背屈踝足矫形器对偏瘫患者步行的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的明确背屈踝足矫形器(dorsifelxion ankle foot orthosis,DAFO)对偏瘫足下垂患者步态改变与步行效率的影响,探索其可能产生的机制,为临床矫形器制作提供实验依据。
     对象与方法选择南京医科大学第一附属医院康复医学科脑卒中或脑外伤后有明显足下垂的偏瘫住院患者,男性10名,女性1名,平均年龄42.9±12.6岁,平均身高1.69±0.08m,平均体重65.4±11.9kg。其中,脑卒中9例,脑外伤2例;左侧偏瘫7例,右侧偏瘫4例。采用远红外线三维步态分析系统(美国Motion Analysis公司),获取三种不同状态(5°DAFO、功能位AFO与裸足)的时间-空间参数进行对比分析,同时分析DAFO对偏瘫步态时空参数及偏瘫患者步行主要责任肌肉即股四头肌、股二头肌、小腿三头肌和胫前肌的肌电积分值,肌电平均值和肌电峰值的影响;另外采用K4b2便携式遥测气体分析系统(意大利Cosmed公司)观察DAFO与其他两种状态对偏瘫患者步行效率的影响。
     结果①5°DAFO与裸足相比,能显著增加患者步长(p<0.01)、步速(p<0.01)、步幅(p<0.05)和步频(p<0.05),减少步长时间(p<0.01)和步幅时间(p<0.05);FAFO(functioning ankle foot orthosis)与裸足相比能显著增加步幅(p<0.05); 5°DAFO与FAFO相比能显著改善患者步速(p<0.05),减少步长时间(p<0.05)和步幅时间(p<0.05)。两种角度AFO对偏瘫患者步态双侧对称性均未见显著差异。②肌肉收缩峰值上,偏瘫患者穿戴5°DAFO、穿戴FAFO与裸足相比,均数均有增加,但是三者之间相比没有明显差异。肌肉肌电积分值比较偏瘫患者穿戴5°DAFO与裸足相比,小腿三头肌的肌电积分值有明显增加(P<0.01);偏瘫患者穿戴FAFO与裸足相比,小腿三头肌的肌电积分值有明显增加(P<0.01);穿戴两种矫形器相比,四组肌肉之间均没有明显差异。偏瘫患者穿戴5°DAFO和FAFO与裸足相比,小腿三头肌肌电平均值均有明显增加(P <0.01);穿戴两种矫形器相比,四组肌肉之间均没有明显差异。③穿戴5°DAFO与裸足相比,氧价明显降低(P<0.05);穿戴FAFO与裸足相比也能明显降低氧价值(P<0.05)。两不同角度AFO之间相比,没有明显差异(P>0.05)。
     结论5°DAFO能更好改善偏瘫患者的步速、步长、步幅、步频,两种AFO均能增加偏瘫患者步行时小腿三头肌使用效率,降低步行能量的消耗,增加步行效率。
Objective The aim of this study was to explore the effects and mechanisms of the patients with hemiplegia by wearing dorsiflexion ankle foot orthosis (DAFO). Meanwhile, gait analysis data may provide experimental evidence for clinical practice .
     Subjects and Methods Ten male patients and one female with hemiplegic equinus foot were involved in this study (average 42.9±12.6ys, mean height 1.69±0.08m and mean weight 65.4±11.9kg). Nine patients with stroke and 2 patients with brain trauma had affected 7 left and 4 right side lower limbs. The time-space gait parameters were collected by Motion Analysis System. The integrated electromyography (IEMG), peak and mean parameters were collected by surface EMG system. The oxygen cost (OC) was obtained by a Cosmed K4b2 portable gas analysis system. Gait time-distance data and oxygen cost were measured with performing free walking under three conditions: DAFO, FAFO and barefoot. The dynamic electromyogrophy measurements were tested and analyzed on quardriceps, biceps femoris, triceps surae and tibialis anterior.
     Results①Comparing with barefoot, there is significant increase in stride length (P<0.05), step length (P<0.01), velocity (P<0.01) and cadence (P<0.05) with 5°DAFO. It also shows decrease in stride length time (P<0.05) and step length time (P<0.01). Meanwhile, FAFO can significantly increase in stride length (P<0.05) comparing with barefoot. The walking velocity with 5°DAFO is significant increase (P<0.05). There are significant decrease in the step length time (P<0.05) and stride length time (P<0.05) with 5°DAFO comparing with FAFO. But gait symmetry in two different angles AFO has no significant difference.②Comparing with barefoot, there are no significant difference in electromyography peak in four group muscles with 5°DAFO and FAFO. However, IEMG has significantly increased in triceps surae with 5°DAFO and FAFO (P<0.01). Both can significantly increase in triceps surface EMG.③There are significant differences in OC comparing with barefoot, 5°DAFO and FAFO (P<0.01). However, it is no significant difference between two different AFO(P>0.05).
