车载光学仪器原位检测及衍射光学元件应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代高科技战争中武器装备的技术保障任务越来越繁重,维修检测难度越来越大,其技术系统也越来越复杂,故障率和战损率大大增加。面对这些高科技武器系统,传统的凭修理专家的感觉和经验来判断其作战性能指标的方法早已失效,而过去简单的故障检测设备也存在着检测精度低、检测项目单一、测试手段落后等问题,有的甚至根本无法对装备的一些关键战技指标进行测试。因此,设计和研制一套体积小,功能全,适于不同项目、对被检对象进行原位检测的综合性不解体检测设备具有重要的军事意义。
     然而,采用传统光学设计思想设计出的检测系统体积大,结构复杂,无法满足随车原位检测的需求。由于二元光学元件具有高衍射效率、特殊的光学变换功能等独特的优点,现已广泛应用于光传感器、光通信、光计算、光盘读写、激光应用系统等许多领域,显示出其广阔的应用前景。本文将衍射光学理论成功地应用到光学系统设计中,实现了高精度检测的要求。
     本文根据衍射透镜特点首先进行了单色像差校正和复消色差校正,采用折/衍混合式设计思想,设计研制出大孔径、复消色差平行光管。该系统设计结构紧凑,片数少,透射比更高,具有良好的消像差特性,为平行光管光学设计提供了基于衍射元件的全新思想。这种设计方案成像质量高,具有重要的实用价值和开创性意义,实现了军用装备对轻、巧、小的设计要求。
     为验证本文提出的创新性设计思想,与传统光学设计系统从调制传递函数(MTF)、点列图、畸变曲线及像差曲线等方面进行了比较。从调制传递函数曲线上可以看出,长焦物镜光学系统传统镜头设计在501p/mm空间频率处,系统的平均MTF值约为0.43,而折射/衍射混合系统在501p/mm空间频率处,系统的平均MTF值约为0.5,高于传统设计方案;对于广角物镜光学系统,传统镜头设计在101p/mm空间频率处,系统的平均MTF值约为0.35,而折射/衍射混合系统在101p/mm空间频率处,系统的平均MTF值最约为0.89,接近于衍射极限。从点列图曲线中可以看出,长焦物镜光学系统传统镜头的最大点斑的均方根直径为80μm,折射/衍射混合系统最大点斑的均方根直径为38.8μm;广角物镜光学系统传统镜头的最大点斑的均方根直径为210μm,而折射/衍射混合系统最大点斑的均方根半径为40μm。分析畸变曲线时,长焦物镜光学系统传统设计时的畸变为0.6%,而折射/衍射混合系统的畸变为0.1%;广角物镜光学系统传统设计时的畸变为-4%,而折射/衍射混合系统的畸变为-2.5%。长焦物镜光学系统传统设计时的像差为0.054mm,而折射/衍射混合系统中像差仅有0.013mm;广角物镜光学系统传统设计时的像差为0.20mm,而折射/衍射混合系统中像差为0.05mm。可见,折/衍混合型光学系统设计的各项参数指标均优于传统光学系统设计。
     本文还对磁吸式机械系统进行了设计。磁吸式机械系统将平行光管定位在被测车辆的相应位置上,满足光学测量调整的需求,保证了平行光管对多种车型的被测光学仪器进行准确、快速、可靠地测量。
     本文提出了将衍射元件应用于大孔径平行光管,并给出了具体的理论分析和设计公式,将衍射理论思想应用于长焦物镜设计,与传统长焦物镜系统设计方法进行了比较,实现了光学系统的优化设计。在成像光学系统设计中,提出了将DOE应用于广角物镜系统的研究,详细论述了具体的设计实例,推导出理论设计结果。
     本文还对成像光学系统中CCD器件的非线性问题进行了分析,找出了引起CCD产生非线性的原因,给出了校正非线性问题的方法,保证了测量结果的准确性。
     为保证采用衍射光学技术设计的平行光管系统可用于作为检测军用光学仪器的标准设备,在中科院长春光学精密机械与物理研究所质检中心采用焦距为1600mm,口径160mm,分辨率为8×10~(-3)mrad的标准平行光管对本文设计的平行光管进行了标定。标定结果表明,设计平行光管的实际焦距为500.40mm,角分辨率为1.72″。
     本文还对平行光管调校误差、CCD测量误差和非测量信号对测量结果的影响进行了分析,在平行光管标定和系统误差分析的基础上,实装进行了光学仪器的各项指标不解体原位数字化检测。测试结果表明,该检测系统能快速、准确测定装甲装备光学仪器的各项战技指标,首次实现了装甲装备光学仪器的综合性不解体原位检测。
Technical support in modern high-tech war has been becoming more and more heavy, difficult and complex. And its technology system is becoming more and more complicated, the fault rate and damage rate are increasing. Facing the high-tech weaponry the evaluation can't stay on the experience and sense of the repair experts. The old fault equipment brings us inestimable difficulties and sometimes can't detect at all. Nowadays, the detecting equipment for armored equipments used in our army can only detect some index of single-type vehicle. It has complicated structure and bad universal use. In addition, when it is used, we must disassembly the optical equipment from the vehicle. Therefore, it is urgency to design and develop a set of comprehensive in-situ detecting equipment with small volume and universal use which can be fit for different indexes and different vehicles. It has great military significance.
