大黄素抑制血管平滑肌细胞增殖机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分大黄素抑制血管平滑肌细胞增殖机制研究
     背景:大黄素(1,3,8-三羟基-6-甲基葸醌)是天然蒽醌化合物,可以抑制多种肿瘤细胞增生。然而,大黄素对平滑肌细胞的作用机制研究甚少。
     大黄素能够促进肿瘤细胞(Mahlavu,HL-60)凋亡,Mahlavu细胞凋亡现象可被抗氧化剂(过氧化氢酶和环孢霉素A)部分阻断,但是HL-60细胞凋亡现象不能被抗氧化剂所阻断,因此ROS途径是否参与大黄素诱导细胞凋亡存在争议。大黄素在细菌中常有致突变效应(mutagenicity),在细胞中常有基因毒性(genotoxicity)。DNA损伤促进p53表达,p53途径活化后既可以抑制细胞生长,又可促进细胞凋亡。ROS途径和p53途径是大黄素发挥作用的可能途径。
     大黄素可被细胞色素P450代谢酶(CYP)代谢转化为2-羟基大黄素,它抑制增殖效果强于大黄素。CYP抑制剂或者诱导剂可能改变大黄素作用特点。
     方法:人血管平滑肌细胞(VSMCs)培养于M1 99培养液中。通过细胞计数、MTT法、细胞周期、细胞迁移等方法观察大黄素的作用特点。使用Annexin V和7-AAD双染法、乳酸脱氢酶释放来观察大黄素促VSMCs死亡的方式。对于ROS途径,利用ROS生成阻断剂观察大黄素促ROS生成途径,并观察ROS强度降低后VSMCs死亡方式的变化。对于p53途径,采用p53蛋白印迹、透射电子显微镜、激光共聚焦显微镜进行观察。使用CYP阻断剂和诱导剂观察大黄素作用特点(抑制VSMCs增殖、促进ROS)是否发生变化。利用基因芯片观察上述信号通路基因转录水平的变化。
     结果:(1)低浓度大黄素(3-1、6.3μg/ml)抑制VSMCs增殖,高浓度大黄素(25.0μg/ml)促进VSMCs死亡。GOG1期细胞呈大黄素浓度依赖性增多,而S期细胞则显著减少,25μg/ml大黄素组S期细胞较正常对照组减少达80%(7.40±1.65%vs.39.05±5.88%,p<0.05)。不同浓度大黄素均可抑制VSMCs迁移,25μg/ml抑制率为89.6%(p<0.05)。(2)大黄素以持续稳定的方式促进细胞内ROS生成(r=0.97,p<0.01),NADPH氧化酶抑制剂(DPI或PDTC)可以抑制大黄素促ROS效应,而其他抑制剂(CsA、ABT、α-NF)则无抑制效果。细胞内抗氧化能力并无明显变化。大黄素促使VSMCs凋亡和坏死,以凋亡为主。DPI可以显著阻断200μM过氧化氢诱导的VSMCs坏死和凋亡(凋亡:12.6±0.98%vs.4.0±1.00%,p<0.05,坏死:32.2±2.99%vs.4.87±2.22%,p<0.05),也能显著阻断大黄素促VSMCs凋亡(14.55±2.29%vs.8.77±0.83%,p<0.05),对坏死并无明显影响(1.18±0.14%vs.1.25±0.28%。p>0.05)。乳酸脱氢酶活性测定显示大黄素促进VSMCs坏死,可被DPI轻微减轻。(3)大黄素干预后细胞出现非计划性DNA合成(DNA损伤修复标志)。DNA修复基因表达增强。p53蛋白表达也上调(25μg/ml大黄素组较对照组高1.69倍,p<0.05)。透射电子显微镜显示细胞核中异染色质增多。DPI未影响大黄素的UDS现象。(4)激光共聚焦显示大黄素能迅速渗透进入细胞内部,但在细胞内的分布呈明显的选择性:绝大多数大黄素分布于细胞浆中,仅有少量分布于细胞核内。(5)CYP抑制剂(ABT、α-NF)或者诱导剂(3-MC、β-NF)对大黄素抑制VSMCs增殖和促ROS生成效应均无明显影响。(6)大黄素呈浓度和时间依赖性促进VSMCs老化。我们还观察到大黄素干预后VSMCs自噬的现象。
     结论:(1)低浓度大黄素抑制VSMCs增殖,高浓度促进VSMCs死亡。(2)ROS途径和p53途径是大黄素发挥效应的两个主要途径,ROS是大黄素促细胞凋亡效应的主要参与者,p53途径主要参与抑制细胞增殖,也涉及细胞凋亡。(3)培养的平滑肌细胞中没有CYP表达,大黄素自身发挥作用,而非代谢产物。
     第二部分MTT法用于测定大黄素细胞毒性作用的效果
     背景:MTT法被广泛用于测定药物的细胞毒性作用,但其特异性和敏感性也可以受一些因素的影响,如有颜色物质。我们将探索大黄素自身是否也是干扰因素。
     方法:血管平滑肌细胞培养于M199培养液中。使用分光光度计测定大黄素和甲(?)的吸光度(O.D.)。
     结果:在不同溶剂中,大黄素具有不同的吸收光谱。溶剂中存在水分时吸收光谱将向右移,与甲(?)的吸收光谱明显重叠。大黄素呈浓度依赖性直接将MTT还原为甲(?),大黄素的还原能力可被血清显著抑制。大黄素在细胞内含量非常微弱且其代谢转化非常缓慢。
     结论:大黄素可以干扰MTT法的准确性,改良后的MTT法可用于评价大黄素的细胞毒性。
Part I. The antiproliferative activity of emodin is through ROS-dependent and p53-dependent pathway in human smooth muscle cells Background: Emodin (1, 3, 8-Trihydroxy-6-methylanthraquinone), a natural anthraquinoid compound, has the remarkably suppressing activity on the various tumor cells proliferation. However, the mechanism of effect of emodin on the smooth muscle cells has remained largely unknown. Emodin can induce apoptotic response in the human hepatocellular carcinoma cell line Mahlavu and human promyeloleukemic HL-60 cells. Preincubation of Mahlavu cells with catalase (CAT) showed partially preventive effect on emodin-induced apoptotic responses. However, preincubation of HL-60 cells with free radical scavenging agents including catalase showed no preventive effect. Whether the antiproliferative activity of emodin is through reactive oxygen species (ROS)-dependent apoptotic pathway is still in argument. Meanwhile, emodin exhibits mutagenicity in the Salmonella typhimurium mutagenicity assay and genotoxicity in the mammalian test systems. DNA damage-inducing protein p53 can inhibit cell growth, by arresting proliferation or inducing apoptosis. So, the activation of p53 may be another pathway participated in the inhibition of proliferation induced by emodin. Emodin can be transformed into at least 10 anthraquinoid metabolites through cytochrome P450 enzyme (CYP). 