APC蛋白不同功能区域真核表达载体的构建及其对人结直肠癌细胞中β-catenin表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来的科学研究发现,超过90%的结直肠癌的发生与经典的Wnt/β-catenin信号通路的激活密切相关,该通路异常激活的标志是β-catenin的稳定和在细胞核内的积聚。在结直肠癌细胞中,Wnt/β-catenin信号的激活主要是因APC基因的突变所导致。超过70%的散发结直肠癌均存在APC基因突变。大多数的APC基因体细胞突变都发生在密码子1250至1500间,该区域的APC突变可导致15氨基酸重复序列和20氨基酸重复序列的部分缺失,使其失去正常调控β-catenin表达的功能。
     多项研究表明,野生型的APC蛋白导入结直肠癌细胞内,可以降低β-catenin的表达水平。然而由于全长的野生型APC片段较大(大于10kb),直接用于基因治疗的操作性较困难。
     目的:本研究旨在通过构建、验证含有APC蛋白不同功能区域的重组真核表达载体,研究其功能及其对结直肠癌细胞内β-catenin表达水平的影响,筛选到既可有效降低β-catenin表达水平同时片段长度较小的APC基因片段,为将来的基因治疗奠定一定的实验基础。
     方法:1、根据APC基因的功能结构以及APC突变簇集区的特点,使用Primer premier 5.0软件设计7条引物,以含有APC全长cDNA的pBluescript质粒为模板,扩增APC基因特异性的功能区域片段。将扩增出的APC片段克隆到含有优化突变型绿色荧光蛋白的pEGFP-N3载体的N端,构建含有APC功能区域的重组真核表达载体。2、使用ORF查找器对重组质粒的测序结果进行分析,将返回的翻译蛋白序列在线protein BLAST,检测重组质粒表达APC功能区域和GFP能否融合表达。3、使用脂质体转染法将重组质粒转染结直肠癌细胞HCT 116和HT-29,通过观察细胞中绿色荧光蛋白的表达情况来验证APC功能区域在细胞内的表达。4、通过RT-PCR进一步验证重组质粒在HT-29中的表达及转染效率是否与插入片段的大小及细胞特性密切相关。5、利用Western blot技术检测重组载体对结直肠癌细胞中β-catenin表达的影响。以β-actin作内参,使用统计学软件SPSS13.0对western blot电泳条带的灰度值进行one-way ANOVA分析。
     结果:扩增了5条APC基因特异性的功能区域片段。构建5个pEGFP-N3-APC结构区域的重组真核表达载体:pEGFP-N3-APC1(APC aa 6-767)、pEGFP-N3-APC2(APC aa 1020-1169)、pEGFP-N3-APC3(APC aa 1262-2033)、pEGFP-N3-APC4(APC aa1020-2033)、pEGFP-N3-APC5(APC aa 1020-1698)。ORF查找器对重组质粒的测序结果分析,重组质粒均可表达APC功能区域和GFP的融合蛋白,APC蛋白同源性为99%以上,GFP蛋白同源性为100%。通过观察细胞中绿色荧光蛋白的表达验证APC功能区域在细胞内的表达,结果显示:5个重组真核表达载体转染HCT 116细胞后,细胞中均可见绿色荧光蛋白的表达,荧光观察显示转染效率分别约为pEGFP-N3-APC1 50%、pEGFP-N3-APC2 50%、pEGFP-N3-APC3 30%、pEGFP-N3-APC4 30%、pEGFP-N3-APC5 50%,空载体pEGFP-N380%,证明重组载体构建成功,在细胞内均可表达相应的APC功能区域。RT-PCR进一步验证重组质粒在HT-29中的表达,RT-PCR结果显示,5个重组质粒在HCT 116和HT-29细胞中的表达基本一致。转染效率与插入片段的大小及细胞特性密切相关。Western blot技术检测重组载体对结直肠癌细胞中β-catenin表达,结果显示:在HCT116细胞中,条带灰度值间的差异无显著性(p>0.05),重组质粒对细胞内β-catenin的表达无明显影响。在HT-29细胞中,前四组条带(分别是未转染细胞、转染pEGFP-N3-APC1、转染pEGFP-N3-APC2和转染pEGFP-N3-APC3的细胞)灰度值间的差异无显著性(p>0.05),而后两组(转染pEGFP-N3-APC4和转染pEGFP-N3-APC5的细胞)的条带灰度值同前相比,差异有显著性(p<0.05)。重组质粒pEGFP-N3-APC4和pEGFP-N3-APC5转染入HT-29细胞后可明显降低细胞内β-catenin的表达。pEGFP-N3-APC4和pEGFP-N3-APC5相比较而言,pEGFP-N3-APC5的片段长度相对较小。
     结论:本实验研究根据APC基因的功能结构以及APC突变簇集区的特点,使用Primer premier 5.0软件设计7条引物,以含有APC全长cDNA的pBluescript质粒为模板,扩增的5条APC基因特异性的功能区域片段中,经构建重组、ORF查找器对重组质粒的测序、转染、功能证实及Western blot技术检测重组载体对结直肠癌细胞中β-catenin表达的影响,证实5个重组载体构建成功,在细胞内均可表达相应的APC功能区域。APC功能区域在细胞内的成功表达,为进一步研究其在细胞内的功能提供了基础。在Western blot技术检测重组载体对结直肠癌细胞中β-catenin表达证实APC5基因片段是既可有效降低β-catenin的表达同时相对长度较短的最优片段。APC5基因片段在细胞内功能的进一步研究可为基因治疗奠定一定的分子理论与实验依据。
The remarkable thing about Colorectal cancer(CRC)-the most common cause of non-smoking-related cancer deaths in the world-is that the molecular mechanisms underlying virtually all of these cases are uniform.Recent studies on molecular carcinogenesis have highlighted that greater than 90%of all CRCs will have an activating mutation of the canonical Wnt/β-catenin signaling pathway,ultimately leading to the stabilization and accumulation ofβ-catenin in the hallmark of an active canonical Wnt pathway;the presence of nuclearβ-catenin is evident in even the smallest detectable lesions resulting from Wnt mutations.The consistency of mutations at some level of the Wnt signaling pathway in CRC makes this cancer an attractive model for molecular intervention.In CRC cells,Wnt/β-catenin signaling is activated mainly by mutations in the tumor suppressor gene APC.