手指康复机器人结构与控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
手指康复机器人是一种帮助手指运动功能障碍患者进行康复训练的医疗机器人,它结合了机器人技术和康复医疗理论,实现患肢运动功能恢复的目地。手指康复机器人的研究已成为康复医学工程和智能机器人领域的一个热点方向,受到国内外研究者的广泛关注。本文对手指康复机器人的结构,康复训练模式,控制系统硬件,控制系统软件等关键技术进行了研究。
     本文首先综述了国内外手指康复机器人的研究现状,随后根据手指的生理特性和康复训练特点,设计出结构简单,控制方便的手指康复机器人机械本体。同时对驱动系统和控制系统进行了详细的分析,明确了各模块的功能需求,提出了手指康复机器人控制系统的整体设计方案。
     第三部分设计了气动压力控制回路,完成关键部件的选型。同时根据手指康复机器人对控制器的要求,兼顾功能扩展需要,选用DSP作为系统的控制器,并完成相关硬件电路的设计、调试以及底层驱动,包括电源电路、通讯电路、信号采集和调理电路以及DA输出电路。
     第四部分开发基于上下位机模式的控制系统软件,实现对康复机器人的控制。采用基于准实时操作系统DSP/BIOS的软件架构,实现下位机信号采集模块、信号处理模块、串口通讯模块、控制算法模块之间的协调和调度,并完成相应模块代码编写。开发基于VC6.0的上位机软件,实现系统控制、训练模式选择、训练强度调节、数据接收和存储等。
     本研究开发了一套手指康复机器人系统,基本满足临床运动康复训练要求,为下一代手指康复机器人的研究打下基础。
Finger rehabilitation robot is a robot for medical use which helps finger dyskinesia patients to do rehabilitation training. It combines robot technology and the theory of rehabilitation medical treatment, and recoveries the motor function for patient’s injured figures. The research of finger rehabilitation robot has become a hot aspect in fields of rehabilitation engineering and intelligent robot, and draws more and more researchers’attention home and abroad. This thesis studies finger rehabilitation robot from the aspects of structure, training mode, hardware and software of control system.
     This thesis first analyzes and summarizes the research status of finger rehabilitation robot, and then it designs a easily-control and simple structure main body of the hand based on the physiological characteristics of figures and the characteristic of rehabilitation training. Meanwhile, it carries out a thoroughly analysis on driving system and control system, specifies functional requirements of different modules, and finally puts forward a design proposal for the control system of the finger rehabilitation robot.
     The third part of the thesis designs the pressure-control pneumatic circuit and selects the key parts. At the same time, in order to meet demands of controller and future requirements, this part selects DSP TMS320F2812 as the controller and finishes the electric circuit design, debug and driver, including power supply circuit, communication circuit, signal collection and processing as well as DA output circuit.
     The fourth part of the thesis exploits the control system software of the rehabilitation robot based on upper-lower computer mode. It adopts the software architecture based on real-time operating system DSP/BIOS to achieve the coordination and scheduling among signal collection mode, signal processing mode, serial port communication mode and control algorithm mode and accomplishes their respective code composing. It also develops upper computer software based on VC6.0 to realize system control, training mode selection, training intensity adjustment, data receive and storage and so on.
     In this research, we exploit a finger rehabilitation robot system. The system basically meets the need of clinical movement rehabilitation training, and makes the foundation for next generation finger rehabilitation robot.
引文
[1]杨明.肘关节康复训练装置研究.华中科技大学硕士论文,2008.
    [2]杜志江,孙立宁,富历新.医疗机器人发展概况综述.机器人.2003,25(2):182-187.
    [3] L.E.Kahn,M.A., W.Z.Rymer.et al. Comparison of robot-assisted reaching to free reaching in promoting recovery from chronic stroke. in Integration of Assistive Technology in the Information Age. M. Mokhtari, Ed. Amsterdam, The Netherlands. 2000.p.39-44.
    [4] S. E. Fasoli, H.I.K., J. Stein.et al. Effects of robotic therapy on motor impairment and recovery in chronic stroke. Archives of Physical Medicine and Rehabilitation, 2003. 84: p. 477-482.
