低碳醇在钯纳米修饰氧化铟锡电极上的电催化氧化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直接醇类燃料电池(Direct alcohol fuel cell,缩写为DAFC)作为一种新型的绿色能源,对解决目前世界面临的能源短缺和环境污染这两大难题具有跨时代的重要意义。ITO导电膜玻璃是一种新颖的电极材料,具有良好的导电性和超大的表面积,它可以作为贵金属纳米材料的载体,极大提高催化剂的利用率。基于钯纳米粒子高吸附性、高比表面积、高电催化活性等特点,本论文主要通过循环扫描法制备出高电活性、高灵敏度的钯纳米修饰氧化铟锡(Pd NPs/ITO)电极,并将其应用于低碳醇(包括甲醇、乙醇、丙醇等)的电催化氧化研究中。
     第一章:简介直接醇类燃料电池的发展状况,对钯纳米修饰电极在醇电催化氧化中的研究进展进行综述。
     第二章:通过化学沉积法和循环伏安扫描法成功制备了Pd NPs/ITO电极。采用循环伏安法考察了标准氧化还原电对[Fe(CN)_6]~(4-)/[Fe(CN)_6]~(3-)中该电极的电活性,并利用电子扫描电镜对电极表面的形貌进行表征。此外还分析研究了电极在不同电势范围内发生的电化学反应过程以及反应温度、通氮气和电极放置时间对电化学检测的影响。结果表明:ITO导电膜玻璃的引入大大提高了电催化剂Pd纳米的利用率,使得Pd NPs/ITO电极具有良好的电活性;由不同电势范围内该电极在碱性溶液中的循环伏安行为可知,对于氢的吸附和脱附可以通过扫描电势范围的大小来控制;经过实验条件的考察得出Pd NPs/ITO电极的最佳反应温度为65℃,电解液中通入氮气可以排除溶解氧的干扰,该电极在1个月内能够保持良好的活性。
     第三章:采用简单的循环伏安扫描法制备得到高电活性的Pd NPs/ITO电极,并用该电极研究了室温下氢氧化钠溶液中甲醇和乙醇的电氧化反应,对各自的电化学反应过程进行了详细探讨。随后考察了反应物浓度,扫描速率对甲醇和乙醇在PdNPs/ITO电极上电催化氧化反应的影响。对比发现,甲醇和乙醇在Pd NPs/ITO电极上的电催化活性都比纯金属钯电极好(甲醇约为纯金属钯电极的2倍,乙醇约为纯金属钯电极的4倍)。甲醇和乙醇氧化峰电流的强度均与各自的浓度及扫描速率的开方成正比,且保持良好的线性关系,说明两种醇在Pd NPs/ITO电极上的反应都属于扩散控制过程。
     第四章:首先利用循环伏安扫描法制得的Pd NPs/ITO电极研究了室温下碱性电解液中正丙醇和异丙醇的电催化氧化反应,并就反应物浓度,扫描速率对丙醇和异丙醇在该电极上电催化氧化反应的影响进行考察,发现正丙醇和异丙醇氧化峰电流的强度i_(pa)均与各自的浓度c及扫描速率的开方v~(1/2)成正比,说明这两种醇在Pd NPs/ITO电极上的反应都属于扩散控制过程。然后对甲醇、乙醇、正丙醇和异丙醇进行综合对比,得出碱性介质中低碳醇在PdNPs/ITO电极上的电催化氧化符合以下规律:(1)不同醇分子的电氧化具有类似的循环伏安特性。醇的氧化峰电流强度远大于氢的脱附和吸附峰,说明在-1.4~0.6V电势范围内这些醇或其解离产物会吸附在Pd NPs/ITO电极表面并抑制氢的吸附和脱附,使得醇的氧化作用占主导地位;氢的脱附和吸附峰位置相对稳定,分别出现在-0.4V和-0.5V左右;阴极扫描过程中-0.4~0.3V电势范围内的曲线几乎完全重合。(2)根据醇氧化峰电流强度的大小推断出Pd NPs/ITO电极对四种醇的催化活性顺序为:乙醇>正丙醇>甲醇>异丙醇。(3)可以根据醇氧化峰位置的差异大致判断醇的种类。
     第五章:利用化学沉积法制备的Pd NPs/ITO电极,通过电化学方法分别在酸性和碱性电解液中初步研究了室温下钯纳米对甲烷气体的电催化响应。发现酸性和碱性电解液中的循环伏安特征相近,只是峰电位不同。通甲烷至饱和后,氧化峰电流强度有所下降,且出现分岔现象,氧化峰位置也向正偏移。可能是由于溶解到电解液中的甲烷部分吸附在PdNPs/ITO电极表面,阻碍了Pd本身的电化学反应,同时经钯纳米催化甲烷的电氧化。这为研制新型甲烷纳米气体传感器提供了新思路。
Direct alcohol fuel cell (Direct alcohol fuel cell, abbreviated as DAFC) as a new type of green energy, has cross-age significance to solve the two current world problems of energy shortage and environmental pollution. Indium-tin oxide (ITO) conductive film glass is a novel electrode material which has good conductivity and large surface area. It can be used as the carrier of noble metal nanomaterials to greatly improve the utilization ratio of catalyst. Based on the properties of palladium nanoparticles with high adsorption ability, high specific surface area and high electrocatalytic activity etc., this paper prepared the palladium nanoparticle-modified indium-tin oxide (Pd NPs/ITO) electrode by cyclic scanning. The electrode has high electrical activity and high sensitivity, which will be applied to study of low-carbon alcohols (including methanol, ethanol, propanol, etc.) for electrocatalytic oxidation.