>70%of sporadic CRCs contain APC gene mutations,which result in inefficientβ-catenin degradation and up-regulation ofβ-catenin-mediated transcription.The majority of somatic mutations in the APC gene occur within a segment called the mutation cluster region(codons 1,250-1,500) and almost all of the mutations result in truncated APC protein.APC mutations occurring in the mutation cluster region produce abnormal APC proteins that retain only the three 15-amino-acid repeats and the first one or two 20-amino-acid repeats while losing the other domains and failing to effectively down-regulateβ-catenin.
     Recent research have highlighted that wild type APC could degradeβ-catenin level in colorectal cells,while using wild type APC for gene therapy is hard to obtain because the length of gene is longer than 10 kb, which couldn't be expressed stably in vivo and unwell to be used for gene therapy.
     Objectives
     The present study aimed to construct several recombinant eukaryotic expression vectors,containing various functional domains of APC protein, and investigated their functions and impact onβ-catenin level in human colorectal cancer cells.
     Methods
     1.APC gene fragments were amplified by PCR with pBluescript (involving full-length APC cDNA) as template and primers designed according to APC cDNA sequence and mutation cluster domain, containing BamH I and Xho I restriction site for directed cloning into pEGFP-N3 vector.2.The recombinant plasmids were identified by sequencing and analyzed by ORF finder and protein BLAST.3.The recombinant plasmids were transfected into colorectal cancer cells HCT 116 and HT-29 mediated by lipofectamine~(TM) 2000.Green fluorescence was observed via fluorescence microscope to investigate the expression of recombinant plasmids in cells.4.RT-PCR was employed to validate the expression of recombinant vectors in HT-29 cells.5.Western blot technique was applied to detect the influence onβ-catenin expression level of recombinant plasmids,gray scales of electrophoresis strips were analyzed by SPSS 13.0 via one-way ANOVA.
     Results
     1.Five recombinant expression vectors were constructed,named pEGFP-N3-APC1(including APC peptide from aa 6 to aa 767), pEGFP-N3-APC2(aa 1020-1169),pEGFP-N3-APC3(aa 1262-2033), pEGFP-N3-APC4(aa 1020-2033),pEGFP-N3-APC5(aa 1020-1698).
     2.Bioinformatics analysis showed that the recombinant plasmid could express a fusion protein involving APC protein domains and GFP.
     3.The stably transfected colorectal cancer cells were selected by neomycin resistance using 300μg/ml G418.Optimizing transfection parameters were determined by experiments.Results illustrated the five recombinant vectors could all be expressed in HCT 116 cells,green fluorescence detection showed transfection efficiency of pEGFP-N3-APC 1 was 50%,pEGFP-N3-APC2's was 50%, pEGFP-N3-APC3's was 30%,pEGFP-N3-APC4's was 30%, pEGFP-N3-APC5's was 50%,pEGFP-N3's was 80%,respectively, which certificated successful construction of recombinant vectors. Nevertheless,fluorescence intensity of GFP might be influenced by multiple factors such as property of cell itself,green fluorescence was hard to be observed in HT-29 cells.
     4.Results of RT-PCR made clear that vectors constructed could be expressed in HT-29 cells,transfection efficiency in HT-29 was no less than that in HCT-116.
