抗性浸矿细菌的选育及抗性机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究选育对重金属等毒性离子具有抗性的高效浸矿菌株,并对抗性菌株对重金属等毒性离子的耐受能力、耐受机理、抗性相关基因及基因差异表达、阴离子对细菌的影响等进行研究。用9K培养基分别以Fe~(2+)及元素S作为能源,对来自江西德兴铜矿、湖北大冶铜矿、广西大厂等多个矿区的矿坑水样本进行了硫化矿浸矿细菌的富集、筛选、驯化、分离纯化,得到能氧化Fe~(2+)及元素S的纯化菌株。提取纯化细菌基因组DNA,通过PCR聚合酶链反应扩增出其16S rDNA片段,测定其16S rDNA片段的核苷酸序列,用BLAST对其16S rDNA序列进行比较分析以鉴定选育出的浸矿细菌并构建进化树。在9K培养基中分别加入Cu~(2+),Ag~+,Hg~(2+),Pb~(2+),Mg~(2+)等重金属离子,通过重铬酸钾滴定法测定培养基中的Fe~(2+)浓度来确定所分离的菌株在重金属离子抑制情况下对Fe~(2+)的氧化能力变化并筛选出重金属抗性菌株。对抗性菌株的最高耐受能力进行测定并在最高耐受浓度时对Fe~(2+)的氧化能力进行测定和分析。对筛选出的重金属抗性菌株进行紫外诱变以获得具有更高的Fe~(2+)氧化能力及更高重金属离子耐受能力的突变菌株。根据GenBank中的抗性基因序列自行设计抗性基因引物,对实验菌株的重金属抗性基因(抗铜基因、抗砷基因及抗银基因)进行PCR扩增、分子克隆及序列测定,用BLAST搜索工具对上述抗性基因进行分析;对上述抗性基因编码的蛋白质进行分析并构建进化树。在不同铜离子浓度时对抗铜基因差异表达进行分析并进行铜蓝浸矿实验。在以Fe~(2+)为能源的9K培养基中加入不同锌盐,研究在同种阳离子存在时阴离子对浸矿菌株的Fe~(2+)氧化能力的影响。
     16S rDNA的序列分析结果表明,本研究的实验菌株均为嗜酸氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans,简称为At.ferrooxidans)。实验菌株对重金属离子的耐受能力测定结果表明,驯化后筛选出对重金属离子有较高抗性的抗性菌株,对Cu~(2+),Ag~+,Hg~(2+),Pb~(2+),Mg~(2+)的最高耐受能力分别为32000 mg/L,240 mg/L,0.9 mg/L,3500 mg/L,22500 mg/L。而野生菌株对上述离子的最高耐受浓度分别为19000mg/L,60 mg/L,0.1 mg/L,400 mg/L,13500 mg/L,说明驯化后抗性菌株对重金属离子的耐受能力明显增强。对具有较高Cu~(2+)抗性和Ag~+抗性的抗性菌株进行紫外诱变,获得的突变菌株生长性能稳定,比诱变前菌株及野生菌株具有更高的Fe~(2+)氧化能力和更强的耐受重金属离子性能。其对Cu~(2+)和Ag~+的耐受能力分别是野生菌的2—3倍,是驯化菌的1.1—1.3倍。对其抗铜机理及抗银机理研究的结果表明:At.ferrooxidans有抗铜基因AFE0454 copper resistance protein;但没有发现抗银基因silC。在不同铜离子浓度时抗铜基因表达有明显差异。铜蓝浸矿实验发现M26~#的浸矿能力明显高于DC~#和26~#,在CuS浓度为9%时M26~#浸出率可达66.87%。
     对抗铜基因编码的蛋白质进行分析发现了结构域CopD和PcoD。结构域CopD编码抗铜蛋白,而PcoD的预测产物是铜离子导出蛋白。PcoD与CopD均与Cu~(2+)抗性有关。通过自行设计的抗砷基因引物对另一个抗性基因抗砷基因arsH进行PCR扩增、克隆及测序。结果显示,实验菌株的抗砷基因arsH的序列与模式菌株At.ferrooxidansATCC23270的序列有14个碱基不同。对arsH基因编码的arsH蛋白进行分析,找到了一段以硫作为信号的NADPH(还原性辅酶Ⅱ)依赖的FMN(黄素单核苷酸)还原酶的功能域。推测At.ferrooxidans菌中arsH的功能可能与arsC基因编码的还原酶的氧化还原作用有关。
     除了重金属离子对At.ferrooxidans菌的影响,阴离子对细菌生长活性及Fe~(2+)氧化能力也有重要影响,其影响的强弱顺序为:
     SO_4~(2-)≦Cl~-<NO~(3-),不同菌株对阴离子的耐受能力有明显差异。
To screen bioleaching bacteria which are resistant to heavy metals and other toxic ions, and to study the microorganisms' resistance capacities, resistance mechanisms, responsible resistance genes, and the effects of anions. The sulphides bioleaching bacteria were obtained from acid mine drainage (AMD) samples collected from Dexing Copper Mine in Jiangxi Province, Daye Copper Mine in Hubei Province, Dachang Copper Mine in Guangxi Province, China by enrichment, screening, adaptation, and isolation using 9K medium with Fe~(2+) and sulfur as energy sources. Genomic DNA of the isolates was extracted and the 16S rDNA was amplified using PCR technique. The PCR products were compared and analyzed with the known sequences published in GenBank using the BLAST search tool of the National Centre for Biotechnology Information database; the bioleaching bacteria were identificated; the evolutionary relationships were described and the homolog trees were constructed. 9K medium containing several of heavy metal ions (Cu~(2+), Ag~+, Hg~(2+) , Pb~(2+) , Mg~(2+)) was used to culturemetal-resistant bacteria; the ferrous ions concentrations were determined by potassium dichromate titration methods to examine the bacterial oxidation capacities of ferrous ions. The highest toleranceconcentrations to heavy metal ions for metal resistant bacteria were determined and at which the oxidation capacities of ferrous ions of these bacteria were analyzed. The metal resistant bacteria were UV induced mutated to obtain mutants which have higher oxidation capacities of