2-hydroxyemodin, a main metabolite converted from emodin, is a little more cytotoxic than emodin. The characteristic of antiproliferation of emodin might be influenced by CYP activity which can be enhanced by CYP inducer or suppressed by CYP inhibitor. In the present study, we investigated whether emodin has antiproliferative effect on the smooth muscle cells and whether the effect of emodin is through ROS-dependent and p53-dependent pathway and whether metabolic transformation of emodin is an important step for the effect of emodin. Materials and methods: Vascular smooth muscle cells were cultured in M199 medium supplemented with 15% fetal bovine serum (FBS). The antiproliferative activity of emodin was observed by several tests, such as total cell count, MTT assay, lactate dehydrogenase (LDH) release, cell cycle analysis, and cell migration. The types of cell death induced by emodin were determined by annexin V-PE and 7-AAD staining. To investigate ROS pathway,
    celluar ROS was measured. When ROS could be suppressed by inhibitor, the types of cell death were measured again. To investigate p53 pathway, the level of protein p53 was measured by western blot. Transmission electron microscope and laser confocal microscope had also been used. To investigate emodin metabolic pathway, CYP inducer or inhibitor was used to alter CYP enzyme activity. cDNA MicroArray was used to determined which gene expression is altered after emodin treatment.
    Results: (1) The loss in viability of VSMCs was an emodin dose-dependent manner. Emodin delayed the number of VSMCs entering DNA synthesis (S) phase in a concentration-dependent manner. The percent of S in 25.0 ug/ml emodin group was significantly lower than that in control group (7.40±1.65% vs. 39.05±5.88%, p<0.05). VSMCs migration was also inhibited by emodin, 89.6% decrease of migrated cell numbers in 25 μg/ml emodin group. (2) ROS generation increased in emodin dose-dependent manner (r=0.97, p<0.01). The cellular ROS level remained unchanged during a 72 h period. Increased ROS could be inhibited by NADPH oxidase inhibitor DPI or PDTC, but not other inhibitors (CsA, ABT, α-NF). The change of cellular antioxidantive potential was not significantly. Two types of cell death, apoptosis and necrosis, had been found in VSMCs treated with emodin for 24 hours. When VSMCs was precubated with DPI before emodin added in, the ratio of apoptotic cells significantly decreased from 14.55±2.29% to 8.77±0.83% (p<0.05) and the ratio of necrotic cells didn't change significantly (1.18±0.14% vs. 1.25±0.28%). DPI could also significantly inhibit the cell death induced by 200μM H_2O_2 (apoptotic cell: 12.6+0.98% vs. 4.0±1.00%, p<0.05; necrotic cell: 32.2±2.99% vs. 4.87±2.22%, p<0.05). LDH release can be enhanced by emodin and can be partially inhibited by DPI pretreatment. (3) Unshedueled DNA synthesis, a symbol of DNA damage, was observed after emodin treatment and can not be eliminated by DPI. The level of protein p53 in 25 ug/ml emodin group was 1.69-fold more than that in control group. Heterochromatin was also increased. (4) The intensity of fluorescence of emodin increased rapidly and reached plateau in 15s. However, the distribution of emodin was selective, mostly in cytoplasma and scarcely in nucleus. (5) Neither CYP inducers (ABT, α-NF) nor CYP inhibitors (3-MC, β-NF) had impact on the effects of emodin, such as ROS generation and proliferation inhibition. (6) Emodin accelerated cell
    senescence in a dose and time dependent manner. Cell autophagy had also been observed.
    Conclusions: (1) Emodin can inhibite human VSMCs proliferation and induce cell death (majority as apoptosis and minority as necrosis ). (2) The effect of emodin is through ROS-dependent and p53-dependent pathway. ROS pathway mainly participated in the apoptotic response and p53 pathway participated both in the aopototic response and in the proliferation inhibition. (3) There is no evidence to support the existence of CYP. Emodin played the role of inhibitor of VSMCs by itself, not its metabolite.