     ChapterⅠ: Development of DAFC was briefly introduced and the development of palladium nanoparticle-modified electrode in electrocatalytic oxidation of alcohols was reviewed.
     ChapterⅡ: The Pd NPs/ITO electrode was successfully prepared by chemical deposition method and cyclic voltammetry scanning method. The electrochemical activity of the electrode was studied by cyclic voltammetry using the standard redox of [Fe (CN) _6]~(4-)/ [Fe (CN)_6]~(3-) and the morphology of the electrode surface were characterized by electronic scanning microscopy. In addition, the electrochemical reaction process of the electrode in different scope of potential was analyzed, so did the reaction temperature, effect of nitrogen and placed time for electrodes to the electrochemical detection. The results showed that the utilization ratio of nano-Pd catalyst was greatly improved and had good electrochemical activity due to the introduction of ITO conductive film glass. From the cyclic voltammetry behavior of the electrode in different electric potential range in alkaline solution, it can be obtained that the adsorption and desorption of hydrogen could controlled by the size of scanning electric potential scope. From the study of our experiment, it could be concluded that the best reaction temperature of Pd NPs / ITO electrode was 65℃and interference from dissolved oxygen can be excluded by passing nitrogen through electrolyte. The prepared electrode maintained good activity in a month.
     ChapterⅢ: Pd NPs/ITO electrode with high electrical activity has been prepared using a simple cyclic voltammetry scanning method. Then it was used to study the electro-oxidation reaction of methanol and ethanol in sodium hydroxide solution at room temperature and the process of their electrochemical reaction was discussed in detail, respectively. Next, the effect of reactant concentration and scan rate on methanol and ethanol electrocatalytic oxidation reaction on the Pd NPs/ITO electrode was investigated. For comparison, it was found that the electrocatalytic activity of both methanol and ethanol on the Pd NPs/ITO electrode was better than the pure metal palladium electrode (the activity of methanol is about 2 times of pure metal palladium electrode and that of ethanol is about 4 times). The intensity of the oxidation peak current of methanol and ethanol was proportional to their own concentration and extraction of scan rate, and maintained a good linear relationship, which showed that the reaction of two alcohols on the Pd NPs/ITO electrode were diffusion-controlled process.