     Conclusions DAFO is better than FAFO in improving the walking velocity, step length, stride length and cadence of hemiplegic gait. Both can increase efficiency of triceps surae in walking . Comparing with barefoot, two different AFO both can significantly decrease walking OC in the patients with hemiplegic equinus foot.
引文
1. Murray MP, Mollinger LA, Gardner GM, Sepic SB. Kinematic and EMG patterns during slow, free, and fast walking. J Orthop Res 1984;2:272-280
    2. Lehmann JF, Condon SM, Price R, deLateur BJ. Gait abnormalities in hemiplegia: their correction by ankle-foot orthoses. Arch Phys Med Rehabil 1987;68:763-771
    3. Ofir R, Sell H. Orthoses and ambulation in hemiplegia: a ten year retrospective study. Arch Phys Med Rehabil 1980;61:216-220
    4.励建安.脑卒中的步态异常和治疗对策.中华全科医师杂志2005;4:715-717
    5. Miyazaki S, Yamamoto S, Kubota T. Effect of ankle-foot orthosis on active ankle moment in patients with hemiparesis. Med Biol Eng Comput 1997;35:381-385
    6. Shumway CA WM. Motor Control: Theory and practical applications. Baltimore:Williams & Wilkins 1995:308-314
    7. Beckerman H, Becher J, Lankhorst GJ, Verbeek AL. Walking ability of stroke patients: efficacy of tibial nerve blocking and a polypropylene ankle-foot orthosis. Arch Phys Med Rehabil 1996;77:1144-1151
    8. Duffy CM, Hill AE, Graham HK. The influence of flexed-knee gait on the energy cost of walking in children. Dev Med Child Neurol 1997;39:234-238
    9. Waters RL, Mulroy S. The energy expenditure of normal and pathologic gait. Gait Posture 1999;9:207-231
    10. Kerrigan DC. Guest editorial: aesthetics of walking. J Rehabil Res Dev 2001;38:ix-x
    11. McLaughlin JE, King GA, Howley ET, Bassett DR, Jr., Ainsworth BE.Validation of the COSMED K4 b2 portable metabolic system. Int J Sports Med 2001;22:280-284
    12. Duffield R, Dawson B, Pinnington HC, Wong P. Accuracy and reliability of a Cosmed K4b2 portable gas analysis system. J Sci Med Sport 2004;7:11-22
    13.孙嘉利,唐丹,钟世镇,等.三维步态分析的研究与应用.中国组织工程研究与临床康复2007;11:944-948
    14. Nollet F, Beelen A, Sargeant AJ, et al. Submaximal exercise capacity and maximal power output in polio subjects. Arch Phys Med Rehabil 2001;82:1678-1685
    15. Mukherjee G, Samanta A. Physiological response to the ambulatory performance of hand-rim and arm-crank propulsion systems. J Rehabil Res Dev 2001;38:391-399
    16.朱燕,齐瑞,张宏.恢复期脑卒中患者肘屈伸肌群最大等长收缩的表面肌电图研究.中国康复2006;21:508-510
    17. Hagg GM. Interpretation of EMG spectral alterations and alteration indexes at sustained contraction. J Appl Physiol 1992;73:1211-1217
    18. Eisen A. Electromyography in disorders of muscle tone. Can J Neurol Sci 1987;14:501-505
    19. Onishi H, Yagi R, Akasaka K, et al. Relationship between EMG signals and force in human vastus lateralis muscle using multiple bipolar wire electrodes. J Electromyogr Kinesiol 2000;10:59-67
    20.许光旭顾绍钦,孟殿怀等.下肢痉挛偏瘫患者的步行效率.中国组织工程研究与临床康复2009;13:11
    21. Bowen TR, Cooley SR, Castagno PW, Miller F, Richards J. A method for normalization of oxygen cost and consumption in normal children while walking. J Pediatr Orthop 1998;18:589-593
    22. Wade DT, Wood VA, Heller A, Maggs J, Langton Hewer R. Walking after stroke. Measurement and recovery over the first 3 months. Scand J Rehabil Med 1987;19:25-30
    23. Guralnik JM, Ferrucci L, Balfour JL, Volpato S, Di Iorio A. Progressive versus catastrophic loss of the ability to walk: implications for the prevention of mobility loss. J Am Geriatr Soc 2001;49:1463-1470
    24.许光旭,周士枋,卢青,等.步态分析在偏瘫康复评定与治疗中的作用.中国运动医学杂志1997;16:29-35
    25. Mojica JA, Nakamura R, Kobayashi T, et al. Effect of ankle-foot orthosis (AFO) on body sway and walking capacity of hemiparetic stroke patients. Tohoku J Exp Med 1988;156:395-401