    
    
    
    Part II. Evaluation of MTT assay for measurement of emodin-induced
    cytotoxicity.
    
    MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) tetrazolium assay is widely used for measuring cytotoxicity induced by emodin. Since the specifity and sensitivity of MTT assay may be influenced by many factors including coloring substances, we therefore investigated whether the absorption spectrum of emodin partially overlapped with that of formazan and the reasons for these influences in the present study. We cultured vascular smooth muscle cells (VSMCs) in M199 medium. The optical density (O.D.) of emodin or formazan was measured by spectrophotometer. We observed that emodin has different absorption spectrum in different solvent. The solvents containing water induced shift of the absorption curve of emodin to right, which increased the overlap of absorption curve of emodin and formazan. The increase of the formazan, which was converted from MTT tetrazolium salt by emodin, was paralleled to the concentration of emodin. The intrinsic reductive potential of emodin can be partially suppressed by serum. Emodin in cells was very tiny and its metabolic transformation was quite slow. These data suggest that emodin can alter the accuracy of MTT assay and that modified MTT assay is valuable in emodin-induced cytotoxicity.
引文
1. Detre K, Holubkov R, Kelsey S, et al. Percutaneous transluminal coronary angioplasty in 1985-1986 and 1977-1981. The National Heart, Lung and Blood Institute Registry. N Engl J Med 1988; 318: 265-270.
    2. Kurbaan AS, Bowker TJ, Ilsley CD, Rickards AF. Impact of postangioplasty restenosis on comparisons of outcome between angioplasty and bypass grafting. Coronary Angioplasty versus Bypass Revascularisation Investigation (CABRI) Investigators. Am J Cardiol. 1998; 82: 272-6
    3. Serruys PW, Unger F, van Hout BA, et al. The ARTS study (Arterial Revascularization Therapies Study). Semin Interv Cardiol. 1999; 4: 209-19
    4. Chervu A, Moore WS. An overview of intimal hyperplasia. Surg Gynecol Obstet. 1990; 171: 433-47
    5. Heckenkamp J, Gawenda M, Brunkwall J. Vascular restenosis. Basic science and clinical implications. J Cardiovasc Surg (Torino). 2002; 43: 349-57
    6. Sousa JE, Costa MA, Abizaid A, et al. Lack of Neointimal Proliferation After Implantation of Sirolimus-Coated Stents in Human Coronary Arteries: A Quantitative Coronary Angiography and Three-Dimensional Intravascular Ultrasound Study. Circulation. 2001; 103: 192-195
    7. Kawai K, Kato T, Mori H, et al. A comparative study on cytotoxicities and biochemical properties of anthraquinone mycotoxins emodin and skyrin from Penicillium islandicum Sopp. Toxicol Lett 1984; 20: 155-60
    8. Kamei H, Koide T, Kojima T, et al. Inhibition of cell growth in culture by quinones. Cancer Biother Radiopharm 1998; 13: 185-8
    9. Kuo YC, Sun CM, Ou JC, et al. A tumor cell growth inhibitor from Polygonum hypoleucum Ohwi. Life Sci 1997; 61: 2335-44
    10. Akuzawa S, Yamaguchi H, Masuda T, et al. Radical-mediated modification of deoxyguanine and deoxyribose by luteoskyrin and related anthraquinones. Mutat Res 1992; 266: 63-9
    11. Ernst F, Hetzel S, Stracke S, et al. Renal proximal tubular cell growth and differentiation are differentially modulated by renotropic growth factors and tyrosine kinase inhibitors. Eur J Clin Invest 2001; 31: 1029-39
    12. Kuo YC, Meng HC, Tsai WJ. Regulation of cell proliferation, inflammatory cytokine production and calcium mobilization in primary human T lymphocytes by emodin from Polygonum hypoleucum Ohwi. Inflamm Res 2001; 50: 73-82
    13. Kuo YC, Tsai W J, Meng HC, et al. Immune reponses in human mesangial cells regulated by emodin from Polygonum hypoleucum Ohwi. Life Sci 2001; 68: 1271-86
    14. Shi YQ, Fukai T, Sakagami H, et al. Cytotoxic and DNA damage-inducing activities of low molecular weight phenols from rhubarb. Anticancer Res 2001; 21: 2847-53
    15. Cohen PA, Hudson JB, Towers GH. Antiviral activities of anthraquinones, bianthrones and hypericin derivatives from lichens. Experientia 1996; 52: 180-3
    16. Barnard DL, Huffman JH, Morris JL, et al. Evaluation of the antiviral activity of anthraquinones, anthrones and anthraquinone derivatives against human cytomegalovirus. Antiviral Res 1992; 17: 63-77
    17. Hatano T, Uebayashi H, Ito H, et al. Phenolic constituents of Cassia seeds and antibacterial effect of some naphthalenes and anthraquinones on methicillin-resistant Staphylococcus aureus. Chem Pharm Bull (Tokyo) 1999; 47: 1121-7
    18. Chung JG, Wang HH, Wu LT, et al. Inhibitory actions of emodin on arylamine N-acetyltransferase activity in strains of Helicobacter pylori from peptic ulcer patients. Food Chem Toxicol 1997; 35: 1001-7
    19. Wang HH, Chung JG. Emodin-induced inhibition of growth and DNA damage in the Helicobacter pylori. Curr Microbiol 1997; 35: 262-6
    20. Wang HH. Antitrichomonal action of emodin in mice. J Ethnopharmacol 1993; 40: 111-6
    21. Vargas F, Fraile G, Velasquez M, et al. Studies on the photostability and phototoxicity of aloe-emodin, emodin and rhein. Pharmazie 2002; 57: 399-404
    22. Rahimipour S, Bilkis I, Peron V, et al. Generation of free radicals by emodic acid and its[D-Lys6]GnRH-conjugate. Photochem Photobiol 2001; 74: 226-36
    23. Huang HC, Lee CR, Chao PD, et al. Vasorelaxant effect of emodin, an anthraquinone from a Chinese herb. Eur J Pharmacol 1991; 205: 289-94
    24. Lee HZ. Protein kinase C involvement in aloe-emodin- and emodin-induced apoptosis in lung carcinoma cell. Br J Pharmacol. 2001; 134: 1093-103.
