experimental system was constructed which contains of jet generator, simulative test chip and temperature acquisition part. The experimental measurement error was analyzed and discovered that heat sink thermal resistance (θ_(ab)) and Nusselt number(Nu), respectively, the relative error not exceeding 3.43% and 8.77%. Heat transfer characteristics of confined single impinging jet with three small circular diameter which is lmm,2mm and 3mm, and multiple jets with arrangements of circular and square which every jet is circular and diameter is 1mm were experimental studied. Many physical and geometric parameters were changed to investigate their influence on heat transfer. Heat transfer criteria equation of confined impinging jet in stagnation region and average transfer coefficient of multi-jets is less than the single impinging jet with the same flow flux, heat transfer of the plate uphill part varied major with jet angle were concluded. Experiments were performed to investigate the turbulent fluid flow and heat transfer from three pin-fin heat sink geometries with air impingement cooling. Results for the average heat transfer coefficient were correlated in terms of Reynolds number and geometric parameters of the heat sinks. Parameters influencing to thermal resistance of heat sink were analyzed. The experimental results show that the method of air impinging jet combining with heat sink has a very significant advantage in comparison with the traditional air-cooling.
     (2) A detail numerical simulation study of heat transfer due to confined impinging small circular jet was presented. Numerical computations were performed by using several different turbulence models. The numerical results based on the RNG k-εturbulence model showed reasonable agreement with the experimental data for local heat transfer coefficient distributions. The confined air impinging jets with nozzle diameter from 1mm to 5mm, Reynolds number from 1000 to 15000 and swirling impinging jet with tiny nozzle were systematically and numerically simulated with RNG k-εmodel. Nusselt number correlations in both stagnation region and the whole heat transfer area were obtained. Numerical simulation results show that heat transfer characteristics of the tiny nozzle impinging jet represents scale effects, average heat transfer coefficient of swirling jet impingement is less than that without swirl velocity and heat transfer on the surface become uniform. RNG k-εmodel is also suitable for numerical simulation of heat sinks impingement. Minimizing thermal resistance of pin-fin heat sinks for impingement was studied. These calculations took into consideration design parameters including fin height, the number of rows and geometrical shape.
     (3) A theoretical methodology of optimization the geometry of the pin-fin heat sink was performed numerically. The methodology was integrated by the CFD and mathematical optimization method carried out by means of the sequential quadratic programming(SQP) which is widely used in the constrained nonlinear optimization problem. The flow and thermal fields are predicted using CFD. This method can solve the constraints with the single or multiple objective function optimization problems. The design optimization of the 8×8 pin-fins heat sink is performed. The fin height, fin width, and basement thickness are chosen as the design variables and the pressure drop and thermal resistance are adopted as the objective functions and minimized simultaneously. The results show that the optimum design variables for the weighting coefficient of 0.5 are as follows: fin width is 4.16mm, fin height is 19.0mm and basement thickness is 3.73mm.
     (4) The air impinging jet for electronic cooling application is studied. A simplified heat transfer model of Flip-Chip BGA packaging was built up. The impinging jet cooling effect was analyzed by Thermal Profile method. When Re is 4000,8000 and 12000 respectively, The simulation results show that cooling effect of the single jet impinging on the surface of the chip is limited. The air jet impinging on heat sink is better and the chip power increases 118.8%, 116.7 % and 123.5 % respectively. Air jet impinging to heat sink can be directly applied to cooling of high-heat-flux electronic packaging with middle and low power
     The objective of the present study is to provide a physical insight into heat transfer effects and to facilitate the validation of electronics cooling. The research conclusions in this paper provide a systematic theoretical and experimental basis for impinging jet cooling used in electronics and have significant theoretical and practical value.
     This work was supported by the National Natural Science Foundation of China (No. 50376076).
