活性污泥数学模型在天山污水处理厂工艺优化改造中的模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自20世纪80年代国际水质协会推出活性污泥数学模型(Activated Sludge Model)以来,其作为污水处理工艺设计、污水处理运行管理和污水处理工艺研究开发等的新工具,已在国外城市污水处理厂的运行管理和传统活性污泥法处理工艺的脱氮除磷改造中得到广泛运用,但国内在这方面的相关研究和运用很少见。本文以城市污水处理中的A/O工艺为例,运用数学模型实验分析了活性污泥1号模型14个动力学参数及A/O工艺系统参数对出水水质组分的影响,得出了对系统中的水质组分影响较大的几个动力学参数,主要有b_H、(?)_H、(?)_A、K_S、K_(NH)等。同时结果表明,处理工艺系统参数如污泥泥龄、回流比、溶解氧的浓度以及好氧池与缺氧池体积分配等值的确定都非常重要,模拟结果有助于最佳工艺参数的选择。
     应用EFOR模拟程序对天山污水处理厂现有工艺进行了模拟,结果表明,采用系统默认的活性污泥模型参数值时,出水中的COD和氨氮浓度与实测值有一定的差距。根据参数影响分析结果,通过试探性取值法对参数进行调整,结果仅改变了3个动力学参数,即自养菌最大比增长速率(?)_A从0.9d~(-1)下调到0.65d~(-1),氨半饱和速率常数K_(NH)从1.0 gN/m~3上调到1.3gN/m~3,易降解有机物饱和常数K_S从20gCOD/m~3调整到30gCOD/m~3,模拟值与实测值取得较好的吻合。
     为了提高天山污水处理厂脱氮功能,将传统活性污泥工艺进行脱氮工艺改造。本文分两种方案进行脱氮改造研究:一是考虑不增加基建投资,将原有的曝气池改造成为A/O系统来达到脱氮效果。通过数学模型模拟的方法来考察其可行性并确定了改造后的系统中的最佳运行参数。结果显示,天山厂在现有进水水量的情况下,其最佳工艺控制参数为:缺氧区与系统总体积比为1:3,好氧区的溶解氧浓度为3mg/L,内回流比为200%。改造后出水COD浓度变化不大,而出水的氨氮和总氮的浓度有较大的下降,出水浓度能达到国家规定的排放标准。二是在预测天山厂流量将继续增加的情况下的改造方案,此方案力求保持现有构筑物和设备不变,通过增建缺氧池组成A/O工艺来达到污水脱氮目的。运用数学模型模拟试验得出扩建缺氧池的体积大小,并对扩建后的处理工艺进行优化,将A/O工艺改造成为Bardenpho工艺,达到了很好的脱氮效果。扩建工艺
    
    东华大学硕士学位论文
    活性污泥数学模型在天山污水处理厂工艺优化改造中的模拟研究
    的最佳工艺参数组合为:扩建缺氧池体积为原曝气池体积的0.5倍,混合液回流
    量为进水流量的300%,同时将原曝气池的第三格改为缺氧段,混合液回流在原
    曝气池的第二格后。
     研究结果表明,基于活性污泥数学模型的EFOR模拟与仿真程序能够很好地
    模拟城市污水处理厂传统活性污泥过程的运行,能够为传统活性污泥过程的生物
    脱氮改造提供具有重要价值的参考资料,值得我国进行进一步的深入研究和推广-
    应用。
As a new tool, the Activated Sludge Model developed by the International Water Association (IWA) in 1980's has been available in the design, performance administration, nitrogen and phosphorus removal upgrading and the development of new wastewater treatment technology and process, which has been widely used in many developed countries. However, this has seldom been reported in china. In this study, the operating process of a municipal wastewater treatment plant in Shanghai was presented. Taking A/O technology of municipal wastewater treatment as example, mathematical model test was applied to analyse the effect of 14 dynamical parameters of activated sludge model No.1 and A/O process system parameters in effluent wastewater composition. The result shows that the kinetic parameters such as bH,
    μH,μA, Ks and KNH have great influences on the effluent water composition. At
    the same time ,the result shows that the choosing of sludge age, recirculating ratio, dissolved oxygen concentration and the volumetric ratio of aeration tank and anoxic tank is very important. Simulation result helps to choose the best process parameter.