     5.Results of Western blot showed,in HCT 116 cells,discrepancy of gray scales of electrophoresis strips wasn't significant(p>0.05),that was to say,β-catenin level wasn't effected a change when recombinant plasmids were transfected;in HT-29 cells,the situation wasn't so, discrepancy of gray scales of electrophoresis strips wasn't significant between the anterior four ones,which were normal cells,cells transfected with pEGFP-N3-APC1,cells transfected with pEGFP-N3-APC1,cells transfected with pEGFP-N3-APC2 and cells transfected with pEGFP-N3-APC3,respectively,discrepancy of gray scales of electrophoresis strips was significant between the posterior two ones(cells transfected with pEGFP-N3-APC4 and cells transfected with pEGFP-N3-APC5) and the anterior four ones,that was to say, recombinant plasmid pEGFP-N3-APC4 and pEGFP-N3-APC5 could degradeβ-catenin level obviously.As for pEGFP-N3-APC4 and pEGFP-N3-APC5,the length of pEGFP-N3-APC5 was shorter than that of pEGFP-N3-APC4.
     Conclusions
     1.Five recombinant pEGFP-N3-APC vectors carrying various APC functional domains were succefully constructed
     2.The recombinant plasmids were identified by sequencing and analyzed by ORF finder and protein BLAST,transfected into colorectal cancer cells HCT 116 and HT-29 mediated by lipofectamine~(TM) 2000.Detection of green fluorescence and RT-PCR illustrated the successful expression of recombinant plasmid in human colorectal cancer cells.
     3.Recombinant plasmid pEGFP-N3-APC4 and pEGFP-N3-APC5 could degradeβ-catenin level obviously in HT-29 cell lines.APC fragment No.5 was just the target gene we need,which could degradeβ-catenin level and possess short length relatively.
引文
[1] Anne B Ballinger, Clive Anggiansah. Colorectal cancer. BMJ, Oct 2007; 335: 715-718.
    [2] Herrera L, Kakati S, Gibas L, et al. Gardner syndrome in a man with an interstitial deletion of 5q. Am J Med Genet, 1986 Nov;25(3):473-6.
    [3] Chen, T., Yang, I., Irby, R., et al. Regulation of caspase expression and apoptosis by adenomatous polyposis coli. Cancer Res,2003, 63:4368-4374.
    [4] Kawasaki Y, Akiyama T.A novel function of the tumor suppressor APC. Tanpakushitsu Kakusan Koso. 2001 Mar;46(3):228-32.
    [5] Varesco L, Gismondi V, James R, et al. Free in PMC Identification of APC gene mutations in Italian adenomatous polyposis coli patients by PCR-SSCP analysis.Am J Hum Genet,1993 Feb;52(2):280-5.
    [6] Huelsken J, Behrens J. The Wnt signalling pathway. J Cell Sci. 2002 Nov 1;115(Pt 21):3977-8
    [7] Fodde R. The APC gene in colorectal cancer. Eur J Cancer, 2002, May; 38(7):867-71.
    [8] Hart M, Concordet JP, Lassot, et al. The F-box protein beta-TrCP associates with phosphorylated beta-catenin and regulates its activity in the cell. Curr Biol,1999;9:207-210
    [9] Kitagawa M, Hatakeyama S, Shirane M, et al. An F-box protein FWD1, mediates ubiquitin-dependent proteolysis of beta-catenin. EMBO J, 1999; 18:2401-2410
    [10] Winston JT, Strack P, Beer Romero P. The SCFbeta-TRCP-ubiquitin ligasecomplex associates specifically with phosphorylated destruction motifs in IkappaBalpha and beta-catenin and stimulates IkappaBalpha ubiquitination in vitro. Genes Dev, 1999; 13:270-283
    [11] Aberle H, Bauer A, Stappert J, et al. Beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J, 1997;16:3797:3804
    [12] Lee JS, Ishimoto A, Yanagawa S. Characterization of mouse disheveled(Dvl) proteins in Wnt/Wingless signaling pathway. J Biol Chem, 1999;274:21464-21470
    [13] Smalley MJ, Sara E, Paterson H, et al. Interaction of axin and Dvl-2 proteins regulates Dvl-2-stimulated TCF-dependent transcription. EMBO J, 1999;18:2824-2835
    [14] Boutros M, Mihaly J, Bouwmeester T, et al. Signaling specificity by Frizzled receptors in Drosophila.Science 2000;288:1825-1828
    [15]Bienz M,Clevers H.Linking colorectal cancer to Wnt signaling.Cell,2000;103:311-320