引文
[1]Moore,Gordon E.Cramming More Components into Integrated Circuits[J].Electronics,1965,38(8):25-32
    [2]Moore.G.R.Progress in digital integrated electronics[C].Proc.IEEE Int.Electron.Devices Meet,1975:11-15
    [3]Viswannath R,Nair R,Wakharkar V,et al.Emerging directions for packaging technologies[J].Intel Technology Journal,2002,(6):61-74
    [4]Performance Characteristics of IC Packages.Intel technical documents,http://developer.intel.com/
    [5]李腾,刘静.片冷却技术的最新研究进展及其评价[J].制冷学报,2004,(3):22-32
    [6]陈登科.电子器件冷却技术[J].低温物理学报,2005,27(3):255-262
    [7]姚寿广,马哲树,罗林等.电子电器设备中高效热管散热技术的研究现状及发展[J].华东船舶工业学院学报(自然科学版),2003,17(4):9-12
    [8]Cotter T.Principles and Prospects of Micro Heat Pipe[C].In:Proc.5th International Heat Pipe Conference.Tsukuba,Japan,1984.328-335
    [9]Howard W,Markctein.Cooling Techniques for Today's Electronics[J].EP&P,1997,(5):78-82
    [10]Leonard L.,Vasiliev.Heat Pipes in Modern Heat Exchangers[J].Applied Thermal Engineering,2005,25(1):1-19
    [11]Christine Hoa,Benoit Demolder,Alain Alexandre.Roadmap for Developing Heat Pipes for ALCATEL SPACE's Satellites[J].Applied Thermal Engineering,2003,23(9):1099-1108
    [12]Martin H.Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces[J].Adv.In Heat Transfer,1977,(13):1-60
    [13]Jambunathan K,Lai E.,Moss M.A.et al.A Review of Heat Transfer Data for Single Circular Jet Impingement[J].Int.J.Heat and Fluid Flow,1992,13(2):457-464
    [14]Baugh J.W.,Shimizu S..Heat transfer measurement from a surface with uniform heat flux and an impinging jet[J].Trans.ASME J,Heat Transfer,1989,(111):1096-1098
    [15]El-Genk M.S.,Huang L.,Guo Z..Heat Transfer Between a Square Flat Plate and a Perpendicularly Impinging Circular Air Jet[J].ASME,NY,San Diego,CA,Aug 9-12,1992:33-38
    [16]Huang C.H.,San J.Y.,Shu M.H.Impingement cooling of,a confined circular air jet[J].Int.J.Heat Mass Transfer,1997,40(6):1355-1364
    [17]Angioletti M.,R.M.Tommaso,Di Nino E.,et al.Simultaneous visualization of flow field and evaluation of local heat transfer by transitional impinging jets[J].Int.J.Heat Mass Transfer,2003,(46):1703-1713
    [18]Hrycak P.Heat transfer from round impinging jets to a flat plate[J].Int.J.Heat Mass Transfer, 1983,26(12):1857-1865
    [19]Heyerichs K.,Pollard A..Heat transfer in separated and impinging turbulent flows[J].Int.J.Heat Mass Transfer,1996,(30):2385-2400
    [20]Garron K.Morris,Suresh V.Garimella,Janice A.Fitzgerald.Improved predictions of the flow field in submerged and confined impinging jets using the Reynolds stress model[C].In:Inter-Society Conference on Thermal Phenomena,1998:362-370
    [21]Behnia M,Parneix S,Durbin P A.Prediction of heat transfer in an axisymmetric turbulent jet impinging on a flat plate[J].Int.J.Heat Mass Transfer,1989,41(12):1845-1855
    [22]Behnia M,Parneix S,Shabany Y,et al.Numerical study of turbulent heat transfer in confined and unconfined jets[J].Int.J.Heat Fluid Flow,1999,(20):1-9
    [23]Bart Merci,Erik Dick.Heat transfer predictions with a cubic k-ε model for axisymmetric turbulent jets impinging onto a flat plate[J].Int.J.Heat Mass Transfer,2003,(46):469-480