    The EFOR system was used to simulate the real operation of Tianshan Wasterwater Treatment Plant. When the default parameters recommended were used, the modeling value of COD and NH4-N was proved to disagree with the measurement. According to parameter influence analysis, good simulation results were achieved through changing of only three model parameters as follows: maximum specific
    growth rate for autotrophic biomass μA from 0.9 d-1 to 0.65 d-1, ammonia
    half-saturation coefficient for autotrophic biomass KNH from 1.0 gN/m3 to 1.3 gN/m3, half-saturation coefficient for heterotrophic biomass KS from 20gCOD/m to 30gCOD/m3.
    Aiming at increasing the efficiency of nitrogen removal in Tianshan Wastewater Treatment Plant, a choice was made to change the existing aeration basin into biological nitrogen removal process. In this study, two upgrading schemes were
    
    
    considered: First, in the consideration of no higher construction costs, the existing pattern of performance was upgraded into a biological nitrogen removal process-A/O process.Through mathematical simulation of the scheme, the feasibility of this upgrading project was evaluated and the optimum control parameters were obtained. If the influent flow keeps constant, the results showed that the optimum control parameters were: The ratio of anoxic volume to total system volume was 1:3, the dissovled oxygen concentration of aeration basin was 3 mg/L, the recirculating effluent flow ratio was 200%. After upgrading, the effluent COD concentration was hardly influenced, while the effluent TN and Ammonia nitrogen concentration could decrease a lot, the effluent concentration could also meet the emission control standard. Second, another upgrading scheme was put forward in condition that the influent flow rate of the plant keeps on increasing. This project tried to keep the current constructions and equipments unchang
    ed, the plant is upgraded by only augmenting anoxic basin before the original aeration basin. The augmented volume of anoxic basin was obtained by applying the mathematics modeling. The optimum control parameters of this new upgrading process were optimized through the modeling and simulating of the schemes. The results showed that: if the third stage of the existing aeration basin was changed as an anoxic zone and the internal recycle was from the second stage of the existing aeration basin instead of the forth stage ,the ratio of anoxic basin volume to aeration basin volume was 0.5, the recirculating effluent flow ratio was 300%. A very good efficiency of nitrogen removal was obtained if the A/O process was changed into the Bardenpho process.
    The results of research showed that the EFOR program could simulate the performance of traditional activated sludge process and provide valuable references for directing the biological nitrogen removal upgrading of existing WWTPs, and it is worthy of carrying out a furth
引文
1 高廷耀.水污染控制工程,1989年,高等教育出版社,北京.
    2 国家城市给水排水工程技术研究中心.中国城市污水处理现状及规划.中国环保产业,2003,54(1):32—34.
    3 国家环保总局.1999年中国环境状况公报[J].环境保护,2000,(7):3-9.
    4 赵银慧,朱建平.从城考结果看城市污水处理的发展趋势.中国环境监测,2002,18(1):3—5.
    5 建设部,国家环保总局,科技部.城市污水处理及污染防治技术政策.环境保护,2000,(9):8-9.
    6 Chang S.Y, Liaw S L. Generating designs for wastewater systems. Journal of the Environmental Engineering Division,ASCE,1985, 101(5): 665~680.
    7 Chia-Yau, Irina Ribarova.Activated sludge system modelling and simulations for improving the effluent water quality. Wat.Sci.Tech, 1999, 39(8): 93~98.
    8 Coen F, Vanderhaegen B,Boonen I et al.Improved design and control of industrial and municipal nutrient removal plants using dynamic models. Wat.Sci.Tech,1997,35(10): 53~61.
    9 Henze M, Gujer W, Mino T, et al. Activated Sludge Models ASM1,ASM2, ASM2d and ASM3. IAW Scientific and Technical Report. 2000,IAW Publishing.