    [5] Krebs H I, V.B.T., Aisen M L.et al. Increasing productivity and quality of care robot-aided neuro-rehabilitation. Journal of Rehabilitation Research and Development, 2000. 37(6): p. 639-652.
    [6]庞翔,赵丽繁.康复训练在偏瘫康复中的意义.实用医技杂志, 2006. 13(24): p. 4379-4380.
    [7] Nudo, R.J.Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. Journal of Neuroscience, 1996. 16(2): p. 785-807.
    [8]刘洪山.手指创伤康复机械手结构设计与分析.哈尔滨工业大学优秀硕士论文,2007.
    [9] P.Chatzilias,Z.Kamarianakis,S.Golemati,M.Christodoulou.Robotic Control in Hand-Assisted Laparoscopic Nephrectomy in Humans-a Pilot Study.Pinroceedings of the 26th Annual International Conference of the IEEE EMBS,2004:p2742-2745.
    [10] W.Driscoll,N.J.Giori,The Enhancement of Periosteal Chondrogenesis in Organ Culture by Dynamic Fluid Pressure.2000:2151-2159.
    [11] J.P.Ruurda,R.H.Vroohhoven.Robot-assisted Surgical Systems:a New Era in Laparoscopic Surgery.Ann R Coll Surg Engl,2003:223-226.
    [12]张立勋,董玉红.智能手部康复训练器.中国.实用新型.专利申请号:200420019014.X.
    [13] Shuhei Nakagawara, Hiroyuki Kajimoto, Naoki Kawakami, and Susumu Tachi. An Encounter-Type Multi-Fingered Master Hand Using Circuitous Joints.Proceedings of the 2005 IEEE International Conference on Robotic and Automation Barcelona,Spain,April 2005.
    [14]张付祥.创伤手指康复机械手系统研究.哈尔滨工业大学博士论文.2007.11.
    [15] H.Taylor,DanStoianovici.Medical Robotics in Computer-Integrated Surgery.IEEE Transactions on Robotics and Automation,2005:765-781.
    [16] Yili Fu,Peng Wang,Shuguo Wang.Development of a Multi-DOF Exoskeleton Based Machine for Injured Fingers.2008 IEEE/RSJ international Conference on Intelligent Robots and Syatem Acropolis Convention Ceenter Nice,France,Sept,22-26,2008.
    [17] Ali Faraz,Shahram Payanceh.A Rootic Case Study:Optimal Design For Laparoscopic Positioning Stants.IEEE International Conference on Robotics and Autimation,2004:20-25.
    [18] R.Riener,T.N.,G. Colombo.Robot-aided neurorehabilitation of the upper extremities. Medical & Biological Engineering & Computing, 2005. 43: p. 2-10.
    [19] Ching-Ping Chou, B.H.. Measurement and Modeling of McKibbenPneumatic Artificial Muscles. IEEE Transactions on Robotics and Automation, 1996. 12(1): p. 90-102.
    [20] Jiping He, E.J.K., R. S. Schultz. RUPERT: a Device for Robotic Upper Extremity Repetitive Therapy. in Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. Shanghai, China. 2005.p.6844-6847.
    [21] Daniel P. Ferris, J.M.C., Blake Hannaford. An Ankle-Foot Orthosis Powered by Artificial Pneumatic Muscles. Journal of Applied Biomechanics, 2005. 21: p. 189-197.
    [22]彭光正,余麟,刘昊.气动人工肌肉驱动仿人灵巧手的结构设计.北京理工大学学报, 2006. 26(7): p. 593-597.
    [23] E.J. Koeneman, R.S.S., S.L. Wolf.et.al. A Pneumatic Muscle Hand Therapy Device. in Proceedings of the 26th Annual International Conference of the IEEE EMBS. San Francisco, CA, USA. 2004.p.2711-2713.
    [24] Hiroshi Kobayashi, H.S. Development of a New Shoulder Mechanism for a Muscle Suit. in Proceedings of the IEEE International Conference on Mechatronics & Automation. Niagara Falls, Canada. 2005.p.149-154.
    [25]郑奇,李醒飞,张国雄.类人上肢的双肌肉驱动系统的设计.液压与气动, 2003. 11: p. 7-8.