     However, the detecting system using the conventional optical design has a large volume and complicated structure so that it can't meet the demand of in-situ detection . Due to the advantages such as high diffraction efficiency, special optical transform function, binary optics has been widely used in many fields such as optical sensors, optical communication, optical computation, optical disk readout and writein and laser application system. It has the bright future. The paper has succeeded in exploiting diffractive optics into the design which realizes high accuracy detection.
     At first, according to the property of diffractive lens, monochromatic aberration and apochromatism are corrected. The design idea of refractive and diffractive hybrid system is creatively applied in develop the collimator with large aperture and apochromatic correction. The system has many advantages such as compact structure, few pieces, high transmissivity and good achromatic property. This design scheme has the image of high quality and has practical meaning as well. It can realize the demands of light, skillful and small military equipment.
     In order to verify the creative design idea, the refractive diffractive hybrid system is compared with the conventional system from the aspects of modulate transmission function, spot diagram, distortion curve, aberration curve etc. From the MTF curve, we can see that as for the long focal length objective system, at the spatial frequency of 501p/mm, the average MTF of the refractive diffractive hybrid system is 0.5 and that of conventional system is 0.43. When it comes to wide angle objective system, at 101p/mm, the MTF of the refractive diffractive hybrid system is 0.89 approaching to the diffractive limit whereas that of conventional system is just 0.35.From the spot diagram, as for the long focal length objective system, the root means square diameter of the maximum spot of the refractive diffractive hybrid system is 38.8μm and that of conventional system is 80μm. When it comes to the wide angle objective system, the root means square diameter of the maximum spot of the refractive diffractive hybrid system is 40μm whereas that of conventional system is 210μm. From the distortion curve, as for the long focal length objective system, the distortion of refractive diffractive hybrid system is 0.1 % whereas that of conventional system is 0.6%. When it comes to the wide angle objective system, the distortion of refractive diffractive hybrid system is -2.5% whereas that of conventional system is -4%.From the aberration curve, we can see that for the long focal length objective system, the aberration in refractive diffractive hybrid system is 0.013mm and that of the conventional system is 0.054mm. When it comes to the wide angle objective system, the aberration in refractive diffractive hybrid system is 0.05mm and that of the conventional system is 0.20mm. From all above, we can get the conclusion that the indexes in refractive diffractive hybrid system are much better than that in conventional system.
     In order to locate the collimator at the very position on the vehicle that is fit for accurate detection, magnetic mechanical system is designed. It can meet the demands of measure adjustment. It can guarantee the rapid, reliable and precise detection for muli-type vehicles.