    [24]Yang Z Y,Shih T H.A new time scale based k-ε model for near-wall turbulence[J].AIAA J,1993,31(7):1191-1198
    [25]Craft T,Graham L,Launder B.Impinging jet studies for turbulence model assessment-Ⅱ.An examination of the performance of four turbulence models[J].Int.J.Heat Mass Transfer,1989,(36):2685-2697
    [26]Cziesla T.,Biswas G.,Chattopadhyay H,et al.Large-eddy simulation of flow and heat transfer in an impinging slot jet[J].Int.J.Heat Fluid flow,2002,(22):500-508
    [27]陈庆光,徐忠,张永建.RNG湍流模型在冲击射流数值计算中的应用[J].力学与实践,2002,24(6):21-24
    [28]陈庆光,徐忠,张永建.两种差分格式和两种湍流模型在轴对称冲击射流数值计算中的比较[J].空气动力学学报,2003,21(1):82-89
    [29]陈庆光,徐忠,张永建.封闭狭缝湍流冲击射流的数值模拟[J].用力学学报,2003,20(2):89-93
    [30]Ling Cheng,Tiejun Wu.Confined and Submerged Turbulent Jet Impingement Cooling Heat Transfer[R].Report for ME 605 Final Project,School of Nuclear Engineering,Purdue University,Dec 9,2003
    [31]Olsson E.E.M.,Ahrne L.M.,Tragardh A.C.Heat transfer from a slot air jet impinging on a circular cylinder[J].Journal of Food Engineering,2004,(63):393-401
    [32]Polat S.Numerical flow and heat transfer under impinging jets:a review[J].Ann Rev Numer Fluid Mech Heat Transfer,1989,(2):157-197
    [33]M.Behnia,S.Parneix,P.A.Durbin.Prediction of heat transfer in an axisymmetric turbulent jet impinging on a fiat plate[J].Internationai Journal of Heat and Mass Transfer,1998,41(12):1845-1855
    [34]Yilbas B.S.,Shuja S.Z.,Budair M.O..Stagnation point flow over a heated plate:consideration of gas jet velocity profiles[J].Arabian Journal for Science and Engineering,2002,27(2C):91-116
    [35]Beaubert F.,Viazzo S..Large eddy simulations of plane turbulent impinging jets at moderate Reynolds numbers[J]. Int. J. Heat and Fluid Flow, 2003, (24):512-519
    [36] Thielen L., Jonker H.J., Hanjalic K.. Symmetry breaking of flow and heat transfer in multiple impinging jets[J]. Int. J. Heat and Fluid Flow, 2003, (24):444 - 453
    [37] Dong-Ho Rhee, Pil-Hyun Yoon, Hyung Hee Cho. Local heat/mass transfer and flow characteristics of array impinging jets with effusion holes ejecting spent air[J]. Int. J. Heat Mass Transfer, 2003, (46): 1049 - 1061
    [38] Hirofumi Hattori, Yasutaka Nagano. Direct numerical simulation of turbulent heat transfer in plane impinging jet[J]. Int. J. Heat Fluid Flow, 2004, (25):749-758
    [39] Xiaoling Yu, Jianmei Feng, Qiuwang Wang. Development of a Plate-Pin Fin Heat Sink and Its Performance Comparisons with a Plate Fin Heat Sink [J]. Applied Thermal Engineering,2005,25:173-182
    [40] Zhipeng Duan, Yuri S, Muzychka. Impingement Air Cooled Plate Fin Heat Sinks Part Ⅰ -Pressure Drop Model [A]. IEEE 2004 Inter Society Conference on Thermal Phenomena [C],2004: 429-435
    [41] Zhipeng Duan, Yuri S. Muzychka. Impingement Air Cooled Plate Fin Heat Sinks Part Ⅱ-Thermal Resistance Model [A]. IEEE 2004 Inter Society Conference on Thermal Phenomena [C], 2004: 436-440
    [42] Sasao K, Hanma M, Nishihara A, et al. Numerical Analysis of Impinging air Flow and Heat Transfer in Plate Fin Type Heat Sinks [J]. Advances in Electronic Packaging, 1999, 22(1):493-499
    [43] Shengchung Tzeng, Weiping Ma. Experimental Investigation of Heat Transfer in Sintered Porous Heat Sink [J]. Int. J. Heat Mass Transfer, 2004,31(6): 827-836
