上肢康复医疗机器人运动学及动力学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于社会节奏的加快,由各种因素引起的残疾越来越多。上肢康复医疗机器人作为非常重要的康复医疗装备对促进残疾人事业发展、改善残疾人状况将有巨大的作用。上肢康复医疗机器人的研究已成为全面建设小康社会和构建社会主义和谐社会的一项重要而紧迫的任务。本文对7自由度上肢康复医疗机器人的运动学及动力学进行了建模,并对其执行作业时的运动学和动力学特性进行了分析。
     通过对现代康复理论和康复训练方法的研究,本文明确了康复训练在患者康复中的作用。针对机器人各关节功能运动要求,开展了功能结构研究,从模块化的角度对7自由度上肢康复医疗机器人的机械结构、控制系统进行了阐述,明确了各部分的具体结构和功能需求,介绍了各元器件的选型。出于安全考虑本机器人的驱动方式采用气动肌肉柔性驱动,本文也对气动肌肉性能进行了一些研究,为气动人工肌肉在多关节康复机器人中的应用打下初步的基础。
     建立了7自由度上肢康复医疗机器人的运动学模型,计算出了末端手爪相对于基座的运动变换方程并验证了其正确性。最后使用建立的运动学模型对上肢康复医疗机器人执行喝水动作的数据进行了分析,得到了末端手抓的运动轨迹。
     为了更进一步洞察所设计的上肢康复医疗机器人的动力学性能,使得结构设计更为精准,提供更为和谐的人机交互的环境,有必要对其动力学进行分析。本文采用拉格朗日-欧拉方法对7自由度上肢康复医疗机器人系统进行了动力学建模,得到了机器人各关节的动力学特性信息。最后采用本文建立的动力学模型对VICON动作捕捉系统测量的人手摸对侧肩膀的各关节位移时间历程数据进行了分析,得到了各关节的速度、加速度及广义力信息。对机器人实现最优控制,以达到良好的动态性能和最优指标具有一定的指导意义。
     本文所作的工作,从理论的角度为上肢康复医疗机器人进一步的控制研究提供了参考依据,也为上肢康复医疗机器人的运动规划与结构优化作出了铺垫。
Due to the acceleration of social rhythm, more and more factors can cause disability. As an important rehabilitation medical equipment, the upper-limb rehabilitation robot can make significant roles to improve the situation of disabilities and promote the development of disability industry. The research on the upper-limb rehabilitation robot has become a meaningful and urgent task for building a well off society with harmonious socialist. This paper presents kinematics and dynamics models of 7-dof upper-limb rehabilitation robot, and makes exploratory analysis on performance of kinematics and dynamics.
     After the study of the modern rehabilitation theory and rehabilitation training method, this paper points out the positive effect of rehabilitation training in the function recovery process. According to the movement requirement of robot joints, this paper carries out functional structure research, explains the mechanical structure and control system of 7-dof upper-limb rehabilitation robot from the modular perspective, also confirms the structural and functional requirement of all parts including selection of different components. This paper also makes some research on performance of pneumatic muscle, which lays the foundation of initial application in a multi-joint robot. Due to the consideration of safety, the robot is chosen to be driven by flexible pneumatic muscle.
     We establish the kinematics model for 7-dof intelligent upper-limb rehabilitation robot, calculate and verify the coordinate transforming equation of the end hand movement in comparison to initial coordinate. At last, we get the end hand movement by analyze the data of drinking action using the kinematics model we built.
     After that it is necessary to make dynamic analysis in order to learn more about the dynamic performance of rehabilitation robot, make the structure more precise and provide more friendly man-machine interaction environment.In this paper, we use Lagrange - Euler Methods on 7-dof intelligent upper-limb rehabilitation robot system dynamics modeling, and obtain the dynamics characters of joints of the robot. And then, we acquire the velocity, acceleration, generalized force by analyze the displacement-time data when the 7-dof upper-limb rehabilitation robot touching the opposite shoulder measured by VICON motion capture system. The model we found is useful at optimal control of our robot and can help to achieve good dynamic performance.