ferrous ions and higher resistance to heavy metal ions. Resistance gene primers were designed according to the data in gene bank. The resistance genes were amplified by PCR (Polymerase Chain Reaction) and the resulting PCR products were cloned and the cloned productswere sequenced. The cloned results were compared and analyzed with the known sequences published in GenBank using the BLAST search tool of the National Centre for Biotechnology Information database. The amino acid sequences of protein were compared with the sequences in the NCBI database, the evolutionary relationships were described and the homolog trees were constructed. The effects of anions were inverstigated when 9K medium containing ZnCl_2, ZnSO_4, Zn(NO_3)_2,respectively, was used to enrich resistant bacteria.
     The results of 16S rDNA sequences analysis showed that the isolates in this study are all Acidithiobacillus ferrooxidans(At. ferrooxidans). The bacterial resistance capacities to heavy metal ions were determined and the results showed that the tolerate concentration levels of the adaptation bacteria were 32000 mg/L (Cu~(2+) ), 240 mg/L (Ag~+), 0.9 mg/L (Hg~(2+) ), 3500 mg/L (pb~(2+)), 22500 mg/L (Mg~(2+) ), respectively, while the tolerate concentration levels of the wild bacteria were 19000 mg/L (Cu~(2+)), 60 mg/L (Ag~+), 0.1 mg/L (Hg~(2+)), 400 mg/L (Pb~(2+)), 13500 mg/L (Mg~(2+) ), respectively, which means the adaptation bacteria have higher resistance capacities than that of the wild types. The adapted resistant bacteria were UV induced mutated and the mutants grew well and had higher resistance capacities to heavy metal ions and higher oxidation capacities of ferrous ions than that of the adapted bacteria. Their tolerate capacities to Cu~(2+) and Ag~+ were 2-3 times higher than that of the wild bacteria and 1.1--1.3 times higher than that of the adapted types, respectively. The resistance mechanisms to Cu~(2+) and Ag~+ were studied and the results showed that there is copper resistant gene CopD gene but fails to find silver resistant gene silC gene in At. ferrooxidans. The amino acid sequence coded by copper resistant gene was analyzed and two domains were found named CopD and PcoD. The domain CopD coded copper ion resistance protein D and the domainPcoD has a conserved sequence and presumed as a copper ion exporting protein. CopD and PcoD are both responsible to copper resistance. Another gene, arsenic resistance arsH gene of At. ferrooxidans, was amplified by PCR( Polymerase Chain Reaction ) and the resulting PCR products were cloned and sequenced. The cloned results were analyzed and compared by NCBI search tool. The amino acid sequence of arsH protein of At. ferrooxidans was compared with sequences in the NCBI database. The results indicated that there are 14 bp of the arsH gene of the tested strain which are different from those of model At. ferrooxidans ATCC 23270. arsH protein coded by arsH gene was analyzes and a functional domain named FMN _red was found which was proposed to be FMN reductase regarding sulfur as a signal. It is presumed that arsenic-resistance arsH gene is functionally related to redox of arsC reductase.
     Besides the effects of heavy metal ions, anions also obviously impact the oxidation capacities of ferrous ions of these bacteria and the effect orderly NO_3~->Cl~->SO_4~(2-). And the bacterial tolerance levels to anions had visible differences from different strains.