    [44] A Horvat, Ivan Carton. Modeling of Forced Convection in an Electronic Device Heat Sink as Porous Media Flow [A]. Proceedings of ASME International Mechanical Engineering Congress and Exposition [C], New Orleans, LA, 2003,(6):2155-2168
    [45] L.G. Hansen, B. W. Webb. Air Jet Impingement Heat Transfer from Modified Surfaces [J]. Int. J. Heat Mass Transfer, 1993, (36):989-997
    [46] Hani A El-Sheikh, Suresh V Garimella. Enhancement of Air Jet Impingement Heat Transfer Using Pin-Fin Heat Sinks [J]. IEEE Transaction on Component and Packaging Technology, 2000,23(2): 300-308
    [47] Hani A El-Sheikh, Suresh V Garimella. Heat Transfer From Pin-Fin Heat Sinks under Multiple Impinging Jets [J]. IEEE Transaction on Advanced Packaging, 2000, 23(1): 113-119
    [48] Luis A Brigoni, Suresh V Garimella. Experimental Optimazition of Confined Air Jet Impingement on a Pin Fin Heat Sink [J]. IEEE Transations on Components and Packaging Technology, 1999, 22(3): 399-404
    [49] Annand V. Reddy, Jihad Y. Hammoud. Experimental and Numerical Study of Heat Sinks with Impingement Flow at High Renolds Numbers [A]. 19th IEEE SEMI-THERM Symposium [C],2003: 176-178
    [50]Jim G Maveety,Henry H Jung.Pin Fin Heat Sink Modeling and Characterization[A].Sixteenth IEEE SEMI-THERMTM Symposium[C],2000:260-265
    [51]Jim G Maveety,Henry H Jung.Design of an Optimal Pin-fin Heat Sink with Air Impingement Cooling[J].Int.Comm.Heat Mass Transfer,2000,27(2):229-240
    [52]Jim G Maveety,Henry H Jung.Heat Transfer From Square Pin-Fin Heat Sinks Using Air Impingement Cooling[J].IEEE Transations on Components and Packaging Technology,2002,25(3):459-469
    [53]D.B.Tuckerman,R.F.W.Pease.High Performance,Heat Sinking for VLSI[J].IEEE Electron Dev.Lett,1981,(2):126-129
    [54]陈希章,刘中良,马重芳.电子芯片散热特性的测试研究[J].工程热物理学报,2004,25(6):995-997
    [55]吴慧英,郑平.集成微热沉系统的设计和制作[J].微细加工技术,2004,(1):52-56
    [56]夏国栋,刘青,王敏等.岐管式微通道冷却热沉的三维数值优化[J].工程热物理学报,2006,27(1):145-147
    [57]刘婷婷,高杨,韩宾等.V型微通道热沉的流体流动与传热问题研究[J].传感技术学报,2006,19(5):1683-1685
    [58]Chapman C.L.,Lee S.,et al.Thermal Performance of an Elliptical Pin Fin Heat Sink[C].Proceedings of the 10th Annual IEEE Semiconductor Thermal Measurement and Management Symposium,1994:24-31
    [59]Sathyamurthy P.,Runstadler P.W.,Lee S..Numerical and,Experimental Evaluation of Planar and Staggered Heat Sinks[A][M].Inter Society Conference on Thermal Phenomena.1996:132-139
    [60]Masud B.,David C.,Denpong S..A Comparison of Heat Sink Geometries for Laminar Forced Convection:Numerical Simulation of Periodically Developed Flow[A][C].Proceeding of 6th Intersociety Conference on Thermal Phenomena in Electronic System,1998:310-315
    [61]Jonsson H.,Palm B..Thermal and Hydraulic Behavior of Plate Fin and Strip Fin Heat Sinks Under Varying Bypass Conditions[M].IEEE Transactions on Components and Packaging Technologies,2000,23(1):47-54
    [62]Bilen K.,Akyol U.,Yapici S..Heat Transfer and Friction Correlations and Thermal Performance Analysis for a Finned Surface[J].Energy Conversion and Management,2001,42(9):1071-1083