    [16]Kolligs FT,Bommer G,Goke B.Wnt/beta-catenin/tcf signaling:a critical pathway in gastrointerstinal tumorigenesis.Digestion 2002;66:131-144
    [17]Polakis P.The oncogenic activation of beta-catenin.Curr Opin Genet Dev,1999;9:15-21
    [18]Sparks AB,Morin PJ,Vogelstein B,et al.Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer.Cancer Res.1998 Mar 15;58(6):1130-4
    [19]Samowitz WS,Powers MD,Spirio LN,et al.Beta-catenin mutations are more frequent in small colorectal adenomas than in larger adenomas and invasive carcinamos.Cancer Res,1999;59:1442-1444
    [20]Luu HH,Zhang R,Haydon RC,et al.Wnt/beta-catenin signaling pathway as a novel cancer drug target.Curr Cancer Drug Targets 2004;4:653-671
    [21]Dihlmann S,von Knebel Doeberitz M.Wnt/betacatenin-pathway as a molecular target for future anti-cancer therapeutics.Int J Cancer 2005;113:515-524
    [22]Kundu JK,Choi KY,Surh YJ.beta-Cateninmediated signaling:a novel molecular target for chemoprevention with anti-inflammatory substances.Biochim Biophys Acta2006;1765:14-24
    [23]Dihlmann S,Siermann A,von Knebel Doeberitz M.The nonsteroidal anti inflammatory drugs aspirinand indomethacin attenuate beta-catenin/TCF-4signaling.Oncogene 2001;20:645-653
    [24]Dihlmann S,Klein S,Doeberitz Mv MK.Reduction of beta-catenin/T-cell transcription factor signaling by aspirin and indomethacin is caused by an increased stabilization of phosphorylated betacatenin.Mol Cancer Ther 2003;2:509-516
    [25]Brunori M,Malerba M,Kashiwazaki H,et al.Replicating adenoviruses that target tumors with constitutive activation of the wnt signaling pathway.J Virol 2001;75:2857-2865
    [26]Sieber OM,Tomlinson IP,Lamlum H.The adenomatous polyposis coli(APC)tumour suppressor--genetics,function and disease.Mol Med Today,2000Dec;6(12):462-9.
    [27]J.莎姆布鲁克.分子克隆实验指南(第三版).2002,9
    [28]Bonnee Rubinfeld,Brian Souza,Iris Albert,et al.Association of the APC gene product with β-catenin. Science, 2003,262: 1731-1734
    [29] Li-Kuo Su, Bert Vogelstein, Keeneth W. Kinzler, et al. Association of the APC tumor suppressor protein with catenins. Science, 2003,262: 1734-1737
    [30] Kinzler KW, Nilbert MC, Su LK, et al. Identification of FAP locus genes from chromosome 5q21. Science 1991;253:661-5.
    [31]Nishisho I, Nakamura Y, Miyoshi Y, et al. Mutations of chromosome 5q21 genes in FAP and colorectal cancerpatients. Science 1991;253:665-9.
    [32] Groden J, Thliveris A, Samowitz W, et al. Identification and characterization of the familial adenomatous polyposis coli gene. Cell 1991;66:589-600.
    [33] Batlle E, Henderson JT, Beghtel H, et al. beta-catenin and TCF mediate cell positioning in the intestinalepithelium by controlling the expression of EphB/ephrinB. Cell 2002; 111:251-63.
    [34] Kuhnert F, Davis CR, Wang HT, et al. Essential requirement for Wnt signaling in proliferation of adult small intestine and colon revealed by adenoviral expression of Dickkopf-1. Proc Natl Acad Sci U S A, 2004;101:266-71.
    [35] Pinto D, Gregorieff A, Begthel H, Clevers H. Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. Genes Dev 2003; 17:1709-13.
    [36] He TC, Sparks AB, Rago C, et al. Identification of c-MYC as a target of the APC pathway. Science 1998;281:1509-12.
    [37] Tetsu O, McCormick F. beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 1999; 398:422-6.
    [38] Ikeda S, Kishida S, Yamamoto H, Murai H, Koyama S, Kikuchi A. Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3h and h-catenin and promotes GSK-3h-dependent phosphorylation of beta-catenin. EMBO J 1998;17:1371-84.
    [39] Rubinfeld B, Albert I, Porfiri E, Fiol C, Munemitsu S, Polakis P. Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. Science, 1996;272:1023-6.
    [40] Kishida S, Yamamoto H, Ikeda S, et al. Axin, a negative regulator of the Wnt signaling pathway, directly interacts with adenomatous polyposis coli and regulates the stabilization of h-catenin. J Biol Chem 1998;273: 10823-6.