     ChapterⅣ: At first, the Pd NPs/ITO electrode was prepared using cyclic voltammetry. Then it was used to study the electrocatalytic oxidation reaction of n-propanol and isopropanol in alkaline electrolyte at room temperature and effect of reactant concentration and scan rate on the reaction was also studied. It was found that the intensity oxidation peak current i_(pa) of n-propanol and isopropanol alcohol was proportional to their own concentration c and scan rate v~(1/2) , which indicated that the reaction of two alcohols on the Pd NPs/ITO electrode were diffusion-controlled process. And then comprehensive comparison was made among methanol, ethanol, propanol and isopropanol and some conclusions on the electrocatalytic oxidation of lower alcohols in alkaline medium on the Pd NPs/ITO electrode were drawn as follows. (1) There were similar characteristics in cyclic voltammetry among different alcohols. The intensity of oxidation peak of alcohol was far greater than that of hydrogen desorption and absorption, which indicated that these potential alcohol or its dissociation products would be adsorbed on the surface of Pd NPs/ITO electrode in the range of -1.4 ~ 0.6V and simultaneously inhibit the adsorption and desorption of hydrogen leading to the dominant oxidation of alcohol. The peak positions of hydrogen desorption and absorption were relatively stable at about -0.4V and -0.5V, respectively. The curve of cathode scanning within the scope of -0.4 ~ 0.3V was almost completely overlapped. (2) According to the peak current intensity of alcohols on Pd NPs/ITO electrode, the catalytic activity order of four types of alcohols were as following: ethanol> propanol > methanol > isopropanol. (3) According to the difference position of oxidation peak, the type of alcohol could be determined.
     ChapterⅤ: Pd NPs / ITO electrode was prepared by chemical deposition. The electrocatalytic response of palladium nanoparticles to methane in acidic and alkaline electrolyte was preliminarily studied through electrochemical method at room temperature, respectively. It was found that cyclic voltammetry characteristics were similar in acidic and alkaline electrolyte, but there was difference in peak potential. Bubbling methane to its saturation in solution, the oxidation peak current intensity has decreased, and the phenomenon of bifurcation appeared, and the oxidation peak shift to the position. It was possibly that methane dissolution in electrolyte partly adsorbed on the surface of Pd NPs/ITO electrode and hindered the electrochemical reaction of Pd itself At the same time, methane was electrooxidized by palladium nanoparticles as catalyst. It was beneficial to the development of novelmethane gas sensors based on nanoparticles.
引文
[1]LAMY C,LIMA A.Recent Advances in the Development of Direct Alcohol Fuel Cells[J].J.Power Sources,2002,105(2):283-296.
    [2]衣宝廉.质子交换膜燃料电池((PEMFC)-国内外状况与主要技术问题[J].电源技术,1997,21(2):80-82.
    [3]RALPH T.R.Proton Exchange Memberane Fuel Cell[J].Platinum Metals Rev,1997,41:102.
    [4]崔坤在.金属氧化物在直接醇类燃料电池中的应用研究[M].湖南大学高校教师硕士学位论文,2007.
    [5]EL-DEAB M S,OHSAKA T.An Extraordinary Electrocatalytic Reduction of Oxygen on Gold Nanoparticles-electrodeposited Gold Electrodes[J].Electrochem.Commun,2002,4(4):288-292.
    [6]FINOTA M O,BRAYBROOKB G.D,MCDERMOTT M T.Characterization of Electrochemically Deposited Gold Nanocrystals on Glassy Carbon Electrodes[J].J.Electroanal.Chem,1999,466(2):234-241.
    [7]孙启坡,苗园.碳一化学的开发与应用[J].化工时刊,2004,18(4):11-13.
    [8]LEE K S,PARK I S,CHO Y H,et al.Electrocatalytic Activity and Stability of Pt Supported on Sb-doped SnO_2 Nanoparticles for Direct Alcohol Fuel Cells[J].J Catal,.2008,258:143-152.
    [9]SONG E,SHI C,ANSON F C.Comparison of the Behavior of Several Cobalt Porphyrins as Electrocatalysts for the Reduction of O_2 at Graphite Electrodes[J].Langmuir,1998,14(15):4315-4321.
    [10]黄明湖.纳米结构的钯薄层对甲醇电催化氧化的研究[M],山东大学硕士学位论文,2007.
    [11]BEDEN B,HAHN F,JUANTO S..Infrared Spectroscopic Study of the Methanol Adsorbates at a Platinum Electrode:Part Ⅰ.Influence of the Bulk Concentration of Methanol upon the Nature of the Adsorbates[J].J Electroanal Chem,1987,225(1-2):215-225.