引文
Abha K, Natarajan K A. Development of a clean bioelectrochemical process for leaching of ocean manganese nodules [J]. Minerals Engineering, 2002, 15: 103-106
    
    Acharya C, Kar R N, Sukla L B. Bacterial removal of sulphur from three different coals [J].Fuel, 2001, 80:2207-2216.
    
    Ahmad M K, Tariq M B, Umar M. An Improved Solid Medium for Isolation, Enumeration and Genetic Investigations of Autotrophic Iron- and Sulphur-oxidizing Bacteria [J],Appl MicrobiolBiotechnol, 1993,39:259-263
    
    Altschul S F, Madden T L, Schaffer A A, Zhang J, Zhang Z, Miller W, Lipman D J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J]. Nucleic Acids Res. 1997, 25: 3389-3402
    
    Amit G, Maria M. Effects of halidesonplasmidme diated silver resistance in Escherichia coli [J]. Appliedand Environmental Microbiology, 1998, 64(12): 5042-5045
    
    AnaA, Patricias, et al. Stenotrop homonasmal to philia D457R contains acluster of genes from gram positive bacteria involved in antibiotic and heavy metal resistance [J]. An timicrobial agent sand chemotherapy, 2000, 44(7): 1778-1782
    
    Bennett M S, Guan Z, Laurberg M and Su X D. Bacillus subtilis arsenate reductase is structurally and functionally similar to low molecular weight protein tyrosine phosphatases. Proc. Natl. Acad. Sci. USA, 2001,98: 13577-13582
    
    Borremans, Hobman. cloning and functional analysis of the pbrlead resistance determinant of Ralstonia metal liduransch 34 [J]. Journal of bacteriology, 2001, 183(19): 5651-5658
    
    Bobrowicz P, Wysocki R, Owsianik G, Goffeau A and Ulaszewski S. Isolation of three contiguous genes, ACR1, ACR2 and ACR3, involved in resistance to arsenic compounds in the yeast Saccharomyces cerevisiae [J]. Yeast, 1997, 13: 819-828Butcher B G and Rawlings D E. The divergent chromosomal ars operon of Acidithiobacillus ferrooxidans is regulated by an atypical ArsR protein [J]. Microbiology, 2002, 148: 3983-3992.
    
    Brieriey L. The bacteria oxidation [J]. hydrometallurgy, 1996,4: 44-47.
    Brierley J A, Brierley C L. Present and future commercial applications of biohydrometallurgy [J].Hydrometallurgy, 2001, 59:233-239.
    Brown E. J, Forshaug J M. Metabolic properties of Thiobacillus ferooxidans isolated from neutal pH mine drainage [J]. Gov. Rep. Announce. Index. 1983, 83(18): 44-65
    Brown E J, Luong H V, Forshsnug J M. The occurrence of Thiobacillus ferrooxidans and arsenic in subarctic streams affected by gold-mine drainage [J]. Arctic, 1982,35(3): 417-421
    Butcher B G, Deane S M and Rawlings D E. The chromosomal arsenic resistance genes of Thiobacillus ferrooxidans have an unusual arrangement and confer increased arsenic and antimony resistance to Escherichia coli [J]. Appl Environ Microbiol, 2000, 66: 1826-1833.
    Canovas D, Cases I, Lorenzo V de. Heavy metal tolerance and metal homeostasis in Pseudomonas putida as revealed by complete genome analysis [J]. Environ. Microbiol. 2003, 5: 1242-1256.
    Chai L, Wei W, Okido M. Studies on Effect of Cu(II) on Growth of Thiobacillus ferrooxidans Using Series Piezoelectric Quartz Crystal [J]. Minerals engineering, 2000, Vol.13, No.8-9, 969-97
    Chen YT, Chang HY, Lai YC, Pan CC, Tsai SF, Peng HL. Sequencing and analysis of the large virulence plasmid pLVPK of Klebsiella pneumoniae CG43[J]. Gene, 2004, 4(337): 189-198
    Claudia G, MarkK, et al. Identification of the copper reg uloninsac charomycesce revisiae by DNA microarray S [J].J.Biol.Chem., 2000, 275(41): 32310-32316
    Clemens S, Palmgren M G, Kramer U. Alongway ahead: understanding and engineering plantmetal accumulation.Trend sin Plant Science,2002, 7(7): 309 -315.
    Colmer A R and Hinckle M E. The role of microorganisms in acid mine drainage (J). A Preliminary Report, Science, 1947,106: 253-256.