     Diffractive element is used in the design of collimator for the first time. The theoretical analysis and design formula are given. Besides, diffractive theory is tried to be used in long length objective. Compared with the conventional one, the optimal design is realized. DOEs are applied to design the wide angle objective and the theoretical design formulas are deduced .Then a design example is discussed in detail.
     In this paper, the nonlinearity problem of CCD is analyzed then the reason is found. In addition, the approach to correct nonlinearity is put forward in detail, which guarantees the accuracy of the measurement.
     In order to ensure that the collimator designed by diffractive optics can be used as the standard instrument to detect the military optical equipments, we demarcate the collimator at the quality test center of Changchun institute of optics, fine mechanics and physics Chinese academy of sciences. In the process of demarcating, a standard collimator whose focal length is 1600mm, aperture is 160mm,resolution is 8×10~(-3) is adopted. The demarcating result shows that the real focal length is 500.40mm, the angular resolution is 1.72".
     What is more, the influences of adjustment error of collimator, measurement error of CCD and non-measured signals on the measurement result are analyzed. On the basis of collimator demarcating and error analyzing, various indexes of the vehicle borne optical equipments are in-situ detected. The test results show that the detecting system is able to detect various indexes of optical equipments on armored vehicles rapidly and accurately. It is the first time that the comprehensive non-disassembled in-situ detection for vehicle borne optical equipments has been realized.
引文
[1]邱国栋,贾瑞华.加强部队新装备保障问题的几点思考.军械维修工程研究.2002(3):66-68
    [2]郑云峰.深化训练促进新装备形成战斗力的思考.国防大学学报.2005(12):78-79
    [3]马乐梅,张德奇.战时新装备的技术保障.海军大连舰艇学院学报.2002,25(6):51-53
    [4]崔进叶.新装备形成战斗力面临的矛盾和对策.国防大学学报.2002(9):90-91
    [5]郭克明.提高新装备保障能力的几点思考.军械维修工程研究.2002(4):65-67
    [6]张宝珍.基于信息的综合诊断体系结构及其在F-35联合攻击机研制中的应用.测控技术.2005,3(13)
    [7]哈涌刚,周雅,王涌天等.用于增强现实的头盔显示器的设计.光学技术.2000.26(4):350-353
    [8]Open system Approach Integrated Diagnostics Demonstration Study,Final Report.Department of Defense.1999
    [9]李庆祥,王东生,李玉和.现代精密仪器设计.北京:清华大学出版社,2004:60-105
    [10]DOD Automatic Test System Architecture Guide.Departmentof Defense,1999,http://dodats.osd.mil
    [11]金国藩,严瑛白,邬敏贤.二元光学.北京:国防工业出版社,1998:1-16
    [12]杨国光等.微光学与系统.浙江:浙江大学出版社,2008:第1,2,3,5章
    [13]Xiao YD.Talbot effect and array illuminators that are based on it J.Appl Opt.1992,31:2983-2986
    [14]Arrizon V,et al.Talbot array illuminators with binary phase gratings.Opt Lett.1993,18(1):1-3
    [15]Cheng Y S,Chang R C.Imaging addition and subtraction using Talbot effect J.Proc Soc Photo Opt Instrum Eng.1992,1812,268-273
    [16]Donald W Sweeney,Gary E Sommargren.Harmonic diffractive lenses.Appl Opt.1995,34(14):2469-2475
    [17]孙强.现代红外折射/衍射混合光学系统的研究:[博士论文].天津:南开大学.2003
    [18]Gregory P.Behrmann,John P.Bowen.Influence of temperature on diffractive lens performance.Appl.Opt.1993,32(14):2483-2489
    [19]Thomas J.Mchugh.Recent advance in binary optics.SPIE.1989,1052:85-91
    [20]P.B.Whibberley and J.R.Birch,The temperature variation of the near-mm wavelength optical constants of fluorosint.Infrared Phys.1989,29(6):995-996
    [21]Overview of diffraction optics at Honeywell.SPIE.1988,884:127-132
    [22]Sweatt W C,Decribing holographic optical elements as lenses.J Opt Soc Am,1997,67:803-808 Cox JA.