     The work in this paper, from the perspective of theory, provides a reference for further study of rehabilitation robot, also makes the foundation of its movement planning and structural optimization.
引文
[1]庞翔,赵丽繁.康复训练在偏瘫康复中的意义.实用医技杂志, 2006, 13(24):4379-4380.
    [2]王芗斌.中风与康复.福建科技出版社, 2001.
    [3]杨明.肘关节康复训练装置的研究: [华中科技大学硕士学位论文].哈尔滨:哈尔滨工业大学, 2008.
    [4]熊有伦.机器人技术基础.华中科技大学出版社, 1996, 5-6.
    [5]伊永杰.康复训练机器人的结构设计及控制系统研究: [哈尔滨工程大学硕士学位论文].哈尔滨: 2004.
    [6]王东岩,李庆岭,林志江,孙立宁. 5DOF穿戴式上肢康复机器人控制方法与研究.哈尔滨工业大学学报, 2007, 9(39):1383-1387.
    [7]李会军,宋爱国.上肢康复训练机器人的研究进展及前景.机器人技术与应用, 2006, 4(9):32-36.
    [8]佟杰.手臂康复训练机器人控制及实验研究: [哈尔滨工程大学硕士学位论文].哈尔滨: 2007.
    [9]张立勋,杨勇,张今瑜,佟杰.手臂康复机器人阻抗控制实验研究.哈尔滨工程大学学报, 2008, 29(1):69-73.
    [10]胡宇川,季林红.一种偏瘫上肢复合运动的康复训练的机器人.机械设计与制造, 2004, 6(4):47-49.
    [11]杨勇,张立勋,谭爱华,伊永锋.由单片机实现的多功能双手臂康复训练器.自动化技术与应用, 2004, 23(2):55-57.
    [12] Krebs HI, Hogan N, Aisen MI, et al. Robot-aided neurorehabilitation. IEEE Transactions on Rehabilitation Engineering, 1998, 6(1):75-87.
    [13] Volpe BT, Krebs HI, Hogan N. A novel approach to stroke rehabilitation. Robot-aided sensorimotor stimulation, Neurology, 2000, 54(10):1938-1944.
    [14] Volpe BT, Krebs HI, Hogan N. Robot-aided sensorimotor training in stroke ehabilitation. Adv Neurol, 2003, 92:429-433.
    [15] Rrinkensmeyer DJ, Kahn LE, Averbuch M. Understanding and treating arm movement imparirment after chronic brain injury: Progress with the ARM GUIDE. Rehabil.Res.Der 2000, 37(6):653-662.
    [16] Burgar CG, Shor PC. Development of robot for rehabilitation therapy:The PALO Alto VA/Stanford experience. J.Rehabil Res Der 2000, 37(6):663-673.
    [17] Lum PS, Burgar CG, Shor PC. Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch.Phys.Med.Rehabil, 200.83(7):952-959.
    [18] Helm, Andre Schiele. Kinematic Design to Improve Ergonomics in Human Machine Interaction. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2006, 14(4):456-469.
    [19] Loureiro R Amirabdollahian F, Topping M. Upper limb robot mediated stroke therapy Geantles approach. Autonomous Robots, 2003, 14:35-51.
    [20] R C V Loureiro, C F Collin, W S Harwin. Robot aided therapy:challenges ahead for upper limb stroke rehabilitation. Proc.5th Intl Conf. Disability, Virtual Reality&Assoc.Tech,Oxford,UK,2004: 33-39.
    [21] Roberto Colombo, Fabrizio Pisano, Silvestro Micera. Robotic techniques for upper limb evaluation and rehabilitation of stroke Patients. IEEE Transaction on Neural System and Rehabilitation Engineering, 2005, 13(30): 311-324.