    [26] G.Colombo,R.Schreier,A.Mayr,H.Plewa,R.Rupp.Novel Tilt Table with Integrated Robotic Stepping Mechanism:Design Principles and Clinical Application.Proceedings of the 2005 IEEE,9(3):256-286.
    [27] Yuan-Fang Wang,D.r.Uecker,Wang Yulun.Choreographed Scope Maneuvering in Robotically-Assisted Laparoscopy with Active Vision Guidance.Proceedings 3rd IEEE Workshop on Applications of Computer Vision,WACV’96,1996:187-192.
    [28]向红标.新型多指灵巧手的结构设计与性能分析.天津大学优秀硕士论文,2007.
    [29] Jhonathan Kim,Seong-Young Ko,Woo-Jung Lee.Design of a Compact Laparoscopic Assistant Robot,2003:102-132.
    [30]范伟,于鳞,刘昭博等.气动人工肌肉驱动仿人灵巧手的设计.机床与液压,2006.No.8
    [31]季林红,王子羲,毕胜等.手腕及手指关节运动康复训练机器人.中国.实用新型.200410009465.X .
    [32] Thomas H.Speed Control of the Utah/MIT Dextrous Hand.Hardware and Software Hierarchy Journal of Robotic Systems,1990,Vo l.7,No.5:759~79.
    [33] Hideaki Hashimoto,Hieaki Ohawa,Toshiya Umeda,Masao Obama,Kyoichi Tatruno.An Unilateral Master-Slave Hand System with a Force-Controlled SlaveHand.IEEE International Conference on Robotics and Automation.June,1995:956-9610.
    [34]张建国,Puma/RAL手系统的研制机器人情报,1989(3):7~10.
    [35] Richard M.Crowder.An Anthropomorphic Robotic End-Effector.Robotics and Autonomous Systems,1991,No.7:253~268.
    [36]臧克江,顾立志,陶国良.气动人工肌肉的研究与展望.机床与液压,2004.4: p.4-7
    [37]何存兴,张铁华.液压传动与气压传动.华中科技大学出版社,2000.8.
    [38]赵小朴.一种基于TMS320F2812的数据采集系统.山东大学优秀硕士论文,2006.
    [39]苏奎峰,吕强,耿庆锋等.TMS320F2812原理与开发.北京:电子工业出版社,2005.4.
    [40]韩富春,武天文,张宁,杨翠茹.采用软件校正TMS320F2812内置ADC采样值方案.太原理工大学学报,Vol.37 No.2 Mar.2006.
    [41]任谦.基于DSP/BIOS的配电自动化终端应用软件的设计.合肥工业大学优秀硕士论文,2007.11.
    [42]武二永,孙明明,杨克己.嵌入式实时操作系统DSP_BIOS使用方法的研究.机床与液压,2004.No.11.
    [43]尹勇,欧光军,关荣锋.DSP集成开发环境CCS开发指南.北京:北京航空航天大学出版社,2003.11.
    [44] Running an Application from Internal Flash Memory on the TMS320F28xx DSP.Texas Instruments Incorporated.2004.
    [45] Synehronizing DSPBIOS Threads.Texas Instruments Ineorporated 2004.
    [46] TMS320C28x DSP/BIOS 4.90 Application Programming Interface(API)Ref. Guide(Rev.C).Texas Instruments Ineorporated.2004.
    [47] TMS320 DSP/BIOS User’s Guide. Texas Instruments Ineorporated.2002.
    [48] How to Get Started With the DSP/BIOS Kernel.Texas Instruments Ineorporated.2004
    [49]闽玉堂,容太平.灵活的DSP/BIOSH设备驱动程序[J].微处理机,2002,3:35-37.
    [50]张晶,魏义祥.在实时操作系统DSP/BIOS上实现心电信号R波的捡出[J」.医疗卫生装备,2005,26(12).
    [51]李红,唐明新,袁爱进,乔毅.TMS320F2812定点DSP芯片的_cmd文件配置.仪器仪表用户,Vol.11 2004 No.5.
    [52]张宏林.Visual C++串口通讯技术与工程实践.人民邮电出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700