    [41] Roh H, Green DW, Boswell CB, Pippin JA, et al. Suppression of beta-catenin inhibits the neoplastic growth of APC-mutant colon cancer cells. Cancer Res 2001; 61: 6563-6568
    [42] Green DW, Roh H, Pippin JA, Drebin JA. Beta-catenin antisense treatment decreases beta-catenin expression and tumor growth rate in colon carcinoma xenografts. J Surg Res 2001; 101: 16-20
    [43]van de Wetering M, Oving I, Muncan V, et al. Specific inhibition of gene expression using a stably integrated, inducible small-interfering RNA vector.EMBO Rep 2003; 4: 609-615
    [44]Verma UN, Surabhi RM, Schmaltieg A, Becerra C, Gaynor RB. Small interfering RNAs directed against beta-catenin inhibit the in vitro and in vivo growth of colon cancer cells. Clin Cancer Res 2003; 9:1291-1300
    [45]Malerba M, Daeffler L, Rommelaere J,et al.Replicating parvoviruses that target colon cancer cells. J Virol 2003; 77: 6683-6691
    [46]Seki Y, Yamamoto H, Yee Ngan C,et al. Construction of a novel DNA decoy that inhibits the oncogenic beta-catenin/T-cell factor pathway. Mol Cancer Ther 2006; 5:985-994
    [47] Vasicek TJ, Zeng L, Guan XJ, et al.Two dominant mutations in the mouse fused gene are the result of transposon insertions.Genetics. 1997 Oct;147(2):777-86.
    [1]Herrera L,Kakati S,Gibas L,et al.Gardner syndrome in a man with an interstitial deletion of 5q.Am J Med Genet,1986 Nov;25(3):473-6.
    [2]Nishisho I,Nakamura Y,Miyoshi Y,et al.Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients.Science,1991 Aug 9;253(5020):665-9.
    [3]Miyoshi Y,Iwao K,Nawa G,et al.Frequent mutations in the beta-catenin gene in desmoid tumors from patients without familial adenomatous polyposis.Oncol Res,1998;10(11-12):591-4.
    [4]Varesco L,Gismondi V,James R,et al.Free in PMC Identification of APC gene mutations in Italian adenomatous polyposis coli patients by PCR-SSCP analysis.Am J Hum Genet,1993 Feb;52(2):280-5.
    [5]Knudson AG.Hereditary cancer:two hits revisited.J Cancer Res Clin Oncol,1996;122(3):135-40.
    [6]Joslyn G,Richardson DS,White R,et al.Dimer formation by an N-terminal coiled coil in the APC protein.Proc Natl Acad Sci U S A.1993 Dec 1;90(23):11109-13.
    [7]Henderson BR,Fagotto F.The ins and outs of APC and beta-catenin nuclear transport.EMBO Rep.2002 Sep;3(9):834-92002.
    [8]Bienz,The subcellular destinations of APC proteins.Nat Rev Mol Cell Biol.2002May;3(5):328-38.
    [9]Rubinfeld B,Albert I,Porfiri E,et al.Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly.Science,1996,May 17;272(5264):1023-6.
    [10]Dikovskaya D,Zumbrunn J,Penman GA,et al.The adenomatous polyposis coli protein:in the limelight out at the edge.Trends Cell Biol.2001 Sep;11(9):378-84.
    [11]Fodde R.The APC gene in colorectal cancer.Eur J Cancer,2002May;38(7):867-71.
    [12]Huelsken J,Behrens J.The Wnt signalling pathway.J Cell Sci.2002 Nov 1;115(Pt 21):3977-8
    [13] Chen, T., Yang, I., Irby, R., et al. Regulation of caspase expression and apoptosis by adenomatous polyposis coli. Cancer Res,2003, 63:4368-4374.
    [14]van de Wetering M, de Lau W, Clevers H. WNT signaling and lymphocyte development. Cell. 2002 Apr;109 Suppl:S13-9.
    [15] Liu, J., Stevens, J., Rote, C. A., et al. Siah-1 mediates a novel beta-catenin degradation pathway linking p53 to the adenomatous polyposis coli protein. Mol. Cell 2001,7: 927-936.
    [16] Xiao JH, Ghosn C, Hinchman C. Adenomatous polyposis coli (APC)-independent regulation of beta-catenin degradation via a retinoid Ⅹ receptor-mediated pathway. J Biol Chem. 2003 Aug 8;278(32):29954-62
    [17] Nathke IS, Adams CL, Polakis P, et al. The adenomatous polyposis coli tumor suppressor protein localizes to plasma membrane sites involved in active cell migration. J Cell Biol. 1996 Jul; 134(1): 165-79.
    [18] Mogensen MM, Tucker JB, Mackie JB, et al. The adenomatous polyposis coli protein unambiguously localizes to microtubule plus ends and is involved in establishing parallel arrays of microtubule bundles in highly polarized epithelial cells.J Cell Biol. 2002 Jun 10;157(6):1041-8.
    [19] Barth AI, Siemers KA, Nelson WJ. Dissecting interactions between EB1, microtubules and APC in cortical clusters at the plasma membrane. J Cell Sci. 2002 Apr 15;115(Pt 8):1583-90.
    [20] Kawasaki Y, Akiyama T.A novel function of the tumor suppressor APC. Tanpakushitsu Kakusan Koso. 2001 Mar;46(3):228-32.