    [63]Jonsson H.,Moshfegh B..Modeling of the Thermal and Hydraulic Performance of Plate Fin,Strip Fin,and Pin Fin Heat Sinks-Influence of Flow Bypass[M].IEEE Transactions on Components andPackaging Technologies,2001,24(2):142-149
    [64]Sara O.N..Performance Analysis of Rectangular Ducts with Staggered Square Pin Fins[J].Energy Conversion and Management,2003,44(11):1787-1803
    [65]Bhattacharya A.,Mahajan R.L..Finned Metal Foam Heat Sink for Electronics Cooling in Force Convection[J].International Journal of Electronic Packaging,2002,124(3):155-163
    [66]Ma H.B.,Peterson G.P..The Influence of the Thermal Conductivity on the Heat Transfer Performance in a Heat Sink[J].Journal of Electronic Packaging,2002,124(4):164-169
    [67]Reddy A.V.,Jihad,Hammoud J.Y..Experimental and Numerical Simulation Study of Heat Sinks with Impingement Flow at High Reynold Number[J].19th IEEE-THERM Symposium,2003:176-178
    [68]Linton R.L.,Agonafer D..Coarse and Detailed CFD Modeling of a Finned Heat Sink[J].IEEE Transactions on Components,Packaging,and Manufacturing Technology,Part A,1995,18(3):517-520
    [69]Yuan T.D..Computational Modeling of Flow Bypass Effects on Straight Fin Heat Sink in Rectangular Duct[C].Proceedings of 12th Annal IEEE semiconductor Thermal Measurement and ManagementSymposium,1996:164-168
    [70]Ledezma G.,Morega A.M.,Bejan A..Optimal Spacing Between Pin Fins with Impinging Flow[J].Journal of Heat Transfer,1996,(118):570-577
    [71]Kondo Y.,B(?)hnia M.,Nakayama W.,et al.Optimization of Finned Heat Sinks for Impingement Cooling of Electronic Packages[J].Journal of Electronic Packaging,1998,120(3):259-266
    [72]Andera de Lieto Vollaro,Stefanco Grignaffini,Franco Gugliermetti.Optinum Design of Vertical Rectangular Fin Arrays[J].International Journal of Thermal Sciences,1999,38(6):525-529
    [73]Maveety J.G.,Hendricks J.F..A Heat Sink Performance Study Considering Material,Geometry,Nozzle Placement,and Reynolds Number With Air Impingement[J].Journal of Electronic Packaging,1999,(121):156-161
    [74]Maveety J.G.,Jung,H.H..Design of an Optimal Pin-Fin Heat Sink with Air Impingement Cooling[C].International Communication on Heat and Mass Transfer,2000,27(2):229-240
    [75]Jung H.H.,Maveety J.G..Pin-Fin Heat Sink Modeling and Characterization[C].Proceedings of the 16th Annual IEEE Semiconductor Thermal Measurement and Management Symposium,2000:260-265
    [76]El-Sayed S.A.,Mohamed S.M.,Abdel-latif,et al.Investigation of Turbulent Heat Transfer and Fluid Flow in Longitudinal Rectangular-Fin Arrays of Different Geometries and Shrouded Fin Array[J].Experimental Thermal and Fluid Science,2002,26(8):879-900
    [77]Meinders E.R.,Hanjalic K..Vortex Structure and Heat transfer in Turbulent Flow over a Wall-Mounted Matrix of Cubes[J].International Journal of Heat and Fluid Flow,1999,20(2):255-267
    [78]YOKOGAWA.DAQSTATION使用手册[M].日本横河电机株式会社,2001:1-19
    [79]凌善康,原遵东.国际温标通用热电偶分度表手册[M].北京:中国计量出版社,1994:21-24
    [80]H.Schlichting.Boundary Layer Theory[M].7th ed.,McGraw-Hill,New York,1979
    [81]H.Martin.Advances in Heat Transfer[M].Academic Press Inc.,New York,1977
    [82]X..Yan,J.W.Baugn M.,Mesbath.The effect of Reynolds number on the heat transfer distribution from a flat plate to an impinging jet[J].ASME HTD 1992(226):1-7