    26. White H, Jenkins J, Neace WP, Tylkowski C, Walker J. Clinically prescribed orthoses demonstrate an increase in velocity of gait in children with cerebral palsy: a retrospective study. Dev Med Child Neurol 2002;44:227-232
    27. Suzuki N, Shinohara T, Kimizuka M, Yamaguchi K, Mita K. Energy expenditure of diplegic ambulation using flexible plastic ankle foot orthoses. Bull Hosp Jt Dis 2000;59:76-80
    28.许光旭,顾绍钦孟殿怀等.生物谐振规律对步行效率影响的前驱研究.中国康复医学杂志2008;23:1092-1094
    29. Morris C, Newdick H, Johnson A. Variations in the orthotic management of cerebral palsy. Child Care Health Dev 2002;28:139-147
    30. Merletti R PP. Electromyography: physiology, engineering, and noninvasive applications. Wiley-Interscience 2004
    31. Smoliga JM, Myers JB, Redfern MS, Lephart SM. Reliability and precision of EMG in leg, torso, and arm muscles during running. J Electromyogr Kinesiol;20:e1-9
    32. Hayek S, Hemo Y, Chamis S, et al. The effect of community-prescribed ankle-foot orthoses on gait parameters in children with spastic cerebral palsy. J Child Orthop 2007;1:325-332
    33. Bigland-Ritchie B, Donovan EF, Roussos CS. Conduction velocity and EMG power spectrum changes in fatigue of sustained maximal efforts. J Appl Physiol 1981;51:1300-1305
    34. Borrani F, Candau R, Millet GY, et al. Is the VO2 slow component dependent on progressive recruitment of fast-twitch fibers in trained runners? J Appl Physiol 2001;90:2212-2220
    35. Bouissou P, Estrade PY, Goubel F, Guezennec CY, Serrurier B. Surface EMG power spectrum and intramuscular pH in human vastus lateralis muscle during dynamic exercise. J Appl Physiol 1989;67:1245-1249
    36. Poole DC, Schaffartzik W, Knight DR, et al. Contribution of exercising legs to the slow component of oxygen uptake kinetics in humans. J Appl Physiol 1991;71:1245-1260
    37. Zipp P. Recommendation for the standardization of lead positions in surface electromyography. Eur J Appl Physiol 1982;50:41-54
    1. Murray MP, Mollinger LA, Gardner GM, Sepic SB. Kinematic and EMG patterns during slow, free, and fast walking. J Orthop Res 1984;2:272-280
    2. Jahnke MT HS, Schreiner C and Mauritz, K H. Dependence of the vertical ground reaction forces on velocity in hemiparetic patients. Gait and Posture 1995;3:3-12
    3. Lehmann JF, Condon SM, Price R, deLateur BJ. Gait abnormalities in hemiplegia: their correction by ankle-foot orthoses. Arch Phys Med Rehabil 1987;68:763-771
    4. Ofir R, Sell H. Orthoses and ambulation in hemiplegia: a ten year retrospective study. Arch Phys Med Rehabil 1980;61:216-220
    5. Bronkhorst AJ LG. An orthosis to aid in reduction of lower limb spasticity. Orthot Prosthet 1987;41:23-28
    6. Ferris DP, Czerniecki JM, Hannaford B. An ankle-foot orthosis powered by artificial pneumatic muscles. J Appl Biomech 2005;21:189-197
    7. Gordon KE, Sawicki GS, Ferris DP. Mechanical performance of artificial pneumatic muscles to power an ankle-foot orthosis. J Biomech 2006;39:1832-1841
    8. Corcoran PJ, Jebsen RH, Brengelmann GL, Simons BC. Effects of plastic and metal leg braces on speed and energy cost of hemiparetic ambulation. Arch Phys Med Rehabil 1970;51:69-77
    9. Mojica JA, Nakamura R, Kobayashi T, et al. Effect of ankle-foot orthosis (AFO) on body sway and walking capacity of hemiparetic stroke patients. Tohoku J Exp Med 1988;156:395-401
    10. Tyson SF, Thornton HA. The effect of a hinged ankle foot orthosis onhemiplegic gait: objective measures and users' opinions. Clin Rehabil 2001;15:53-58
    11. Radtka SA, Skinner SR, Johanson ME. A comparison of gait with solid and hinged ankle-foot orthoses in children with spastic diplegic cerebral palsy. Gait Posture 2005;21:303-310
    12. Diamond MF, Ottenbacher KJ. Effect of a tone-inhibiting dynamic ankle-foot orthosis on stride characteristics of an adult with hemiparesis. Phys Ther 1990;70:423-430