    Das A, Modak J M, Natarajan K A. Studies on Multi-Metal Ion Tolerance of Thiobacillus ferrooxidans [J]. Minerals Engineering, 1997, VOL.10, No.7, 743-749
    De G C, Oliver D J, Pesic B M. Effect of heavy mentals on the ferrous iron oxidizing ability of Thiobacillus ferrooxidans [J]. Hydrometallurgy, 1997: 4453-63
    Dey S, Dou D, Tisa L S and Rosen B P. Interaction of the catalytic and the membrane subunits of an oxyanion-translocating ATPase [J]. Arch. Biochem. Biophys. 1994.311: 418-424.
    Dey S, Dou D, Rosen B P. ATP-dependent arsenite transport in everted membrane vesicles of Escherichia coli [J]. J Biol Chem, 1994,269: 25442-25446.
    Ehrlich H L. Ocean manganese nodules: Biogenesis and bioleaching possibilities (J). Minerals and Metallurgical Processing, 2000,17(2): 121 - 128
    Ehrlich H L. Bacterial oxidation of As(III) compounds, 2002, 313-329. In W. T. Frankenberger, Jr. (ed.), Environmental chemistry of arsenic. Marcel Dekker Inc., New York, N.Y.
    Ericg S, et al. Chromosomallosus for cadmium resistance in pseudomonas putida consisting of acadmium transporting ATPase and a MerR family response regulator [J]. Applied and Environmental Microbiology, 2001, 67(4): 1437-1444
    Gladysheva T B, Oden K L and Rosen B P. Properties of the arsenate reductase of plasmid R773 [J]. Biochemistry, 1994, 33 : 7288-7293.
    Govardus A H, Win D, Hazeu P B, et al. Polythionate Degradation by Tetrathionate Hydrolase of Thiobacillus Ferrooxidans [J], Mi crobilolgy, 1997, 143,499-504
    Gupta A, Matsui K, Lo JF, Silver S. Molecular basis for resistance to silver cations in Salmonella [J]. Nature medicine, 1999, 5(2): 183-188.
    Gupta A, Phung L T, Taylor D E, Silver S. Diversity of silver resistance genes in IncH incompatibility group plasmids [J]. Microbiology, 2001, (147): 3393 -3402
    Inoue C, Sugawara K, Kusano T. Thiobacillus ferrooxidans mer operon: sequence analysis of the promoter and adjacent genes [J]. Gene, 1990, 30; 96(1): 115-20
    Inoue C, Sugawara K, and Kusano T. The merR regulatory gene in Thiobacillus ferrooxidans is spaced apart from the mer structural genes [J]. Mol. Microbiol, 1991, 5(11) : 2707-2718
    Inskeep W P, McDermott T R and Fendorf S. Arsenic (V)(III) cycling in soils and natural waters, p. 183-216. In W. T. Frankenberger, Jr. (ed.), Environmental chemistry of arsenic. Marcel Dekker, Inc., New York, N.Y. 2002
    Kashyap D R, Botero L M, Lehr C, Hassett D J, and McDermott T R. A Na+ : H+ Antiporter and a Molybdate Transporter Are Essential for Arsenite Oxidation in Agrobacterium tumefaciens [J]. Journal of Bacteriology, February, 2006,Vol. 188, No. 4: 1577-1584,
    Ji G and Silver S. Reduction of arsenate to arsenite by the ArsC protein of the arsenic resistance operon of Staphylococcus aureus plasmid pI258 [J]. Proc. Natl. Acad. Sci. USA. 1992, 89: 9474-9478.
    Ji G and Silver S. Regulation and expression of the arsenic resistance operon from Staphylococcus aureus plasmid pI258 [J]. Bacteriol. 1992,174: 3684-3694
    Jonathan J, AliCe L, et al. Cd(II) responsive and constitutive mutant simplicate a novel domain in MerR [J]. Journalofbacteriology, 1999, 181(11): 3462-3471
    Kaur P, Rosen B P. Plasmid-encoded resistance to arsenic and antimony [J]. Plasmid, 1992,27:29-40.
    Kenji I, Fumiaki T, et al. Ferrousiron dependent volatilization of mercury by the plasmamembrane of Thiobacillusferrooxidans [J]. Applied and Environmental MiCrobiology, 2000, 66(9): 3823-3827
    Kelly D P,Wood A P. Reclassification of some species of Thiobacillus to the newly designated genera Acidi thiobacillus gen.nov., Halothiobacillusgen.nov.and Thermithiobacillusgen. nov. [J]. International Journal of Systematic and Evolutionary Microbiology, 2000,50:489-500.
    Kieser T, Bibb M J, Buttner M J, Chen B F and Hopwood D A. Practical Streptomyces genetics. The John Innes Foundation, Norwich, Conn. 2000.