    [21] Rosin-Arbesfeld, R., Ihrke, G. and Bienz, M. Actin-dependent membrane association of the APC tumour suppressor in polarized mammalian epithelial cells. EMBO J, 2001,20: 5929-5939.
    [22] Dikovskaya D, Newton IP, Nathke IS. The adenomatous polyposis coli protein is required for the formation of robust spindles formed in CSF Xenopus extracts. Mol Biol Cell. 2004 Jun;15(6):2978-91.
    [23] Green, R. A. and Kaplan, K. B.Chromosome instability in colorectal tumor cells is associated with defects in microtubule plus-end attachments caused by a dominant mutation in APC. J. Cell Biol. 2003,163:949-961.
    [24] Henderson BR, Fagotto F. The ins and outs of APC and beta-catenin nuclear transport. EMBO Rep. 2002 Sep;3(9):834-9.
    [25] Deka, J., Herter, P., Sprenger-Haussels, M, Koosch, S., Franz, D., Muller, K. M., Kuhnen, C., Hoffmann, I. and Muller, O. The APC protein binds to A/T rich DNA sequences. Oncogene,1999:18, 5654-5661.
    [26] Fagman H, Larsson F, Arvidsson Y,et al. Nuclear accumulation of full-length and truncated adenomatous polyposis coli protein in tumor cells depends on proliferation.Oncogene. 2003 Sep 4;22(38):6013-22.
    [27] Roberts, G. T., Davies, M. L, Wakeman, J. A. Interaction between Ku80 protein and a widely used antibody to adenomatous polyposis coli. Br. J. Cancer,2003: 88, 202-205.
    [28]Morin PJ.Beta-catenin signaling and cancer. Bioessays,1999 Dec;21(12):1021-30.
    [29] Kikuchi A. Regulation of beta-catenin signaling in the Wnt pathway. Biochem Biophys Res Commun,2000;268:243-248
    [30] Kemler R,Ozawa M. Uvomorulin-catenin complexxytoplasmic anchorage of a ca2+-dependent cell adhesion molecule. Bioessays 1989;11:88-91
    [31] Muller T,Choidas A,Reichmann E, et al. Phosphorylation and free pool of beta-catenin are regulated by tyrosine kinases and tyrosine phosphatases during epithelial cell migration. J Biol Chem,1999;274:10173-10183
    [32] Hazan RB, Norton L. The epidermal growth factor receptor modulates the interaction of E-cadherin with the actin cytoskeleton. J Biol Chem, 1998:273:9078-9084
    [33] Hiscox S, Jiang WG. Hepatocyte growth factor/scatter factor disrupts epithelial tumour cell-cell adhesion: involvement of beta-catenin. Anticancer Res,1999;19:509-517
    [34] Rijsewijk F, Schuermann M, Wagenaar E, et al. The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell,1987;50:649-657
    [35] Liu C, Li Y, Semenov M, et al. Control of beta-catenin phosphorylation degradation by a dual-kinase mechanism. Cell, 2002; 108:837-847
    [36] Amit S, Hatzubai A, Birman Y, et al. Axin-mediated CK1 phosphorylation of beta-catenin at Ser 45:a molecular switch for the Wnt pathway. Genes Dev,2002; 16:1066-1076
    [37] Hart M, Concordet JP, Lassot, et al. The F-box protein beta-TrCP associates with phosphorylated beta-catenin and regulates its activity in the cell. Curr Biol,1999;9:207-210
    [38] Kitagawa M, Hatakeyama S, Shirane M, et al. An F-box protein FWD1, mediates ubiquitin-dependent proteolysis of beta-catenin. EMBO J, 1999; 18:2401-2410
    [39] Winston JT, Strack P, Beer Romero P. The SCFbeta-TRCP-ubiquitin ligasecomplex associates specifically with phosphorylated destruction motifs in IkappaBalpha and beta-catenin and stimulates IkappaBalpha ubiquitination in vitro. Genes Dev, 1999; 13:270-283
    [40] Aberle H, Bauer A, Stappert J, et al. Beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J, 1997;16:3797:3804
    [41] Lee JS, Ishimoto A, Yanagawa S. Characterization of mouse disheveled(Dvl) proteins in Wnt/Wingless signaling pathway. J Biol Chem, 1999;274:21464-21470
    [42] Smalley MJ, Sara E, Paterson H, et al. Interaction of axin and Dvl-2 proteins regulates Dvl-2-stimulated TCF-dependent transcription. EMBO J, 1999;18:2824-2835
    [43] Boutros M, Mihaly J, Bouwmeester T, et al. Signaling specificity by Frizzled receptors in Drosophila. Science 2000;288:1825-1828
    [44] Bienz M, Clevers H. Linking colorectal cancer to Wnt signaling. Cell,2000; 103:311-320