    25. Yang J, Li H, Chen YY, et al. Anthraquinones sensitize tumor cells to arsenic cytotoxicity in vitro and in vivo via reactive oxygen species-mediated dual regulation of apoptosis. Free Radic Biol Med. 2004; 37: 2027-41
    26. Jing X, Ueki N, Cheng J, et al. Induction of apoptosis in hepatocellular carcinoma cell lines by emodin. Jpn J Cancer Res 2002; 93: 874-82
    27. Jung HA, Chung HY, Yokozawa T, et al. Alaternin and emodin with hydroxyl radical inhibitory and/or scavenging activities and hepatoprotective activity on tacrine-induced cytotoxicity in HepG2 cells. Arch Pharm Res. 2004; 27: 947-53.
    28. Chen YC, Shen SC, Lee WR,et al. Emodin induces apoptosis in human promyeloleukemic HL-60 cells accompanied by activation of caspase 3 cascade but independent of reactive oxygen species production. Biochem Pharmacol 2002; 64: 1713-24
    29. Ueno Y, Umemori K, Niimi E, et al. Induction of apoptosis by T-2 toxin and other natural toxins in HL-60 human promyelotic leukemia cells. Nat Toxins. 1995; 3: 129-37
    30. Wattanapitayakul SK, Bauer JA. Oxidative pathways in cardiovascular disease. Roles, mechanisms, and therapeutic implication. Pharmacol Therapeutics 2001; 89: 187-206
    31. Curtin JF, Donovan M, Cotter TG. Regulation and measurement of oxidative stress in apoptosis. J Immun Meth 2002; 265: 49-72
    32. Irani K. Oxidant signaling in vascular cell growth, death, and survival. A review of the roles of reactive oxygen species in smooth muscle and endothelial cell mitogenic and apoptotic signaling. Circ Res 2000; 87: 179-183
    33. Noro T, Noro K, Miyase T, et al. Inhibition of xanthine oxidase by anthraquinones. Chem Pharm Bull (Tokyo) 1987; 35: 4314-6
    34. Wehner FC, Thiel PG, du Rand M. Mutagenicity of the mycotoxin emodin in the salmonella/microsome system. Appl Environ Microbiol 1979; 37: 658-60
    35. Wang HH, Chung JG. Emodin-induced inhibition of growth and DNA damage in the Helicobacter pylori. Curr Microbiol 1997; 35: 262-6
    36. Duerksen-Hughes PJ, Yang J, Ozcan O. p53 induction as a genotoxic test for twenty-five chemicals undergoing in vivo carcinogenicity testing. Environ Health Perspect 1999; 107: 805-12
    37. Shieh DE, Chen YY, Yen MH, et al. Emodin-induced apoptosis through p53-dependent pathway in human hepatoma cells. Life Sci. 2004; 74: 2279-90
    38. Mengs U, Krumbiegel G, Volkner W. Lack of emodin genotoxicity in the mouse micronucleus assay. Mutat Res 1997; 393: 289-93
    39. NTP Toxicology and Carcinogenesis Studies of EMODIN (CAS NO. 518-82-1) Feed Studies in F344/N Rats and B6C3F1 Mice. Natl Toxicol Program Tech Rep Ser 2001; 493: 1-278
    40. Mueller SO, Lutz WK, Stopper H. Factors affecting the genotoxic potency ranking of natural anthraquinones in mammalian cell culture systems. Mutat Res 1998; 414: 125-9
    41. Nebert DW, Roe AL, Dieter MZ, et al. Role of the aromatic hydrocarbon receptor and[Ah]gene battery in the oxidative stress response, cell cycle control, and apoptosis. Biochem Pharmacol. 2000; 59: 65-85
    42. Wang HW, Chen TL, Yang PC, et al. Induction of cytochromes P450 1A1 and 1B1 by emodin in human lung adenocarcinoma cell line CL5. Drug Metab Dispos 2001; 29: 1229-35
    43. Mueller SO, Stopper H, Dekant W. Biotransformation of the anthraquinones emodin and chrysophanol by cytochrome P450 enzymes. Bioactivation to genotoxic metabolites. Drug Metab Dispos 1998; 26: 540-6
    44. Tanaka H, Morooka N, Haraikawa K, et al. Metabolic activation of emodin in the reconstituted cytochrome P-450 system of the hepatic microsomes of rats. Mutat Res 1987; 176: 165-70
    45. Morita H, Umeda M, Masuda T, Ueno Y. Cytotoxic and mutagenic effects of emodin on cultured mouse carcinoma FM3A cells. Mutat Res. 1988; 204: 329-32
    46. Dimri GP, Lee X, Basile G, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 1995; 92: 9363-9367
    47. Heldman AW, Cheng L, Jenkins GM, et al. Paclitaxel stent coating inhibits neointimal hyperplasia at 4 weeks in a porcine model of coronary restenosis. Circulation. 2001; 103: 2289-95
    48. Wolfle D, Schmutte C, Westendorf J, et al. Hydroxyanthraquinones as tumor promoters: enhancement of malignant transformation of C3H mouse fibroblasts and growth stimulation of primary rat hepatocytes. Cancer Res 1990; 50: 6540-4