    Kumari A, Natarajan K A. Electrochemical aspects of leaching of ocean nodules in the presence and absence of microorganisms [J]. International Journal of Mineral Processing, 2002,66: 29-47.
    Leathen W W, Kinsel N A and Braley S A. Ferrobacillus ferrooxidans: A chemosynthetic autotrophic bacterium (J). Bacterial, 1956, 72: 700-704
    Li H M, Ke J J. Influence of Ni2+ and Mg2+ on the growth and activity of Cu2+ adapted Thiobacillus ferrooxidans [J]. Hydrometallurgy, 2001, 61: 151 - 156
    Li R, Debella H J and W W. Carmichael. Isolates dentifiable as Athrospira maxima and Athrospira fusiformis (Oscillatoriales, Cyanobacteria) appear identical on the basis of a morphological study in culture and 16S rRNA sequences [J]. Phycologia,2001,40: 367-371
    Liu Z, Borne F, Ratouchniak J, et al. Genetic transfer of IncP, IncQ and IncW plasmids to four Thiobacillus ferrooxidans strains by conjugation [J]. Hydrometallurgy, 2001,59: 339-345.
    Macur R E, Jackson C R, McDermott T R and Inskeep W P. Bacterial populations associated with the oxidation and reduction of arsenic in an unsaturated soil [J]. Environ. Sci. Technol. 2004, 38: 104-111
    Maury L L, Florencio F J and Reyes J C. Arsenic sensing and resistance system in the cyanobacterium Synechocystis sp. strain PCC 6803 [J]. Bacteriol. 2003, 185: 5363-5371
    Maria T, Groot P, Deane S M and Rawlings D E. An unusual Tn21 -like transposon containing an ars operon is present in highly arsenic resistant strains of the biomining bacterium Acidithiobacillus caldus [J]. Microbiology, 2005, 151 : 3027-3039
    Martin P, DeMel S, Shi J, Gladysheva T, Gatti D L, Rosen B P and Edwards B F P. Insights into the structure, solvation, and mechanism of the ArsC arsenate reductase, a novel arsenic detoxification enzyme [J]. Structure, 2001, 9: 1071-1081.
    Mazuelos A, Palencia I, Romero R. Ferric iron production in packed bed bioreactors: Influence of pH, temperature, particlesize, bacterial support material and type of air distributor [J]. Minerals Engineering, 2001,14: 507-514.
    Mazuelos A, Palencia I, Romero R, Rodriguez G. Minerals Engineering [J ] 2001, 14 (5) : 507-5141
    Mukhopadhyay R, Rosen B P, Phung I T, and Silver S. Microbial arsenic: from geocycles to genes and enzymes [J]. FEMS Microbiol. Rev. 2002,26: 311 -325.
    Mukhopadhyay R and Rosen B P. The phosphatase C(X)5R motif is required for catalytic activity of Saccharomyces cerevisiae Acr2p arsenate reductase [J]. Biol. Chem. 2001,276: 34738-34742
    Mukhopadhyay R and Rosen B P. Saccharomyces cerevisiae ACR2 gene encodes an arsenate reductase [J]. FEMS Microbiol. Lett., 1998,168: 127-136.
    Muller D, Lievremont D, Simeonova D D, Hubert J C, and Lett M C. Arsenite Oxidase aox Genes from a Metal-Resistant β-Proteobacterium [J]. Journal of Bacteriology, 2003, Vol. 185, No. 1 : 135-141,
    Nestor D, Valdivia U, Chaves A P. Mechanisms of bioleaching of a refractory mineral of gold with Thiobacillus ferrooxidan [J]. International Journal of Mineral Processing, 2001,62: 187-198.
    Neyt C, Iriarte M, Thi V Ha Cornelis G R. Virulence and arsenic resistance in yersiniae [J]. Bacteriol. 1997,179: 612-619.
    Novol M T, Silval A C, Moreto R, Paula C P, Costacurtal C A, Garcia O J, Laura M M. Ottobonil Thiobacillus ferrooxidans response to copper and other heavy metals: growth, protein synthesis and protein phosphorylation,Antonie van Leeuwenhoek, 2000, 77: 187 -195
    Ohmura N, Sasaki K, Matsumoto N, et al. Anaerobic. Respiration Using Fe3+, S0, and H2 in the Chemo lithoautotrophic Bacterium Acidithiobacillusferrooxi dans [J]. Journal of Bacteriology, 2002,184:2081-2087.