    10 Eckenfelder W W, O' Conor D J. Biological Waste Treatment. New York; Pergamom Press, 1961.
    11 Mckinney R E, San J. Mathematics of complete mixing activated sludge. Eng.Div, ASCE,1962,88(3): 87~113.
    12 Larrence A W, McCarty P L. Kinetics of methane fermentation in anaerobic treatment. JWPCF,1969,41(2): 1~17.
    13 Andrews J F. Control strategies for the anaerobic digestion process. Water & Sewage Works, 1975,122(3): 62~65.
    14 Jones G L. Bacterial growth kinetics: measurement and significance in the activated sludge process. War Res, 1973,7(1): 117~125.
    15 Makinia J, Swinarski M, Dobiegala E. Experience with computer simulation at two large wastewater treatment plants in Northern Poland. Wat.Sci.Tech, 2002,45(6): 209~218.
    16 Henze M, Gujer W, Mino T, et al. Activated Sludge Model no.1 IAWPRC Scientific and Technical report. No. 1,London.
    
    
    17 Gujer W, Henze M, Mino T, et al. The Activated Sludge Model no.2: Biological Phosphorus Removal. Wat.Sci.Tech, 1995,31(2): 183~193.
    18 Henze M, Gujer W, Mino T, et al. Activated Sludge Model no.2d. Wat. Sic. Tech, 1999, 39(1): 165~182.
    19 Gujer W, Henze M, Mino T, et al. Activated Sludge Model no.3. Wat.Sci.Tech, 1999,39(1): 183~193.
    20 EFOR 2001 user Guide: 2002,
    21 EFOR 2001 technical reference: 2002.
    22 Andreottola G, Bortone G. Experimental validation of a simulation and design model for nitrogen removal in sequencimg batch reactors. War Sic Tech, 1997,43(3): 69~76.
    23 Manga J, Ferrer J, Garcia-Usach F, et al. A modification to the Activated Sludge Model No.2 based on the competition between phosphorus-accumulating or ganisms and glycogen-accumulating organisms. Wat.Sci.Tech, 2001,41(11):161~171.
    24 Marsili S, Libelli, Ratini P, Spagni A et al. Implementation ,study and calibration of a modified ASM2d for the simulation of SBR process. Wat.Sci.Tech, 2001, 43(3): 69~76.
    25 Jeppsson U et al. Reduced Order Models for On-line Parameter Identification of the Activated Sludge Process. Wat.Sci.Tech, 1993,28(11): 173~183.
    26 Hyunook Kim. SBR System for Phosphorus Removal:ASM2 and Simplified Linear Model, Journal of Environmental Engineering, 2001, 2: 98~104.
    27 Hulsbeek J J W, Kruit J, Roeleveld P J, et al. A practical protocol for dymamic mofelling of activated sludge systems. Wat.Sci.Tech, 2002,45(6): 127~136.
    28 Siegrist H, Rieger L, Koch G, et al. The EAWAG Bio-P modul for activated sludge model No.3. Wat.Sci.Tech, 2002, 45(6), 61~76.
    29 Wichern M,Obenaus F, Wulf P, et al. Modelling of full-scale wastewater treatment plants with different treatment processes using the activated sludge model no.3. Wat.Sci.Tech,2001,44(1):49~56.
    30 Carrette R, Bixio D, Thoeye C, et al. Full - scale application of the IAWQ ASM No.2d model. Wat.Sci.Tech, 2001, 44(2-3): 17~23.
    31 Brenner A. Modeling of N and P transformation in an SBR treating municipal wastewater. Wat.Sci.Tech, 2001,42(1-2): 55~63.
    32 Mikose J. Use of computer simulation for cycle length adjustment in sequencing batch reactor. Wat.Sci.Tech, 2001,42(3): 61~68.
    
    
    33 Wu W. Simulation and application of a novel modified SBR system for biological nutrientremoval. Wat.Sci.Tech, 2001,42(3): 215~222.