    [45] Kolligs FT, Bommer G, Goke B. Wnt/beta-catenin/tcf signaling: a critical pathway in gastrointerstinal tumorigenesis. Digestion 2002;66:131-144
    [46] http://www.stanford.edu/-rnusse/pathways/targets.html
    [47] Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cacer. Cell, 1996;87:169-170
    [48] Sparks AB, Morin PJ, Vogelstein B, et al. Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cacer. Cancer Res, 1998;58:1130-1134
    [49] Samowitz WS, Powers MD, Spirio LN, et al. Beta-catenin mutations are more frequent in small colorectal adenomas than in larger adenomas and invasive carcinamos. Cancer Res, 1999;59:1442-1444
    [50] Polakis P. The oncogenic activation of beta-catenin. Curr Opin Genet Dev, 1999;9:15-21
    [51] Smits R, Kielman MF, Breukel C, et al. Apc1638T: a mouse model delineating critical domains of the adenomatous polyposis coli protein involved in tumorigenesis and development. Genes Dev,1999;13:!309-1321
    [52] Tighe A, Johnson VL, Taylor SS. Truncating APC mutations have dominant effects on proliferation, spindle checkpoint control, survival and chromosome stability. J Cell Sci,2004; 117:6339-6353
    [53] Polakis P. Wnt signaling and cancer. Genes Dev, 2000;14:1837-1851
    [54] Grady WM. Genomic instability and colon cancer. Cancer Metastasis Rev,2004;23:11-27
    [55] Pottern CS, Loeffler M. Stem cells: attributes, cycles, spirals, pitfalls and uncertainties, lessons for and from the crypt. Development ,1990;110:1001-1020
    [56] Shimomura A, Kohu K, Akiyama T, et al. Subcellular localization of the tumor suppressor protein APC in developing cultured neurons. Neurosci Lett, 2005;375:81-86
    [57] Miyashiro I, Senda T, Matsumine A, et al. Subcellular localization of the APC protein: immunoelectron microscopic study of the association of the APC protein with catenin. Oncogene 1995;11:89-96
    [58] van de Wetering M, Sancho E, Verweij C, et al. The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 2002;111:241-250
    [59] Zhang T, Otevrel T, Gao Z, et al. Evidence that APC regulates surviving expression: a possible mechanism contributing to the stem cell origin of colon cancer. Cancer Res 2001 ;61:8664-8667
    [60] Kim PJ, Plescia J, Clevers H, et al. Survivin and molecular pathogenesis of colorectal cancer. Lancet 2003;362:205-209
    [61] Luu HH, Zhang R, Haydon RC, et al. Wnt/beta-catenin signaling pathway as a novel cancer drug target. Curr Cancer Drug Targets 2004; 4: 653-671
    [62] Dihlmann S, von Knebel Doeberitz M. Wnt/betacatenin-pathway as a molecular target for future anti-cancer therapeutics. Int J Cancer 2005; 113:515-524
    [63] Kundu JK, Choi KY, Surh YJ. beta-Cateninmediated signaling: a novel molecular target for chemoprevention with anti-inflammatory substances. Biochim Biophys Acta 2006; 1765: 14-24
    [64] Dihlmann S, Siermann A, von Knebel Doeberitz M.The nonsteroidal anti inflammatory drugs aspirinand indomethacin attenuate beta-catenin/TCF-4signaling. Oncogene 2001; 20: 645-653
    [65] Dihlmann S, Klein S, Doeberitz Mv MK. Reduction of beta-catenin/T-cell transcription factor signaling by aspirin and indomethacin is caused by an increased stabilization of phosphorylated betacatenin. Mol Cancer Ther 2003; 2: 509-516
    [66] Boon EM, Keller JJ, Wormhoudt TA, et al. Sulindac targets nuclear beta-catenin accumulation and Wnt signalling in adenomas of patients with familial adenomatous polyposis and in human colorectal cancer cellss.Br J Cancer 2004;90:224-229
    [67]Brown WA,Skinner SA,Vogiagis D,O'Brien PE.Inhibition of beta-catenin translocation in rodent colorectal tumors:a novel explanation for the protective effect of nonsteroidal antiinflammatory drugs in colorectal cancer.Dig Dis Sci 2001;46:2314-2321
    [68]Garg AK,Buchholz TA,Aggarwal BB.Chemosensitization and adiosensitization of tumors by plant polyphenols.Antioxid Redox Signal 2005;7:1630-1647
    [69]Surh YJ.Cancer chemoprevention with dietary phytochemicals.Nat Rev Cancer 2003;3:768-780