    Ordonez E, Letek M, Valbuena N, Gil J A and Ateos L M. Analysis of Genes Involved in Arsenic Resistance in Corynebacterium glutamicum ATCC 13032 [J]. Applied and Environmental Microbiology, 2005, p. 6206-6215
    Patra M, Bhowmik N, Bandopadhyay B and Sharma A. Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance [J]. Environmental and Experimental Botany, 2004,52(3): 199-223
    Perry J, Carol A. Role of acand idaalbican SP1 Type ATase in resistance to copper and silver ion toxicity [J]. Journal of Bacteriology, 2000, 182(17): 4899 -4905
    Qiu GZ, Wang J, et. al Application of silver to catalyzing of Bacterial Leaching of copper ore[J]. Mining and metallurgical engineering, 1998, 18 (3): 22-26
    Rawlings D E. The molecular genetics of Thiobacillus ferrooxidans and other mesophilic, acidophilic, chemolithotrophic, iron- or sulfur-oxidizing bacteria [J]. Hydrometallurgy, 2001, 59: 187-201
    Rainey F A, Rainey N W, Reiner M, Kroppenstedt, Stackebrandt E. The Genus Nocardiopsis Represents a Phylogenetically Coherent Taxon and a Distinct Actinomycete Lineage [J]. Proposal of Nocardiopsaceae fam. nov. International Journal of Systematic Bacteriology, 1996, 1088-1092
    Rawlings D E. and S. Silver. Mining with microbes[J]. Bio/Technology, 1995, 13: 773-778
    Rawlings D E. The molecular genetics of Thiobacillus ferrooxidans and other mesophilic, acidophilic, chemolithotrophic, iron-or sulfur-oxidizing bacteria[J]. Hydrometallurgy, 2001, (59): 187-201
    Rosen B P. Families of arsenic transporters [J]. Trends Microbiol. 1999, 7 : 207-212.
    
    Rawlings D E. Heavy metal mining using microbes[J]. Annual Review Microbiology, 2002, 56:65-91.
    Ryan D and Colleran E. Arsenical resistance in the IncHI2 plasmids[J]. Plasmid . 2002,47: 234-240
    Sand W, Gehrke T, Jozsa P G, Schippers A. Biochemistry of bacterial leaching-direct vs. indirectBioleaching [J]. Hydrometallurgy, 2001,159-175
    Sampson M I, Philips C V, Blake R C. Influence of The Attachment of Acidophilic Bacteria During The Oxidation of Mineral Sulfides [J], Minerals Engineering, 2000,13 (4): 373-389
    Sampson M I, Phillips C V, Ball A S. Investigation of Theattachment of Thiobacillus Ferrooxidans to Mineral Sulfides Using Scanning Electron Microscopy Analysis [J],2000,13(6):643-656
    Sanhueza A, Ferrer I J,Vargas T,et al. Attachment of Thiobacillus Ferrooxidans on Synthetic Pyrite of Varying Structural and Electronic Prop erties [J], Hydrometallurgy, 1999, 51,115-129
    Saltikov C W, Cifuentes A, Venkateswaran K and Newman D K. The ars detoxifcation system is advantageous but not required for As(V) respiration by the genetically tractable Shewanella species strain ANA-3[J]. Appl. Environ. Microbiol. 2003), 69: 2800-2809.
    Santini J M and Hoven R N. Molybdenum-containing arsenite oxidase of the chemolithoautotrophic arsenite oxidizer NT-26. [J]. Bacteriol. 2004,186: 1614-1619.
    Seeger M, Osorio G & Jerez C A. Phosphorylation of GroEL, DnaK and others proteins from Thiobacillus ferrooxidans grownunder different conditions [J]. FEMS Microbiol. Lett. 1996,138: 129-134.
    Shi SY,Fang ZH. Bioleaching of marmatite flotation concentrate by Acidithiobacillus ferrooxidans[J] .Hydrometallurgy,2004,75:1 -10.
    Shiratori T, Inoue C, Sugawara K, Kusano T, Kitagawa Y. Cloning and expression of Thiobacillus ferrooxidans mercury ion resistance genes in Escherichia coli. [J]. Bacteriol, 1989, (171): 3458-3464.
    Simth R W, Misra M. Recent developments in the bioprocessing of minerals [J]. Mineral Processing and Extract Metallurgy Review, 1993, (12): 37-60.Silver S. Bacterial silver resistance: molecular biology and uses and misuses of silver compounds [J]. FEMS Microbiology Reviews, 2003, (27): 341-353
    Silver S and Phung L T. Bacterial heavy metal resistance: new surprises [J]. Annu. Rev. Microbiol. 1996, 50: 753-789.
    Silver S. Bacterial resistances to toxic metal ions-a review[J]. Gene. 1996,179 : 9-19
    Silver S, Phung L T and Rosen B P. Arsenic metabolism: resistance, reduction and oxidation, 2002, 247-272. In W. T. Frankenberger, Jr. (ed.), Environmental chemistry of arsenic. Marcel Dekker, Inc., New York, N.Y.