    49. Chang LC, Sheu HM, Huang YS, et al. A novel function of emodin: enhancement of the nucleotide excision repair of UV- and cisplatin-induced DNA damage in human cells. Biochem Pharmacol 1999; 58: 49-57
    50. Arends M J, Morris RG, Wyllie AH. Apoptosis. The role of the endonuclease. Am J Pathol. 1990; 136: 593-608
    51. Evan G, Littlewood T. A matter of life and cell death. Science. 1998; 281: 1317-22
    52. Kanduc D, Mittelman A, Serpico R, et al. Cell death: apoptosis versus necrosis. Int J Oncol. 2002; 21: 165-70
    53. Akuzawa S, Yamaguchi H, Masuda T, et al. Radical-mediated modification of deoxyguanine and deoxyribose by luteoskyrin and related anthraquinones. Mutat Res 1992; 266: 63-9
    54. Zhan Y, Li D, Wei H,et al. Emodin on hepatic fibrosis in rats. Chin Med J (Engl) 2000; 113: 599-601
    55. Lin CC, Chang CH, Yang J J, et al. Hepatoprotective effects of emodin from Ventilago leiocarpa. J Ethnopharmacol 1996; 52: 107-11
    56. Chiu PY, Mak DH, Poon MK, et al. In vivo antioxidant action of a lignan-enriched extract of Schisandra fruit and an anthraquinone-containing extract of Polygonum root in comparison with schisandrin B and emodin. Planta Med 2002; 68: 951-6
    57. Vousden KH. Activation of the p53 tumor suppressor protein. Biochimica Biophysica Acta 2002; 1602: 47-59
    58. Sharpless NE, DePinho RA. P53: good cop/bad cop. Cell 2002; 110: 9-12
    59. Yang J, Duerksen-Hughes P. A new approach to identifying genotoxic carcinogens: p53 induction as an indicator of genotoxic damage. Carcinogenesis. 1998; 19: 1117-1125
    60. Jayasuriya H, Koonchanok NM, Geahlen RL, et al. Emodin, a protein tyrosine kinase inhibitor from Polygonum cuspidatum. J Nat Prod 1992; 55(5): 696-8
    61. Yim H, Lee YH, Lee CH, et al. Emodin, an anthraquinone derivative isolated from the rhizomes of Rheum palmatum, selectively inhibits the activity of casein kinase Ⅱ as a competitive inhibitor. Planta Med 1999; 65: 9-13
    62. Mueller SO, Eckert I, Lutz WK, et al. Genotoxicity of the laxative drug components emodin, aloe-emodin and danthron in mammalian cells: topoisomerase Ⅱ mediated? Mutat Res 1996; 371: 165-73
    63. Bruggeman IM, van der Hoeven JC. Lack of activity of the bacterial mutagen emodin in HGPRT and SCE assay with V79 Chinese hamster cells. Mutat Res 1984; 138: 219-24
    64. Ogier-Denis E, Codogno P. Autophagy: a barrier or an adaptive response to cancer. Biochimica Biophysica Acta 2003; 1603: 113-128
    65. Knaapen M, Davies M J, Bie MD et al. Apoptotic versus autophagic cell death in heart failure. Cardiovascular Research 2001; 51: 304-312
    1. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983; 65: 55-63
    2. Molinari BL, Tasat DR, Palmieri MA, O'Connor SE, Cabrini RL. Cell-based quantitative evaluation of the MTT assay. Anal Quant Cytol Histol. 2003; 25: 254-62
    3. Bruggisser R, von Daeniken K, Jundt G, et al. Interference of plant extracts, phytoestrogens and antioxidants with the MTT tetrazolium assay. Planta Med. 2002; 68: 445-8
    4. Chen Y, Yang L, Lee TJ. Oroxylin A inhibition of lipopolysaccharide-induced iNOS and COX-2 gene expression via suppression of nuclear factor-kappaB activation. Biochem Pharmacol 2000; 59: 1445-57;
    5. Chen YC, Shen SC, Lee WR, et al. Emodin induces apoptosis in human promyeloleukemic HL-60 cells accompanied by activation of caspase 3 cascade but independent of reactive oxygen species production. Biochem Pharmacol 2002; 64: 1713-24;
    6. Wang HW, Chen TL, Yang PC, et al. Induction of cytochromes P450 1A1 and 1B1 by emodin in human lung adenocarcinoma cell line CL5. Drug Metab Dispos 2001; 29: 1229-35
    7. Jing X, Ueki N, Cheng J, et al. Induction of apoptosis in hepatocellular carcinoma cell lines by emodin. Jpn J Cancer Res 2002; 93: 874-82
    8. Lin CC, Chang CH, Yang J J, et al. Hepatoprotective effects of emodin from Ventilago leiocarpa. J Ethnopharmacol 1996; 52: 107-11
    9. Twentyman PR, Luscombe M. A study of some variables in a tetrazolium dye (MTT) based assay for cell growth and chemosensitivity. Br J Cancer. 1987; 56: 279-85
    10. Liang JW, Hsiu SL, Wu PP, et al. Emodin pharmacokinetics in rabbits. Planta Med 1995; 61: 406-8