    [23]郑学哲,严瑛白,金国藩等.对准误差对二元光学器件衍射效率的影响.光电子激光.1997.8(4):242-245
    [24]R.L.Roncone and D.W.Sweehey.Cancellation of material dispersion in harmonic diffractive lenses.SPIE.1995,2404:81-87
    [25]Stone T,Gerorge N.Hybrid diffractive-refractive lenses and achromats.Appl.Opt.1988,27(14):2962-296
    [26]周庆才,王春艳,王鹏等.复消色差物镜的波差法光学设计.吉林大学学报(工学版).2007,34(4)944-948
    [27]冷家开,崔庆丰,裴雪丹.折衍射混合复消色差望远物镜中的色球差.光学学报.2008,28(5):981-987
    [28]李润顺,王鹏.波差法设计长焦距复消色差平行光管物镜.哈尔滨工业大学学报.1996,28(2):44-49
    [29]崔庆丰.用二元光学元件实现复消色差.光学学报.1994,14(8):877-881
    [30]W.B.Veldkamp,Binary optics:a new approach to optical design and fabrication.Op(?).News.1988,12/88:29-30
    [31]B.E.Bernack and A.C.Miller.Hybrid optics for the visible produced by bulk casting of sol-gel glass using diamond-turned molds.SPIE.1995,2536:463-474
    [32]C.G.Blough and G.M.Morris.Diffractive/refractive lenses offer high performance at low cost.Laser Focus World.1995,33(11):64-74
    [33]傅晓村.检测测绘仪器用平行光管的安装与调校.四川测绘.1990,13(1):44-48
    [34]吴小平,周起勃.大口径长焦距平行光管系统及其装校.光学仪器.1993,15(3):26-28.
    [35]叶露,王肇勋.大口径长焦距平行光管主反射镜支撑与调整机构的研究.光学精密工程.2000,8(5):462-465
    [36]曹根瑞,朱秋东,苏鹏.一种新概念平行光管.北京理工大学学报.2003,23(4):453-456
    [37]杨居奎.大口径反射镜在平行光管中的安装方法.航天返回与遥感.2006,06:14-1
    [38]翟旭华,刘英,张洪涛等.折射-衍射混合高精度平行光管的设计.强激光与粒子束.2008,20(5):744-746
    [39]张思炯,傅瑞斯,王涌天.带有二元光学元件的可见光望远镜设计.光学技术.1996,3:184-22
    [40]崔庆丰.用二元光学元件实现复消色差.光学学报.1994,14(8):877-881
    [41]Lan M.Bartion,Jerald A.Britten.Shamasundar N.Dixit,et al,Fabrication of large-aperture lightweight diffractive lenses for use in space.Appl.Opt.2001,40(4):447-451
    [42]张以谟.应用光学(第二版).北京:机械工业出版社,1988:322-327
    [43]崔庆丰.折衍射混合成像光学系统设计.红外与激光工程.2006.35(1)12-15
    [44]崔庆丰,匡裕光.混合负消色差透镜组的设计原理 光学学报.1995,15(4):499-503
    [45]Faklis Dean,Morris G Michael.Spectral properties of multiorder diffractive lenses.Appl Opt.1995,34(14):2462-2467
    [46]M.R.Feldman,C.C.Guest.Computer generated holographic optical elements for optical interconnection on very large scale integrated circuits.Appl.Opt.1987,26(20):4377-4390
    [47]M.N.Afsar.Precision Millimeter-Wave Measurements of Complex Refractive Index,Complex Dielectric Permittivity,and Loss Tangent of Common Polymers.IEEE Trans.Instrum.Meas.1987,IM-36(2):530-536
    [48]J.R.Birch.The far infrared optical constants of polyethylene.Infrared Phys.1990,30(2):195-197
    [49]付水启.衍射光学元件制作技术研究.博士后研究工作报告.1998
    [50]M.T.Gale,M.Rossi.Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresist.Opt.Eng.1994,33:3556-3566
    [51]Josip Vukusic,J(o|¨)rgen Bengtsson,Marco Ghisoni,et al.Fabrication and characterization of diffractive optical elements in InP for monolithic integration with surface-emitting components.Appl.Opt.2000,39(3):398-401