    Silver S and Phung L T. Genes and Enzymes Involved in Bacterial Oxidation and Reduction of Inorganic Arsenic[J]. Applied and Environmental Microbiology, 2005, 599-608
    Simon V, Shareeka L, et al. stimulation of strontium accumulation in linoleate enriched saccharomyces cerevisiaeisa result of reduced Sr2+ efflux[J]. Applied and Environmental Microbiology, 1999, 65(3): 1191-1197
    Smith R W, Misra M, et al. Mineral bioprocessing and the future[J]. MineEng, 1991, (4): 1127-1141
    Tanja K R, et al. Silver based crystal inenanoparti cles, microbial lyfabricated[J]. Applied physical sciences/MiCroBiology, 1999, 96(24): 13611-13614
    Temple K L, Colmer A R. The autotrophic oxidation of iron by a new bacterium: Thiobacillus ferrooxidans[J]. Journal of Bacteriolgy, 1951, (62): 605-611
    Temple K L and Delchamps E W. Autotrophic bacteria and the formation of acid in Bituminous Coal Mines (J). Applied Microbiology, 1953,1: 255-258.
    Tisa L S and Rosen B P. Molecular characterization of an anion pump: the ArsB protein is the membrane anchor for the ArsA protein [J]. Biol. Chem. 1990, 265: 190-194.
    Toni A, Chri S W, et al. Extracellularmetal Binding activity of the sulphate reducing bacterium desulfococcus multivorans. Microbiology, 1999, 145: 2987-2995
    Tributsch H. Direct versus indirect bioleaching [J]. Hydrometallurgy, 2001,59: 177-185
    Vanden. Arsenite oxidation by the heterotroph Hydrogenophaga sp. str. NT-14: the arsenite oxidase and its physiological electron acceptor[J]. Biochim. Biophys. Acta 2004, 1656: 148—155.
    Veronica W S, et al. Cloning and expression of cadd, a new cadmium resistance gene of staphylococcusaureus[J]. Journal of Bacteriology, 1999, 181(13): 4071—4075
    Wang L, Chen S, Xiao X, Huang X, You D, Zhou X and Deng Z. arsRBOCT Arsenic Resistance System Encoded by Linear Plasmid pHZ227 in Streptomyces sp. Strain FR-008[J]. Applied and nvironmental Microbiology, 2006, Vol. 72, No.5p. 3738—3742,
    Wang W M, Wang YY, Wang LF, Gao D. Primary Studies on The Growth Conditions of Thiobacillus Ferrooxidans[J]. Non-Ferrous Mining and Metallurgy. 2004, 20(5): 54—56
    Wu XL, Ding JN, Gao J, Liu XX, Qiu GZ. Isolation and identification of metal-resistant iron-oxidizing bacteria[J]. Minerals & Metallurgical Processing, 2007, 24(1): 57—60.
    Zhiqi H, Shaolin C, et al. Cloning, expression and charac terization of cadmium and manganese uptake genes from lacto bacillus plantarum[J]. Applied and Environmental Micro Biology, 1999, 65(11): 4746—4752
    Zhou T, Radaev S, Rosen B P. and Gatti, D. L., (2000). Structure of the Ars A ATPase: the catalytic subunit of a heavy metal resistance pump[J]. EMBO J. 19: 4838—4845.
    陈泉军,方兆珩.硫杆菌浸出低品位镍铜硫化矿[J].过程工程学报,2001,1(1):49—53.
    陈素华,孙铁珩,周启星,吴国平.微生物与重金属间的相互作用及其应用研究.应用生态学报,2002,13(2):239—242。
    陈文新.细菌系统发育[J].微生物学报,1998,38(3):240-243.
    邓恩建,杨朝晖,曾光明,陶然.氧化亚铁硫杆菌培养条件的筛选及脱硫效果研究[J].环境科学与技术,2005(6):1—4
    邓恩建,杨朝晖,曾光明,徐峥勇.氧化来铁硫杆菌的研究概况[J].黄金科学技术.2005,13(5):9—11.
    范有静,杨红英,訾建威.溶液中离子对浸矿工程菌的影响[J].有色矿冶,2004,20(2):17—19
    傅建华,邱冠周等.细菌浸出氧化—硫化混合铜矿的研究[J].矿冶工程,2003,4(8):30—34.
    耿冰,郑宇,邸进申,氧化亚铁硫杆菌的生物学特性研究新进展[J].生物技术,2004,14(2):71—74
    何正国,李雅芹,周培瑾.氧化亚硫杆菌的铁和硫氧化系硫及其分子遗传学[J].微生物学报.2000,40(5):563—566
    黄导,张岩.中国钢铁企业节水问题探讨.中国冶金,2004,85(12)
    胡岳华,张在海,邱冠周,王淀佐.Ag~+在细菌浸出中的催化作用研究[J].矿冶工程,2001,3(1):24—28.