    1. Wehner FC, Thiel PG, du Rand M. Mutagenicity of the mycotoxin emodin in the salmonella/microsome system. Appl Environ Microbiol 1979; 37: 658-60
    2. Masuda T, Ueno Y. Microsomal transformation of emodin into a direct mutagen. Mutat Res 1984; 125: 135-44
    3. Wang HH, Chung JG. Emodin-induced inhibition of growth and DNA damage in the Helicobacter pylori. Curr Microbiol 1997; 35: 262-6
    4. Duerksen-Hughes PJ, Yang J, Ozcan O. p53 induction as a genotoxic test for twenty-five chemicals undergoing in vivo carcinogenicity testing. Environ Health Perspect 1999; 107: 805-12
    5. Westendorf J, Marquardt H, Poginsky B, et al. Genotoxicity of naturally occurring hydroxyanthraquinones. Mutat Res 1990; 240: 1-12
    6. Mueller SO, Stopper H, Dekant W. Biotransformation of the anthraquinones emodin and chrysophanol by cytochrome P450 enzymes. Bioactivation to genotoxic metabolites. Drug Metab Dispos 1998; 26: 540-6
    7. Kodama M, Kamioka Y, Nakayama T, et al. Generation of free radical and hydrogen peroxide from 2-hydroxyemodin, a direct-acting mutagen, and DNA strand breaks by active oxygen. Toxicol Lett 1987; 37: 149-56
    8. Murakami H, Kobayashi J, Masuda T, et al. omega-Hydroxyemodin, a major hepatic metabolite of emodin in various animals and its mutagenic activity. Mutat Res 1987; 180: 147-53
    9. Lewis DFV, Ioannides C, Parke DV. COMPACT and Molecular Structure in Toxicity Assessment: A Prospective Evaluation of 30 Chemicals Currently Being Tested for Rodent Carcinogenicity by the NCI/NTP Environ Health Perspect 1996; 104S(5): 1011-6
    10. Bruggeman IM, van der Hoeven JC. Lack of activity of the bacterial mutagen emodin in HGPRT and SCE assay with V79 Chinese hamster cells. Mutat Res 1984; 138: 219-24
    11. Akuzawa S, Yamaguchi H, Masuda T, et al. Radical-mediated modification of deoxyguanine and deoxyribose by luteoskyrin and related anthraquinones. Mutat Res 1992; 266: 63-9
    12. Mengs U, Krumbiegel G, Volkner W. Lack of emodin genotoxicity in the mouse micronucleus assay. Mutat Res 1997; 393: 289-93
    13. NTP Toxicology and Carcinogenesis Studies of EMODIN (CAS NO. 518-82-1) Feed Studies in F344/N Rats and B6C3F1 Mice. Natl Toxicol Program Tech Rep Ser 2001; 493: 1-278
    14. Lee H, Tsai SJ. Effect of emodin on cooked-food mutagen activation. Food Chem Toxicol 1991; 29: 765-70
    15. Su HY, Cherng SH, Chen CC, et al. Emodin inhibits the mutagenicity and DNA adducts induced by 1-nitropyrene. Mutat Res 1995; 329: 205-12
    16. Koyama J, Morita I, Tagahara K, et al. Chemopreventive effects of emodin and cassiamin B in mouse skin carcinogenesis. Cancer Lett 2002; 182: 135-9
    17. Breimer DD, Baars AJ. Pharmacokinetics and metabolism of anthraquinone laxatives. Pharmacology 1976;14 Suppl 1: 30-47; van Os FH. Anthraquinone derivatives in vegetable laxatives. Pharmacology 1976; 14 Suppl 1: 7-17
    18. Bachmann M, Schlatter C. Metabolism of[14C]emodin in the rat. Xenobiotica 1981; 11: 217-25
    19. Liang JW, Hsiu SL, Wu PP, et al. Emodin pharmacokinetics in rabbits. Planta Med 1995; 61: 406-8
    20. Muller SO, Eckert I, Lutz WK, et al. Genotoxicity of the laxative drug components emodin, aloe-emodin and danthron in mammalian cells: topoisomerase Ⅱ mediated? Mutat Res 1996; 371: 165-73
    21. Mueller SO, Lutz WK, Stopper H. Factors affecting the genotoxic potency ranking of natural anthraquinones in mammalian cell culture systems. Mutat Res 1998; 414: 125-9
    22. Wang HW, Chen TL, Yang PC, et al. Induction of cytochromes P450 1A1 and 1B1 by emodin in human lung adenocarcinoma cell line CL5. Drug Metab Dispos 2001; 29: 1229-35
    23. Nakajima M, Sakata N, Ohashi N, et al. Involvement of multiple UDP-glucuronosyltransferase 1A isoforms in glucuronidation of 5-(4'-hydroxyphenyl)-5-phenylhydantoin in human liver microsomes. Drug Metab Dispos 2002; 30: 1250-6
    24. Chung JG, Wang HH, Wu LT, et al. Inhibitory actions of emodin on arylamine N-acetyltransferase activity in strains of Helicobacter pylori from peptic ulcer patients. Food Chem Toxicol 1997; 35: 1001-7
    25. Jing X, Ueki N, Cheng J, et al. Induction of apoptosis in hepatocellular carcinoma cell lines by emodin. Jpn J Cancer Res 2002; 93: 874-82