    [70]Jaiswal AS,Marlow BP,Gupta N,Narayan S.Beta-catenin-mediated transactivation and cell-cell adhesion pathways are important in curcumin (diferuylmethane)-induced growth arrest and apoptosis in colon cancer cells.Oncogene 2002;21:8414-8427
    [71]Orner GA,Dashwood WM,Blum CA,et al.Suppression of tumorigenesis in the Apc(min) mouse:down-regulation of betacatenin signaling by a combination of tea plus sulindac.Carcinogenesis 2003;24:263-267
    [72]Joe AK,Liu H,Suzui M,Vural ME,et al.Resverat rol induces growth inhibition,S-phase arrest,apoptosis,and changes in biomarker expression in several human cancer cellss.Clin Cancer Res 2002;8:893-903
    [73]Choi BT,Cheong J,Choi YH.beta-Lapachoneinduced apoptosis is associated with activation of caspase-3 and inactivation of NF-kappaB in human colon cancer HCT-116 cells.Anticancer Drugs 2003;14:845-850
    [74]Wang D,Xiang DB,He YJ,et al.Effect of caffeic acid phenethylester on proliferation and apoptosis of colorectal cancer cells in vitro.World J Gastroenterol 2005;11:4008-4012
    [75]Xiang D,Wang D,He Y,et al.Caffeic acid phenethyl ester induces growth arrest and apoptosis of colon cancer cells via the betacatenin/T-cell factor signaling.Anticancer Drugs,2006;17:753-762
    [76】向德兵,王东,牟江洪,仲召阳,肖华亮,张沁宏,李增鹏.咖啡酸苯乙酯对人大肠癌HCT116细胞裸鼠皮下移植瘤生长的影响.解放军医学杂志2005;30:953-955
    [77]Playford MP,Bicknell D,Bodmer WF,et al.Insulin-like growth factor 1regulates the location,stability,and transcriptional activity of beta-catenin.Proc Natl Acad Sci USA 2000; 97:12103-12108
    [78] Danilkovitch-Miagkova A. Oncogenic signaling pathways activated by RON receptor tyrosine kinase. Curr Cancer Drug Targets 2003; 3: 31-40
    [79] Zhou L, An N, Haydon RC, Zhou Q, et al. Tyrosine kinase inhibitor STI-571/Gleevec down-regulates the beta-catenin signaling activity. Cancer Lett 2003; 193: 161-170
    [80] Dkhissi F, Lu H, Soria C, et al. Endostatin exhibits a direct antitumor effect in addition to its antiangiogenic activity in colon cancer cells. Hum Gene Ther 2003; 14: 997-1008
    [81] Hanai J, Gloy J, Karumanchi SA, et al. Endostatin is a potential inhibitor of Wnt signaling. J Cell Biol 2002; 158: 529-539
    [82] Lepourcelet M, Chen YN, France DS, et al. Small-molecule antagonists of theoncogenic Tcf/beta-catenin protein complex. Cancer Cell 2004; 5: 91-102
    [83] Liu J, Stevens J, Rote CA, et al. Siah-1 mediates a novel beta-catenin degradation pathway linking p53 to the adenomatous polyposis coli protein. Mol Cell 2001; 7: 927-936
    [84] Matsuzawa SI, Reed JC. Siah-1, SIP, and Ebi collaborate in a novel pathway for beta-catenin degradation linked to p53 responses. Mol Cell 2001; 7: 915-926
    [85] Rother K, Johne C, Spiesbach K, et al. Identification of Tcf-4 as a transcriptional target of p53 signalling. Oncogene 2004; 23: 3376-3384
    [86] Roh H, Green DW, Boswell CB, et al Suppression of beta-catenin inhibits the neoplastic growth of APC-mutant colon cancer cells. Cancer Res 2001; 61: 6563-6568
    [97] Green DW, Roh H, Pippin JA, et al. Betacatenin antisense treatment decreases betacatenin expression and tumor growth rate in colon carcinoma xenografts. J Surg Res 2001; 101: 16-20
    [88] van de Wetering M, Oving I, Muncan V, et al. Specific inhibition of gene expression using a stably integrated, inducible small-interfering-RNA vector. EMBO Rep 2003; 4: 609-615
    [89] Verma UN, Surabhi RM, Schmaltieg A,et al. Small interfering RNAs directed against beta-catenin inhibit the in vitro and in vivo growth of colon cancer cells. Clin Cancer Res 2003; 9: 1291-1300
    [90] Brunori M, Malerba M, Kashiwazaki H, et al. Replicating adenoviruses that target tumors with constitutive activation of the wnt signaling pathway. J Virol 2001; 75:2857-2865
    [91]Malerba M,Daeffler L,Rommelaere J,et al.Replicating parvoviruses that target colon cancer cells.J Virol 2003;77:6683-6691
    [92]Seki Y,Yamamoto H,Yee Ngan C,et al.Construction of a novel DNA decoy that inhibits the oncogenic beta-catenin/T-cell factor pathway.Mol Cancer Ther 2006;5:985-994

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700