    [12]GOODENOUGH J.HAMNETT B,A.,KENNEDY B J.Methanol Oxidation on Unsupported and Carbon Supported Pt +Ru Anode[J].J Electroanal Chem,1988,240:133-145.
    [13]HOSHI N,KIDA K,NAKAMURA M,et al.Structural Effects of Electrochemical Oxidation of Formic Acid on Single Crystal Electrodes of Palladium[J].J Phys Chem B,2006,110:12480-12484.
    [14]GLOAGUEN F,LEGER J M,LAMY C.Electrocatalytic Oxidation of Methanol on Platinum Nanoparticles Electrodeposited onto Porous Carbon Substrates[J].J.Applied Electrochem,1997,27(9):1052-1060.
    [15]ZHENG H T,CHEN S X,SHEN P K.Spontaneous Formation of Platinum Particles on Electrodeposited Palladium,Electrochem Commun.2007,9:1563-1566.
    [16]HUANG J J,HWANG W S,WENG Y C,CHOU T C.Determination of Alcohols Using a Ni-Pt alloy Amperometric Sensor.Thin Solid Films,2008,516:5210-5216.
    [17]WATANABE M,UCHIDA M,MOTOO S.Preparation of Highly Dispersed Pt +Ru Alloy Clusters and the Activity for the Electrooxidation of Methanol[J].J Electroanal Chem.1987,229(12):395-406.
    [18]YU C F,JIA F L,AI Z H,ZHANG L Z,Direct Oxidation of Methanol on Self-Supported Nanoporous Gold Film Electrodes with High Catalytic Activity and Stability.Chem Mater.2007,19:6065-6067.
    [19]HERNANDEZ J,SOLLA-GULLON J,HERRERO E,et al.Methanol Oxidation on Gold Nanoparticles in Alkaline Media:Unusual Electrocatalytic Activity[J].Electrochim Acta.2006,52:1662-1669.
    [20]ZHANG J T,HUANG M H,MA H Y,et al.High Catalytic Activity of Nanostructured Pd thin Films Electrochemically Deposited on Polycrystalline Pt and Au Substrates towards Electro-oxidation of Methanol[J].Electrochemi Commun.2007,9:1298-1304.
    [21]张进涛,纳米结构金与钯催化剂对甲醇和甲酸电催化氧化性能的研究[M],山东大学硕士学位论文,2008.
    [22]TSIAKARAS P E.PtM/C(M=Sn,Ru,Pd,W) Based Anode Direct Ethanol-PEMFCs:Structural Characteristics and Cell Performance.J Power Sources,2007,171(1):107-112.
    [23]LI H,SUN G.,CAO L,et al.Comparison of Different Promotion Effect of PtRu/C and PtSn/C Electrocatalysts for Ethanol Electro-oxidation[J].Electrochim.Acta,2007,52(24):6622-6629.
    [24]ANTOLINI E.Catalysts for Direct Ethanol Fuel Cells.J Power Sources,2007,170(1):1-12.
    [25]OLIVEIRANETO A.,DIAS R R,TUSI M M,et al.Electro-oxidation of Methanol and Ethanol Using PtRu/C,PtSn/C and PtSnRu/C Electrocatalysts Prepared by an Alcohol-reduction Process.J Power Sources,2007,166(1):87-91.
    [26]COLMATI F,ANTOLINI E,GONZALEZ E R,Ethanol Oxidation on a Carbon-supported Pt_(75)Sn_(25) Electrocatalyst Prepared by Reduction with Formic Acid:Effect of Thermal Treatment[J].Appl Catal B:Environ,2007,73(1-2):106-115.
    [27]SONG S,TSIAKARAS P,Recent Progress in Direct Ethanol Proton Exchange Membrane Fuel Cells(DE-PEMFCs).Appl Catal B:Environ,2006,63(3-4): 187-193.
    [28]ZHENG Q W,FAN C J,ZHEN C H,et al.Irreversible Adsorption of Sn Adatoms on Basal Planes of Pt Single Crystal and its Impact on Electrooxidation of Ethanol[J],Electrochimica Acta,2008,53:6081-6088
    [29]LIANG Z X,ZHAO T S,XU J B,ZHU L D.Mechanism Study of the Ethanol Oxidation Reaction on Palladium in Alkaline Media[J].Electrochimi.Acta,2009,54(8):2203-2208.