    李洪枚,柯家骏.Cu~(2+)对氧化亚铁硫杆菌(T.f)生长活性的影响[J].黄金,2000,21(6):27—29.
    李宏煦,王淀佐,生物冶金中的微生物及其作用[J].有色金属,2003,55(2):56—63.
    李雄 柴立元 王云燕.生物浸矿技术研究进展.工业安全与环保,2006,1—3
    李秀艳,周建民,魏德洲,郑龙熙.金属硫化矿矿物生物浸出过程中的作用[J].东北大学学报(自然科学工作版),2001,22(3):291—294.
    刘清,徐伟昌,张宇,重金属离子对氧化亚铁硫杆菌活性的影响[J].铀矿冶,2004,23(3):155—157
    刘亚洁,李江,陈功新,刘艳.适应铀矿石的耐极低PH值氧化亚铁硫杆菌的诱变育种[J],矿产综合利用,2005,2(4):21—25.
    罗林,康瑞娟.氧化亚铁硫杆菌在气升式反应器中的培养条件对其生长特性的影响[[J].过程工程学报,2001,1(4):365—68.
    龙中儿,黄运红,蔡昭铃,等.低pH的氧化亚铁硫杆菌选育及氧化硫酸亚铁初步研究[J].过程工程学报,2002,2(5):415—419.
    邱冠周,王军,钟康年,王淀佐,浸矿细菌的育种及工业应用[J].国外金属矿选矿,1998:29—33。
    邱冠周,柳建设,王淀佐等.氧化亚铁硫杆菌生长过程铁的行为(J).中南工业大学学报.1998,29(3):226—228
    沈萍.微生物学(M).北京:高等教育出版社,2000
    童雄.微生物浸矿的理论与实践(M).北京:冶金工业出版社,1997
    王宏镔,束文圣,蓝崇钰.重金属污染生态学研究现状与展望.生态学报,2005,25(3):596—605
    王康林,韩效钊,汪模辉,王百年:银离子在细菌浸出黄铜矿中的催化行为研究[J].矿冶工程,2003,23(5):60—62
    王伟,林军民.应用细菌采矿的现状与前景[J].微生物学通报,1997,24(6):357 —61.
    武华平,袁斌,氧化亚铁硫杆菌的筛选及其特性研究[J].矿冶,2004 13(4):69—71
    谢海云,刘中华.高铁离子浓度下氧化亚铁硫杆菌的生长行为[J].过程工程学报,2004,4(1):43—46.
    熊英,胡建平,刘滨兰,郑存江.氧化亚铁硫杆菌的驯化与诱变育种[J].矿产综合利用,2001,6(12):27—30.
    徐晓军,孟运生,宫磊,等.氧化亚铁硫杆菌紫外线诱变及对低品位黄铜矿的浸出[J].有色金属,2005,57(2):93—97
    徐海岩,颜望明,刘振盈,罗小平,王祖农.抗砷载体的构建及在嗜酸氧化亚铁硫杆菌中的表达.应用与环境生物学报,1995,1(3):238-245
    杨洪英,杨立,魏绪钧,陈刚,范有静.耐热耐砷氧化来铁硫杆菌(SH—T)的驯化和特性研究[J].有色金属,2000,52(3):55—57.
    杨宇,彭宏,万民熙,邱冠周,黄菊芳,胡岳华.源自硫化矿区的氧化亚铁硫杆菌新菌系的鉴定中国有色金属学报.2006,Vol.16 No.6:1095—1099
    杨宇,张燕飞,黄菊芳,蒋东海,陈勇,邱冠周.嗜酸氧化来铁硫杆菌的保藏方法[J].中南大学学报(自然科学版),2006,6(3)472—475.
    余俊棠,唐孝宣.生物工艺学(上册)[M].上海:华东理工大学出版社,2003,(6):30—61.
    张炳华,张彦琼,王吉伟,张阳德.微生物重金属抗性的研究进展.中国医学工程,2006,14(2):153—155
    张苏文.氧化亚铁硫杆菌的纯化与对重金属的耐性[J].江西铜业工程,1998,3:34—36.
    张在海,王淀佐,胡岳华,邱冠周.柳建设硫化矿细菌浸出的菌种选育研究进展.有色金属(选矿部分)2001,05:35—40
    钟慧芳,陈秀珠,李雅芹等.一个嗜热嗜酸细菌的新属—硫球菌属(J).微生物学报.1982,22(1):1—7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700