    [83]Amy S.Fleischer,Sharareh R.Nejad.Jet impingement cooling of a discretely heated portion of a protruding pedestal with a single round air jet[J].Experimental Thermal and Fluid Science,2004,28(8):893-901
    [84]Nakatogawa T,Nishiunki N.N,Hirata M,et al.Heat Transfer of Round Turbulent Jet Impinging Normally on Flat Plate[A].Proc.4~(th) Int.Heat Transfer Conf[C],Paris-versailles,1970
    [85]任泽霈.对流换热[M].北京:高等教育出版社,1998:142-143
    [86]B.E.Launder,D.B.Spading,Lectures in Mathematical Models of Turbulence.Academic Press[M],London,1972
    [87]Intel Pentium 4 Processor on 90 nm Process Datasheet[J].Intel technical documents,2005:63-69
    [88]Menter F.R..Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications[J].AIAA Journal,1994,32(8):1598-1605
    [89]陶文铨.数值传热学[M].西安:西安交通大学出版,1995
    [90]陈永昌.微尺度单相射流冲击强化传热实验研究与理论分析[D].西安:西安交通大学博士学位论文,2000
    [91]Colucci D.W.,Viskanta R..Effect of nozzle geometry on local convective heat transfer to a confined impinging air jet[J].Experimental Thermal and Fluid Science,1996,(13):71-80
    [92]Lytle D.,Webb B.W..Secondary heat transfer maxima for air jet impinging at low nozzle-to-late spacing[J].Experimental Heat Transfer,Fluid Mechanics,and Thermodynamics,1991:776-783
    [93]Huber A.M.,Viskanta R.Heat transfer to a confined impinging array of air jets with spent air exits[J].Journal of heat transfer.,1996,(115):570-576
    [94]E.Baydar,Y.Ozmen.An experimental investigation on flow structures of confined and unconfined impinging air jets[J].Heat Mass Transfer,2006,(42):338-346
    [95]Gau C.,Chung C.M.Surface Curvature Effect on Slot-Air-Jet Impingement Cooling Flow and Heat Transfer Process[J].Trans of the ASME,1991,(113):858-864
    [96]Tawfek A.A..Heat Transfer Studies of the Oblique Impingement of Round Jets upon a Curved Surface[J].Heat and Mass Trans,2002,(38):467-75
    [97]Garimella S.V.,Rice R.A..Confined and submerged liquid jet impingement hat transfer[J].Int.J.heat transfer,1995,(117):871-878
    [98]Garimella S.V.,Nenaydykh B.Nozzle geometry effects in liquid jet impingement heat transfer[J].Int.J.Heat Mass Transfer,1996,(39):2915-2923
    [99]Chin-Yuan Li,Suresh V.Garimella.Prandtl-number effects and generalized correlations for confined and submerged jet impingement[J].Int.J.Heat Mass Transfer,2001,(44):3471-3480
    [100]Azar K..,McLeod R..S.,Caron R E..Narrow Channel Heat Sink for Cooling of High Powered Electronic Component[J].Proceedings of the 8~(th) Annual IEEE Semi-Thermal Symposium,1992:12-19
    [101]Sasaki S.,Kishimoto T..Optimal Structure for Microgroove Cooling Fin for High Power LSI Devices[J].Electronics Letters,1986,22(25):1332-1334
    [102]Knight R.W.,Goodling J.S.,Hall D.J.Optimal Thermal Design of Forced Convection Heat Sinks Analytical[J].ASME Journal of Electronic Packaging,1991,(113):313-321
    [103]Knight R.W.,Hall D.J.,Goodling J.S.,et al.Heat Sink Optimization with Application to Microchannels[J].IEEE Transactions on Components,Hybrids,and Manufacturing Technology,1992,15(5):832-842
    [104]Wirtz R A.,Chen W.,Zhou,R..Effect of Flow Bypass on the Performance of Fin Heat sinks[J].ASME Journal of Electronic Packaging,1994,(116):206-211