    13. Burdett RG, Borello-France D, Blatchly C, Potter C. Gait comparison of subjects with hemiplegia walking unbraced, with ankle-foot orthosis, and with Air-Stirrup brace. Phys Ther 1988;68:1197-1203
    14. Romkes J, Brunner R. Comparison of a dynamic and a hinged ankle-foot orthosis by gait analysis in patients with hemiplegic cerebral palsy. Gait Posture 2002;15:18-24
    15.励建安.脑卒中的步态异常和治疗对策.中华全科医师杂志2005;4:715-717
    16. Hesse S, Werner C, Matthias K, et al. Non-velocity-related effects of a rigid double-stopped ankle-foot orthosis on gait and lower limb muscle activity of hemiparetic subjects with an equinovarus deformity. Stroke 1999;30:1855-1861
    17. Yamamoto S, Ebina, M, Kubo, S, et al. Quantification of the Effect of Dorsi-/ Plantar flexibility of Ankle Foot Orthoses on Hemiplegic Gait: A Preliminary Report. Journal of Prosthetics and Orthotics 1993;5:88-94
    18. Miyazaki S, Yamamoto S, Kubota T. Effect of ankle-foot orthosis on active ankle moment in patients with hemiparesis. Med Biol Eng Comput 1997;35:381-385
    19. Lee KH, Johnston R. Bracing below the knee for hemiplegia: biomechanical analysis. Arch Phys Med Rehabil 1973;54: 466-470
    20. Romkes J, Hell AK, Brunner R. Changes in muscle activity in children with hemiplegic cerebral palsy while walking with and without ankle-foot orthoses. Gait Posture 2006;24: 467-474
    21. Yokoyama O, Sashika H, Hagiwara A, et al. Kinematic effects on gait of a newly designed ankle-foot orthosis with oil damper resistance: a case series of 2 patients with hemiplegia. Arch Phys Med Rehabil 2005;86:162-166
    22. Lehmann JF, Esselman PC, Ko MJ, et al. Plastic ankle-foot orthoses: evaluation of function. Arch Phys Med Rehabil 1983;64:402-407
    23. Park ES, Park CI, Chang HJ, Choi JE, et al. The effect of hinged ankle-foot orthoses on sit-to-stand transfer in children with spastic cerebral palsy. Arch Phys Med Rehabil 2004;85: 2053-2057
    24. Lam WK, Leong JC, Li YH, et al. Biomechanical and electromyographic evaluation of ankle foot orthosis and dynamic ankle foot orthosis in spastic cerebral palsy. Gait Posture 2005;22:189-197
    25. Danielsson A, Willen C, Sunnerhagen KS. Measurement of energy cost by the physiological cost index in walking after stroke. Arch Phys Med Rehabil 2007;88:1298-1303
    26. Balaban B, Yasar E, Dal U, et al. The effect of hinged ankle-foot orthosis on gait and energy expenditure in spastic hemiplegic cerebral palsy. Disabil Rehabil 2007;29:139-144
    27. Danielsson A, Sunnerhagen KS. Energy expenditure in stroke subjects walking with a carbon composite ankle foot orthosis. J Rehabil Med2004;36:165-168
    28. Thijssen DH, Paulus R, van Uden CJ, et al. Decreased energy cost andimproved gait pattern using a new orthosis in persons with long-term stroke. Arch Phys Med Rehabil 2007;88:181-186
    29. Yamamoto S E, Miyazaki S, Kawai H, Kubota T. International Forum: Development of a New Ankle-Foot Orthosis with Dorsiflexion Assist, Part 1: Desirable Characteristics of Ankle-Foot Orthoses for Hemiplegic Patients. Prosthet Orthot 1997;9:174-179
    30. Pandy MG, Berme N. Quantitative assessment of gait determinants during single stance via a three-dimensional model--Part 1. Normal gait. J Biomech 1989;22:717-724
    31. Pandy MG, Berme N. Quantitative assessment of gait determinants during single stance via a three-dimensional model--Part 2. Pathological gait. J Biomech 1989;22:725-733
    32. Leung JM, A. mpact of Ankle-foot Orthoses on Gait and Leg Muscle Activity in Adults with Hemiplegia: Systematic literature review. Physiotherapy 2003;89:39-55
    33. Johnson GR, Ferrarin M, Harrington M, et al. Performance specification for lower limb orthotic devices. Clin Biomech (Bristol, Avon) 2004;19:711-718

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700