    [30]SHEN P K,XU C W,Alcohol Oxidation on Nanocrystalline Oxide Pd/C Promoted Electrocatalysts[J].Electrochem Commun,2006,8:184-188.
    [31]徐常威,刘应亮,沈培康.乙醇在炭微球负载催化剂上的电化学氧化[J].电池.2006,36(5):364-366.
    [32]林珩,邓友娥,林爱兰,陈国良Pt电极上吸附原子对正丙醇电催化氧化性能的影响[J].福建师范大学学报.2003,19(1):54-58.
    [33]LIU J P,YE J Q,XU C W,et al.Electro-oxidation of Methanol,1-propanol and 2-propanol on Pt and Pd in Alkaline Medium.J Power Sources,2008,177:67-70.
    [34]KIM J H,CHOI S M,NAM S H,et al.Influence of Sn Content on PtSn/C Catalysts for Electrooxidation of C_1-C_3 Alcohols:Synthesis,Characterization,and Electrocatalytic Activity[J].Applied Catalysis B:Environmental.2008,82:89-102.
    [35]董绍俊,车广礼,谢远武,化学修饰电极[M].北京,科学出版社,1994.
    [36]KLABUNDE K J,STARK J,KOPER O,et al.Nanocrystals as Stoichiometric Reagents with Unique Surface Chemistry[J].J Phys Chem,1996,100(30):12142-12153.
    [37]HENGLEIN A.Small-particle Research:Physicochemical Properties of Extremely Small Colloidal Metal and Semiconductor Particles[J].Chem Rev,1989,89(8):1861-1873.
    [38]BRUS L.Electronic Wave Functions in Semiconductor Clusters:Experiment and Theory[J].J Phys Chem,1986,90(12):2555-2560.
    [39]BALL P,GARWIN L.Science at the Atomic Scale[J].Nature,1992,355:761-766.
    [40]CAVICCHI R E,SILSBEE R H.Coulomb Suppression of Tunneling Rate from Small Metal Particles[J].Phys Rev Lett,1984,52:1453-1456.
    [41]TAYLOR E J,ANDERSON E B,VILAMBI N R K.Preparation of High-Platinum Utilization Gas Diffusion Electrodes for Proton-Exehange-Membrane Fuel Cells[J].Journal of Eleetroehemistry Soeiety,1992,139(5):45-46.
    [42]VERBRUGGE M.,SELEETIVE W.Eleetrodeposition of Catalyst with thin Membrane-electrodes structure[J].Joumal of Electrochemistry Soeiety,1994,141(1):46-53.
    [43]刘庆,陆文雄,印仁和.电化学法制备纳米材料的研究现状[J].材料保护,2004,37(2):33-36.
    [44]MOHAUS S.Electrode Position of Nanocrystalline Niekel-A Brief Review[J].Trans IMF,2000,78(5):194-197.
    [45]屠振密,胡会利,于元春,高鹏.电沉积纳米晶材料制备方法及机理[J].电镀与环保,2006,26(4):4-8.
    [46]GAO G.Y.,GUO D.J.,LI H.L.Elect Rocatalytic Oxidation of Formaldehyde on Palladium Nanoparticles Supported on Multi-Walled Carbon Nanotubes[J].Journal of Power Sources,2006,162(2):1094-1098.
    [47]宋根萍,郭荣.十二烷基苯磺酸钠胶束体系中聚苯乙烯/γ-Fe_2O_3复合纳米粒子的制备[J].应用化学,2000,17(2):195-197.
    [48]ARRIAGADA F J,OSSEO-ASARE K.Controlled Hydrolysis of Tetraeth-oxysilane in a Nonionic Water-in-oil Microemulsions:a Statistical Model of Silica Nucleation [J].Colloids Surface,1999,154(3):311-326.