    [105]Selcuk Cimtalay,Robert E.Fulton.Parameter Design of Heat Sink:Multiple Trade-offs[J].Proceedings of ASME Winter Annual Meeting,1994,(9):53-58
    [106]Merto A..Optimzation of Extruded Type External Heat Sink for Multichip Module[J].ASME Journal of Electronic Packaging,1993,1(115):440-444
    [107]Mansingh V.,Hassur K..Thermal Analysis of a Pin Grid Array Package[C].Proceedings the 1993 Intemational Electronics Packaging Conference,1993,1(1):410-419
    [108]Copeland D..Optimization of Parallel Plate Heat sinks for Forced Convection[C].Proceedings of 16~(th) IEEE SEMI-THERMSymposium,2000:266-272
    [109]Nagulapally M.,Karimanal K..Use of Shell Conduction Plates for Compact Models of Exhuded Heat Sinks in Forced Convection Environments[C].Proceedings from IEEE Inter-Society Conference on Thermal Phenomena,2002:330-334
    [110]Simons R..Estimating Parallel Plate-Fin Heat Sink Thermal Resistance[J].Electronics Cooling Magazine,2003,(2):8-9
    [111]Simons R..Estimating the Effect of Flow Bypass on Parallel Plate-Fin Heat Sink Performance[J].Electronics Cooling Magazine,2004,(2):6-8
    [112]韩宁,王世萍,谢少英.强迫对流散热器的优化设计[J].计算机工程与科学,2001,23(4):66-68
    [113]谢少英,赵享受,王世萍.型材散热器的优化设计[J].电子机械工程,2001,(3):28-32
    [114]陈建芳,张双喜.散热器肋片的数值计算和结构优化[J].建筑热能通风空调,2004,23(2):77-80
    [115]付桂翠,高泽溪,邹航,王诞燕.功率器件热设计及散热器的优化设计[J].半导体技术,2004,29(5):78-85
    [116]E.Polak,D.Q.Mayne,A superlinearly convergent algorithm forconstrained optimization problems[J].Math.Prog.Stud.,1982(16):45-61
    [117]M.J.D.Powell.A fast algorithm for nonlinear constrained optimization calculations in Numerical Analysis,Proceedings[C].Biennial conference,Dundee 1977,Lecture Notes In Math.630,G.A.Waston,ed.,Springer-Verlag,Berlin,1978,144-157.
    [118]E.R.Panier,A.L.Tits.On combining feasibility descent and superlinear convergence in inequality constrained optimization[J].Math.Program,1993(59):261-276
    [119]简金宝,薛家声.非线性约束最优化一族超线性收敛的可行方法[J].数学研究与评论, 1999,19(1):135-140
    [120]高自友,吴方.非线性约束下的SQP可行方法[J].应用数学学报,1995,18(4):579-590
    [121]高自友,吴方.非线性约束下的一个超线性收敛的可行方法[J].数学学报,1997,40(6):895-900
    [122]Z.Y.Gao,T.D.Guo,G..EHe,et al.Sequential systems of linear equations algorithm for nonlinear optimization problems-inequality constrained problems[J].J.Comput.Math,2002,20(3):301-312
    [123]Z.Y.Gao,G.P.He,F.Wu.Sequential systems of linear equations algorithm for nonlinear optimization problems-general constrained problems[J].Appl.Math.Comput,2004,(147):211-226
    [124]X.B.Chen,M.M.Kostreva.A generalization of the norm-relaxed method of feasible directions[J].Appl.Math.Comput,1999,(102):257-272
    [125]M.M.Kostreva,X.B.Chen.A superlinearly convergent method of feasible directions[J].Appl.Math.Comput,2000,(166):245-255
    [126]Z.B.Zhu,K.C.Zhang.A new SQP method of feasible directions for nonlinear programming[J].Appl.Math.Comput.,2004,(148):121-134
    [127]杨善学.解决多目标优化问题的几种进化算法[D].西安:西安电子科技大学硕士学位论文,2007
    [128]中国电子学会生产技术分会丛书编委会.微电子封装技术[M].合肥:中国科学技术大学出版社,2003:121-156
    [129]杨建生,陈建军.先进微电子封装技术(FC\CSP\BGA)发展趋势概述[J].集成电路,2003,(12):63-67
    [130]倪安辰.BGA/CSP/倒装芯片技术的发展[J].信息安全与通讯保密,2005,(8):87-89

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700