    [52]Chung J.Kuo,Hung C.Chien,Ni Y.Chang,et al.Diffractive optical element designed by use of an irregular etching-depth sequence.Appl.Opt.2001,40(32):5894-5897
    [53]郭永康,沈忙作,陆祖康.折射/衍射红外光学系统的消热差设计.光学学报.2000,20(10):1393-1395
    [54]郭睛,王汝笠,裴云天.衍射光学元件热稳定性的分析.1999,28(5):463-466
    [55]焦明印,冯桌祥.采用衍射元件实现消热差的混合红外光学系统.光学学报.2001.21(11):1364-1367
    [56]崔庆丰,高士平,匡裕光.高分辨率成像二元光学系统的研制与实验结果.光学精密工程.2005(5):18-20
    [57]杨李茗,虞淑环.任意点阵衍射图形的DOE优化设计.光子学报.1998,27(8):739-741
    [58]赵秋玲,王肇圻,母国光等.用于LCOS微显示的折射-衍射目视系统设计.科学通报.2002.47(10):744-748
    [59]Lcgcr J,Holz M,Swanson G,et al.Coherent laser beam addition:An application of binary optics techaology.Lincoln Lab.J.1988,1(2):225-246
    [60]包红春,邬敏贤,金国藩等.二元光学波面变形器件的研究.光学学报.1994.14(9):989-991
    [61]Thomas H,Jamiesion,U.A wide waveband optics.Opt Eng.1984,23(2):111-116
    [62]Dale A.buralli,G.Michael Morris and John R.Rogers.Optical performance of holographic kinoforms.Appl.Opt.1989,28(5):976-983
    [63]曾吉勇,金国藩,王民强.折衍混合傅消色差设计的PWC方法.光子学报.2006,35(10):1569-1572
    [64]曾吉勇,金国藩.王民强等.基于PWC方法的折衍射混合红外物镜设计.红外与激光工程.2006,25(3):213-216
    [65]曾吉勇,金国藩,王民强等.含衍射结构薄透镜系统初级像差的PWC表示.光学学报.2006,26(2):96-100
    [66]张新.含二元光学元件的光学系统成像特性和设计方法.光学精密工程.1994,2(4):2-7
    [67]J.R.Birch.The far-infrared optical constants of polypropylene,ptfe and polystyrene.Infrared Phys.1992,33(1):33-38
    [68]Denise Lyons.Image Spectrometry with a Diffractive Optic.SPIE.1995,2480:123-131
    [69]崔庆丰.折衍射混合光学系统的研究:[博士论文].长春:长春光学精密机械与物理研究所,1994
    [70]Dean Faklis and G.Michael Morris.Spectral properties of multiorder diffractive lenses.Appl.Opt.1995,34(14):2462-2468
    [71]Donald W.Sweeney and Gary E.Sommargren.Harmonic diffractive lenses,Appl.Opt.1995,34(14):2469-2475
    [72]G.J.Swanson.Binary optics technology:the theory and design of multllevel refractive optical elements.MIT Lincoln laboratory technical report.1989
    [73]Ren R.Letfullin,Oleg A.Zayakin and Thomas F.George.Theoretical and experimental investigations of the effect of diffractive multifocal focusing of radiation.Appl.Opt.2001,40(13):2138-2147
    [74]Grigoriy L.Greisukh,Ezhov and Sergei A.Stepanov.Aberration properties and performance of a new diffractive-gradient-index high-resolution objective.Appl.Opt.2001,40(16):2730-2735
    [75]Yuko Orihara,Werner Klaus,Makoto Fujino and Kashiko Kodate.Optimization and application of hybrid-level binary zone plates.Appl.Op.2001,40(32):5877-5883
    [76]Jun-ichi Kudo.Diffractive lens in 8 to 10 μm forward-looking infrared system.Opt.Eng.2002,41(8):1787-1791