    34 Larrea L, Irizar I, Hidalgo M E. Improving the predictions of ASM2d through modeling in practice. Wat.Sci.Tech, 2002,45(6): 199~208.
    35 Wichern M, Obenaus F, Wulf P, et al. Modelling of full - scale wastewater treatment plants with different treatment processes using the activated sludge Model no.3. Wat.Sci.Tech, 2001, 44(1): 49~56.
    36 许保玖,龙腾锐.当代给水与废水处理原理.北京:高等教育出版社,2000.
    37 Marais G v R, Ekama G A. The activated sludge process part Ⅱ-Dynamic behaviour. Water SA, 1977, 1: 18~50.
    38 张志群,王梓先.活性污泥模型研究及其工艺软件的发展.环境污染治理技术与设备,2001,2(6):38~44.
    39 施汉昌,刁惠芳,刘恒,等.污水处理厂运行模拟、预测软件的应用.中国给水排水,2001,17(10):61~63.
    40 季民,霍金胜,胡振苓,等.活性污泥法数学模型的研究和应用.中国给水排水,2001,17(8):18~22.
    41 陈立.EFOR程序的仿真模拟功能应用研究.中国给水排水,1998,14(5):15~18.
    42 王慧贞,曹秀芹.活性污泥模型NO.1及“SSSP”程序在中国污水厂适应性的初步探讨.北京建筑工程学院学报,1996,12(3):66~74
    43 黄勇,杨铨大,王宝贞.活性污泥生物反应动力学模型研究.环境科学,1995,8(4):23~28.
    44 黄勇,李勇,潘杨.几种废水特性鉴定试验方法的比较研究.苏州城建环保学院学报,2000,13(3):9~17.
    45 黄勇,杨铨大,王宝贞.生物处理动力学参数测定研究.中国环境科学,1996,16(2):123~127.
    46 杨青,刘遂庆,甘树应.城市污水处理厂动态模拟研究.上海环境科学,2001,21(5):278~281.
    47 刘志强,李永秋,苗群.活性污泥系统数学模型的探讨.青岛建筑工程学院学报,1995,16(2):21~27.
    48 Gernaey K, Vanrolleghem P.A,Lessard P. Modeling of a reactive primaryclarifier.Wat.Sci.Tech,2001,43(7): 73~81.
    49 Gujer W, Henze M. Activated sludge modeling and simulation. Wat.Sci.Tech,1991,24: 1011~1023.
    50 Gujer W, Larsen T.A. The implementation of biokinetics and conservation
    
    principles in ASIM. Wat.Sci.Tech,1995,31(2): 257~266.
    51 陈立,郑兴灿.活性污泥数学模型动力学参数的估测方法.全国污水除磷脱氮技术研讨论文集,北京,2000,60~64.
    52 Ekama G.A,Dold P.L,Marais G.v.R.Procedures for determining COD fractions and the maximum specific growth rate of heterotrophs in activated sludge systems. Wat. Sci.Tech, 1986,18(6):91~114.
    53 Kappeler J,Gujer W.Estimation of Kinetic Parameters of characterization of wastewater for activated sludge modeling.Wat.Sci.Tech, 1992,25(6): 125~139.
    54 Batchelor B.Kinetic analysis of alternative configuration for single-sludge nitrification/denitrification.J.Wat.Pollut.Control.Fed, 1982,54:1493~1504.
    55 Henze M, Harremoes P, Jansen J L C, et al. Wastewater Treatment—Biological and Chemical Processes[M]. Second Edition,1996.
    56 Marais D, Jenkins D,Pitt P. A rapid physical—chemical method for determination of readily biodegradable COD in municipal wastewater .Water Research,1993,27(1): 195~197.
    57 Siegrist H, Tschui M. Interpretation of experimental data with regard to the activated sludge model no.1 and calibration of the model for municipal wasterwater treatment plants.Wat.Sci.Tech, 1992,25(6): 167~183.
    58 Lesouef A.M, Payraudeau M, Rogalla F, et.al. Optimizing nitrogen removal configurations by on-site calibration of the IAWPRC activated sludge model.Wat.Sci.Tech,1992,25(6): 105~139.