    26. Lin CC, Chang CH, Yang J J, et al. Hepatoprotective effects of emodin from Ventilago leiocarpa. J Ethnopharmacol 1996; 52: 107-11
    27. Chiu PY, Mak DH, Poon MK, et al. In vivo antioxidant action of a lignan-enriched extract of Schisandra fruit and an anthraquinone-containing extract of Polygonum root in comparison with schisandrin B and emodin. Planta Med 2002; 68: 951-6
    28. Huang SS, Yeh SF, Hong CY. Effect of anthraquinone derivatives on lipid peroxidation in rat heart mitochondria: structure-activity relationship. J Nat Prod 1995; 58: 1365-71
    29. Wang CC, Huang Y J, Chen LG, et al. Inducible nitric oxide synthase inhibitors of Chinese herbs Ⅲ. Rheum palmatum. Planta Med 2002; 68: 869-74
    30. Chen Y, Yang L, Lee TJ. Oroxylin A inhibition of lipopolysaccharide-induced iNOS and COX-2 gene expression via suppression of nuclear factor-kappaB activation. Biochem Pharmacol 2000; 59: 1445-57
    31. Kumar A, Dhawan S, Aggarwal BB. Emodin (3-methyl-l,6,8-trihydroxyanthraquinone) inhibits TNF-induced NF-kappaB activation, IkappaB degradation, and expression of cell surface adhesion proteins in human vascular endothelial cells. Oncogene 1998; 17: 913-8
    1. Goel RK, Das Gupta G, Ram SN, et al. Antiulcerogenic and anti-inflammatory effects of emodin, isolated from Rhamnus triquerta wall.Indian J Exp Biol1991 ;29:230-2
    2. Chang CH, Lin CC, Yang JJ, et al. Anti-inflammatory effects of emodinfrom ventilago leiocarpa. Am J Chin Med 1996;24:139-42
    3. Kawai K, Kato T, Mori H, et al. A comparative study on cytotoxicities andbiochemical properties of anthraquinone mycotoxins emodin and skyrinfrom Penicillium islandicum Sopp. Toxicol Lett 1984;20:155-60
    4. Kamei H, Koide T, Kojima T, et al. Inhibition of cell growth in culture byquinones. Cancer Biother Radiopharm 1998; 13:185-8
    5. Kuo YC, Sun CM, Ou JC, et al. A tumor cell growth inhibitor fromPolygonum hypoleucum Ohwi. Life Sci 1997;61:2335-44
    6. Akuzawa S, Yamaguchi H, Masuda T, et al. Radical-mediated modificationof deoxyguanine and deoxyribose by luteoskyrin and relatedanthraquinones. Mutat Res 1992;266:63-9
    7. Ernst F, Hetzel S, Stracke S, et al. Renal proximal tubular cell growth anddifferentiation are differentially modulated by renotropic growth factors andtyrosine kinase inhibitors. Eur J Clin Invest 2001;31:1029-39
    8. Kuo YC, Meng HC, Tsai WJ. Regulation of cell proliferation, inflammatorycytokine production and calcium mobilization in primary human T lymphocytes by emodin from Polygonum hypoleucum Ohwi. Inflamm Res2001 ;50:73-82
    9. Kuo YC, Tsai W J, Meng HC, et al. Immune reponses in human mesangial cells regulated by emodin from Polygonum hypoleucum Ohwi. Life Sci 2001 ;68:1271-86
    10. Shi YQ, Fukai T, Sakagami H, et al. Cytotoxic and DNA damage-inducing activities of low molecular weight phenols from rhubarb. Anticancer Res 2001 ;21:2847-53
    11. Liu G, Ye R, Tan Z.[Effect of emodin on fibroblasts in lupus nephritis]Zhongguo Zhong Xi Yi Jie He Za Zhi 2000;20:196-8
    12. Lee HZ. Effects and mechanisms of emodin on cell death in human lung squamous cell carcinoma. Br J Pharmacol2001;134:11-20
    13. Lee HZ. Protein kinase C involvement in aloe-emodin- and emodin-induced apoptosis in lung carcinoma cell. Br J Pharmacol 2001 ;134:1093-103
    14. Jing X, Ueki N, Cheng J, et al. Induction of apoptosis in hepatocellularcarcinoma cell lines by emodin. Jpn J Cancer Res 2002;93:874-82
    15. Chen YC, Shen SC, Lee WR,et al. Emodin induces apoptosis in humanpromyeloleukemic HL-60 cells accompanied by activation of caspase 3cascade but independent of reactive oxygen species production. BiochemPharmacol 2002;64:1713-24
    16. Duerksen-Hughes PJ, Yang J, Ozcan O. p53 induction as a genotoxic testfor twenty-five chemicals undergoing in vivo carcinogenicity testing.Environ Health Perspect 1999; 107:805-12
    17. Mueller SO, Stopper H. Characterization of the genotoxicity ofanthraquinones in mammalian cells. Biochim Biophys Acta1999;1428:406-14
    18. Jayasuriya H, Koonchanok NM, Geahlen RL, et al. Emodin, a proteintyrosine kinase inhibitor from Polygonum cuspidatum. J Nat Prod 1992;55(5):696-8