    [22] Johannes Feuser, Oleg Ivlev, Axel Graser. Collision’prevention for rehabitation robots with mapped virtual reality. Proceedings of the 2005 IEEE 9th International Conference on Rehabilitation Robotics, 2005: 461-464.
    [23] Schmidt H, Hesse S,Werner C, Bardeleben A. Upper and lower extreamity robotic devices to promote motor recovery after stroke-recent developments. Proceeding of the 26th Annual International Conference of the IEEE EMBS, 2004: 4825-4828.
    [24] Toshiro Noritsugu, Toshihiro Tanaka. Application rubber artificial muscle manipulatoras a rehabilitation robot. IEEE,1997, 2(4): 259-267.
    [25] Joel C. Perry, Jacob Rosen, Member. Upper-Limb Powered Exoskeleton Design. IEEE/ASME 2007, 12(4):408-417.
    [26] Jacob Rosen, Blake Hannaford. Robot Surgeons Promise to Save Lives in Remote Communities, War Zones and Disaster-Stricken Areas. IEEE Spectrum 2006 10(NA):34-39.
    [27] Erico Guizzo, Harry Gold Stein. Exoskeletons Are Strutting out of The Lab—And They Are Carrying Their Creators With Them. IEEE Spectrum 2005, 9:51-56.
    [28]胡宇川.偏瘫上肢复合运动康复机器人的研制.清华大学出版社, 2004, 25-33.
    [29]任宇鹏.辅助上肢运动功能康复机器人的控制和评价系统研究.清华大学出版社, 2004.
    [30] Saeed B. Niku[著],孙富春等[译],机器人学导论-分析、系统及应用,电子工业出版社, 2004.
    [31]彭光正,余麟,刘昊.气动人工肌肉驱动仿人灵巧手的结构设计.北京理工大学学报, 2006. 26(7):593-597.
    [32]黄雨,彭光正,范伟.气动人工肌肉驱动关节PID位置控制研究.液压与气动, 2003, 4:13-15.
    [33]臧克江,顾立志,陶国良.气动人工肌肉的研究与展望.机床与液压, 2004, 4:4-7.
    [34]霍伟.机器人动力学与控制.高等教育出版社. 2005.
    [35]丛爽,李泽湘.实用运动控制技术.电子工业出版社. 2006.
    [36]郑奇,李醒飞,张国雄.类人上肢的双肌肉驱动系统的设计.液压与气动, 2003. 11:7-8.
    [37] Douglas P. Romilly, Carolyn Anglin, Raymond G. Gosine, Cecil Hershler, and Silvia U. Raschke. A Functional Task Analysis and Motion Simulation for the Development of a powered Upper-Limb Orthosis. IEEE TRANSACTIONS ON REHABILITATION ENGINEERING, VOL. 2, NO. 3, 1994.
    [38] Joel C. Perry, Jacob Rosen, Stephen Burns. Upper-Limb Powered Exoskeleton Design. IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 12, NO. 4, 2007.
    [39] Rosen J, J. C. Perry, N. Manning, S. Burns, B. Hannaford, The Human Arm Kinematics and Dynamics During Daily Activities– Toward a 7 DOF Upper Limb Powered Exoskeleton, - ICAR 2005– Seattle WA, 2005.
    [40] Perry J.C, J. Rosen, Design of a 7 Degree-of-Freedom Upper-Limb Powered Exoskeleton Proceedings of the 2006 BioRob Conference, Pisa, Italy, 2006.
    [41] D. B. REYNOLDS, D.W.R., C. A. PHILLIPS. Modeling the Dynamic Characteristics of Pneumatic Muscle. Annals of Biomedical Engineering, 2003. 31: 310-317.
    [42] Qinghua Yang, G.B.. Libin Zhang and Jian Ruan. Analysis and Simulation of Dynamic Characteristics of Flexible Pneumatic Actuator FPA. in Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation. Luoyang, China. 2006.p.1817-1821

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700