    [77]Ben-Yuan Gu,Guo-Zhen Yang,Bi-Xhen Dong,et al.Diffractive-phase-element design that implements several optical functions.Appl.Opt.1995,34(14):2564-2570
    [78]Thomas S,Nicholas G.Hybrid diffractive-refractive lens and achromats.Applied Optics,1988,27(14):2960-2971
    [79]CARTWRIGHT CM,GILLESPIE WAWANG ZH Q.Hybrid diffractive-refractive ulrawide-angle eyepieces.Optik,2002,113(4):159-162
    [80]WOOD A P.Passively athermalized hybrid objective for a far-infrared uncooled thermal imager.SPIE.1996,2744:500-509
    [81]Gregg Vane.First results from the Airborne Visible/infrared Imaging Spectrometer.SPIE.1987,834:166-174
    [82]王肇圻,张轶楠,傅汝廉.折/衍混合Petzval光电摄像物镜设计.光学精密工程.2005,13(1)1-4
    [83]KEUI F,TAKESHI O,KEU I E.Difractive/refractive hybrid f θ lens for laser drilling.SEI Technical Review,2002,53:80-85
    [84]Morrison R L,Walker S L,Cloonan T J.Beam array generation and holographic interconnections in a free-space optical switching network.Appl.Opt.1993,32:2512-2518
    [85]E.Carcol(?),J.Campis,and S.Bosch.Diffraction theory of Fresnel lenses encoded in low-resolution devices.Appl.Opt.1994,33(2):162-174
    [86]Jan.Diffractive optics venrure into the spotlight.Photonics Spectra.1994:93-98
    [87]Edgar Pavlowski,Berndt Kuhlow.Antireflection-coated diffractive optical elements fabricated by thin-film deposition.Opt.Eng.1994,33(11):3537-3546
    [88]Walter Daschner.Fabrication of diffractive optical elements using a single optical exposure with a gray level mask.J.Vac.Sci.Technol.1995,B13(6):2729-2731
    [89]E-B.Kley and B.Schnabel.E-beam lithography:a suitable technology for fabrication of high-accuracy 2D and 3D surface profiles.SPIE.1995,2640:71-80
    [90]陈岩松,李德华.一种设计二元衍射元件的优化方法.物理学报.1996,45(8):1331-1336
    [91]Graham A,Lelance R A,Hilton R.Low cost infrared glass for IR imaging applications.Proc.SPIE.2003,5078:216-224
    [92]Bi-Zhen Dong,Guo-Qing Zhang,Guo-Zhen Yang,et al.Design and fabrication of a diffractive phase element for wavelength demultiplexing and spatial focusing simultaneously.Optical Society of American.1996,35(35):6859-6864
    [93]潘君骅.光学非球面的设计加工与检验.北京:北京科学技术出版社,1994:147-152
    [94]王庆有.CCD应用技术.天津:天津大学出版社,2004:第四章,第五章
    [95]雷玉堂,王庆有,何加铭等.光电检测技术.北京:中国计量出版社,2008:164-178
    [96]王少俊.机械制造工艺设计手册.哈尔滨:哈尔滨工业大学出版社.1984
    [97]陈译民.公差配合与技术测量.北京:机械工业出版社,1984
    [98]甘永立.几何量公差与检测.上海:上海科技出版社,1989
    [99]程守澄.光学仪器验校.北京:兵器工业出版社,1992:48-56
    [100]李刚.光学仪器性能数字化检测:[硕士论文].石家庄:军械工程学院,2001
    [101]李刚,周冰,董伟等.一种视差的自动检测方法.光学仪器.2002,24(2):3-6
    [102]凌军,刘秉琦,赵熙林.几种光轴平行性测试方法的比较与探讨.应用光学.2003,1:42-45
    [103]凌军,刘秉琦,赵熙林.一种提高智能光轴检测系统定位精度的方法.军械工程学院学报.2002.14(4):39-42

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700