    19. Yim H, Lee YH, Lee CH, et al. Emodin, an anthraquinone derivative isolated from the rhizomes of Rheum palmatum, selectively inhibits the activity of casein kinase Ⅱ as a competitive inhibitor. Planta Med 1999;65:9-13
    20. Zhang L, Chang CJ, Bacus SS, et al. Suppressed transformation and induced differentiation of HER-2/neu-overexpressing breast cancer cells by emodin. Cancer Res 1995;55:3890-6
    21. Frew T, Powis G, Berggren M, et al. A multiwell assay for inhibitors of phosphatidylinositol-3-kinase and the identification of natural product inhibitors. Anticancer Res 1994; 14:2425-8
    22. Lai GH, Zhang Z, Sirica AE. Celecoxib Acts in a Cyclooxygenase-2-independent Manner and in Synergy with Emodin to Suppress Rat Cholangiocarcinoma Growth in Vitro through a Mechanism Involving Enhanced Akt Inactivation and Increased Activation of Caspases-9 and -3. Mol Cancer Ther 2003;2:265-71
    23. Chan TC, Chang CJ, Koonchanok NM, et al. Selective inhibition of the growth of ras-transformed human bronchial epithelial cells by emodin, a protein-tyrosine kinase inhibitor. Biochem Biophys Res Commun 1993;193:1152-8
    24. Chang CJ, Ashendel CL, Geahlen RL, et al. Oncogene signal transductioninhibitors from medicinal plants. In Vivo 1996; 10:185-90
    25. Jinsart W, Ternai B, Polya GM. Inhibition of myosin light chain kinase,cAMP-dependent protein kinase, protein kinase C and of plantCa(2+)-dependent protein kinase by anthraquinones. Biol Chem HoppeSeyler 1992;373:903-10
    26. Lin XZ, Jin ZH.[Effects of sennosides, rhubarb polysaccharides andemodin on the cytoplasmic free calcium in isolated rat brain cells]Yao XueXue Bao 1995;30:307-10
    27. Cheng YW, Kang JJ. Emodin-induced muscle contraction of mousediaphragm and the involvement of Ca2+ influx and Ca2+ release fromsarcoplasmic reticulum. Br J Pharmacol 1998; 123:815-20
    28. Battistutta R, Sarno S, De Moliner E, et al. The replacement of ATP by the competitive inhibitor emodin induces conformational modifications in the catalytic site of protein kinase CK2. J Biol Chem 2000;275:29618-22
    29. Wang CC, Huang Y J, Chen LG, et al. Inducible nitric oxide synthase inhibitors of Chinese herbs Ⅲ. Rheum palmatum. Planta Med 2002;68:869-74
    30. Chen Y, Yang L, Lee TJ. Oroxylin A inhibition of lipopolysaccharide-induced iNOS and COX-2 gene expression via suppression of nuclear factor-kappaB activation. Biochem Pharmacol 2000;59:1445-57
    31. Vargas F, Fraile G, Velasquez M, et al. Studies on the photostability and phototoxicity of aloe-emodin, emodin and rhein. Pharmazie 2002;57:399-404
    32. Kersten B, Zhang J, Brendler-Schwaab SY, et al. The application of the micronucleus test in Chinese hamster V79 cells to detect drug-induced photogenotoxicity. Mutat Res 1999;445:55-71
    33. Huang HC, Chu SH, Chao PD. Vasorelaxants from Chinese herbs, emodin and scoparone, possess immunosuppressive properties. Eur J Pharmacol 1991;198:211-3
    34. Huang HC, Chang JH, Tung SF, et al. Immunosuppressive effect of emodin, a free radical generator. Eur J Pharmacol 1992;211:359-64
    35. Yung S, Liu ZH, Lai KN, et al. Emodin ameliorates glucose-induced morphologic abnormalities and synthesis of transforming growth factorbeta1 and fibronectin by human peritoneal mesothelial cells. Perit Dial Int2001 ;21 Suppl 3:S41-7
    36. Wehner FC, Thiel PG, du Rand M. Mutagenicity of the mycotoxin emodinin the salmonella/microsome system. Appl Environ Microbiol1979;37:658-60
    37. Masuda T, Ueno Y. Microsomal transformation of emodin into a directmutagen. Mutat Res 1984; 125:135-44
    38. Mueller SO, Stopper H, Dekant W. Biotransformation of theanthraquinones emodin and chrysophanol by cytochrome P450 enzymes.Bioactivation to genotoxic metabolites. Drug Metab Dispos 1998;26:540-6
    39. Kodama M, Kamioka Y, Nakayama T, et al. Generation of free radical andhydrogen peroxide from 2-hydroxyemodin, a direct-acting mutagen, and DNA strand breaks by active oxygen. Toxicol Lett 1987;37:149-56
    40. Murakami H, Kobayashi J, Masuda T, et al. omega-Hydroxyemodin, a major hepatic metabolite of emodin in various animals and its mutagenic activity. Mutat Res 1987; 180:147-53

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700