    59 Sollfrank U, Gujer W. Characterizaion of domestic wastewater for mathematical modeling of the activated sludge process. Wat.Sci.Tech,1991,23(4/6): 1057~10696.
    60 Henri Spanjers, Peter Vanrolleghem. Respirometry as a tool for rapid chatacterization of wasterwater and activated sludge .Wat. Sci.Tech, 1995,31 (2): 105~114.
    61 Sinkjar O. Characterisation of the nitrification process for design purposes. Wat.Sci.Tech, 1994,30(4): 47~56.
    62 Witteborg A,Hamming R, Hemmers,et.al.Respirometry for determination of the influent S_s—concentration,Wat.Sci.Tech,1996,33(1): 311~323.
    63 Brouwer H,Klapwijk A,Keesman K.J,.Identification of activated sludge and wasterwater characteristics using respirometry batch--experiments.Wat.Res, 1998,32(4): 1240~1254.
    64 Spanjers H, Olsson G, Klapwijk A. Determining influent short—term biochemical
    
    oxygen demand and respiration rate in an aeration tank by using respirometry and estimation.Wat.Res, 1994,28: 1571~1583.
    65 Lukasse L.J.S, Keesman K.J, Van Strateng G. Estimation of BOD_(st), respiration rate and kinetics of activated sludge.Wat.Res, 1997,31: 2278~2286.
    66 Lokkegaard Bjerre H.Experimental procedures characterizing transformations of wastewater organic matter in the emscher river, Germany. Wat.Sci.Tech, 1995, 31(7): 201~212.
    67 Williamson K.J,McCarty P.L. Rapid measurement of monod half--velocity coefficients for bacterial kinetics biotechnol. Bioeng, 1975,17: 915~924.
    68 Cech J.S, Chudoba J,Grau P. Determination of kinetic constants of activated sludge microorganisms. Wat.Sci.Tech, 1985,17(2): 259~272.
    69 Chudoba J, Cech J.S, Farkac J,et al. Control of activated sludge filamentous bulking: Experinmental verification of a kinetic selection theory. Wat.Res,1985,19: 191~196.
    70 Dold P.L,Marais G.V.R. Evalution of the general activated sludge model proposed by the IAWPRC task group. Wat.Sci.Tech,1986,18(6): 63~69.
    71 Henze M. Nitrate versus oxygen utilization rates in wastewater and activated sludge systems. Wat.Sci.Tech, 1986,18(6): 115~122.
    72 Bidstrup S.M. and Grady C.P.L.Jr. SSSP-Simulation of single-sludge processes. Journal, Water Pollution Control Federation, 1988,60: 351~361.
    73 Gujer W. ASIM: Activated Sludge SIMmlation Program. Version 3.0.Swiss Federal Institute for Environmental Sciecne and Technology, Dubendorf, Switzerland, 1994.
    74 Coen. F, Nfnderhaegen. B, Boonen.I,et al. Improved Design and Control of Industrial and Municipal Nutrient Rermval Plants Using Dynamic Model, Wat. Sci. Tech, 1997, 35 (10): 53-61.
    75 P. Reichert, R.V. Schulthess and D. Wild The Use of AQUASIM Estimating Parameters of Activated Sludge Models, Wat. Sci. Tech, 1995, 31(2): 135~147.
    76 Party.G G andTakacs.I, Modular Multi-Purpose Modelling System for the Simulation and Control of Wastewater Treatment Plants: An Innovative Approach, Adv. Wat. Pollut. Control, 1991, 10:385--392
    77 Ferry O' Flynn.Operating experiences of a treatment plant designed for biological nutrient removal by pilot trials and mathematical modeling. Resources,Conservation and Recycling, 1999, 27 117-124
    78 汪大翚,雷乐成编著.水处理新技术及工程设计(第一版),北京:化学工业
    
    出版社,2001.
    79 沈耀良,王宝贞编著.废水处理新技术—理论与应用(第一版),北京:中国环境科学出版社,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700