    [49]ARRIAGADA F J,OSSEO-ASARE K.Synthesis of Nanosize Silica in a Nonionic Water-in-oil Microemulsion:Effects of the Water-surfactant Molar Ratio and Ammonia Concentration[J].Colloids Surface,1999,210(1):210-220.
    [50]TOUROUDE R,PAULE G,GILBERT M.Preparation of Colloidalplatinum -palladiumalloy Particles from Nonionic Microemulsions:Characterization and Catalytic Behaviour[J].Colloids Surfaces,1999,67:9-19.
    [51]PROZOROV T.,KATABY G.,SOEYA S.Effect of Surfactant Concentration on the Size of Coated Ferromagnetic Nanoparticles[J].Thin solid films,1999,340(1,2):189-193.
    [52]CHU B,ZAITSEV V,DRESCO P A.Controlled Size Polymeric Microspheres with Superparamagnetic Cores[P].WO:99 19 000,1999-04-22.
    [53]LIU T,GUO L,TAO Y,et al.Synthesis and Interfacial Structure of Nanoparticles of γ-Fe_2O_3 Coated with Surfactant DBS and CTAB [J]. Nanostruct Materials, 1999, 11 (4): 487-492.
    [54] GAUFFRE F, ROUX D. Studying a new type of Surfactant Aggregate as Chemical Microreactors [J]. Langmuir, 1999,15(11):3738-3747.
    
    [55] MICHAEL A M, DERREN N D, CHOW G M, et al. The Effect of Membrane Charge on gold Nanoparticles Synthesis via Surfactant Membrane [J]. J Colliod Interface Sciene, 1999,210 (1):73-85.
    [56] FENDLER J H. Atomic and Molecular Clusters in Membrane Mimetic Chemistry [J]. Chem Rev, 1987, 87(50):877-899.
    [57] LI Y, WAN J, LU L, et al. Low Temperature Creep of Nanocrystalline Pure Copper [J]. Mater Sci Eng A, 2000,286:188-192.
    
    [58] LIN J, ZHOU W, O'CONNOR C J. Formation of Ordered Arrays of Gold Nanoparticles from CTAB Reverse Micelles [J]. Materials Letters, 2001, 49(5):282-286.
    [59] FOOS E E, STROUD R M, BERRY A D, et al. Synthesis of Nanocrystalline Bismuth in Reverse Micelles [J]. J Am Chem Soc, 2000,122(29):7114-7115.
    [60] KWAN S, KIM F, AKANA J, et al Synthesis and Assembly of BaWO_4 Nanorods [J]. Chem Commun, 2001, 5: 447-448.
    [61] REETZ M T, HELBIG W, Size-Selective Synthesis of Nanostructured Transition Metal Clusters [J]. J Am Chem Soc, 1994,116(16): 7401-7402.
    
    [62] REETZ M T, HELBIG W, AUAISER S. Visualization of Surfactants on Nanostructured Palladium Clusters by a Combination of STM and High-resolution TEM [J]. Science, 1995,267:367-369.
    
    [63] REETZ M T, WINTER M, BREINBAUER R. Size-Selective Electrochemical Preparation of Surfactant-Stabilized Pd-Ni- and Pt/Pd Colloids [J]. Chem Eur J, 2001,7:1084-1094.
    
    [64] PAN W, ZHANG X K, MA H Y, ZHANG J T. Electrochemical Synthesis, Voltammetric Behavior, and Electrocatalytic Activity of Pd Nanoparticles, J Phys Chem. C, 2008,112: 2456-2461.
    
    [65] SCHMID G, CLUSTER EDS. Colloids from Theory to Applications, VCH. Weinheim, 1994.
    [66]BRAUN E,ELCHEM Y,SIVAN U.DNA-templated Assembly and Electrode Attachment of a Conducting Silver Wire[J].Nature,1998,391:775-778.
    [67]PRESTON C K,MOSKOWITS M.Optical Characterization of Anodic Aluminum Oxide Films Containing Electrochemically Deposited Metal Particles.1.Gold in Phosphoric Acid Anodic Aluminum Oxide Films[J].J Phys Chem,1993,97:8495-8503.
    [68]邱晓峰,朱俊杰.超声化学制备单分散金属纳米[J].无机化学学报,2003,7(19):766-769.
    [69]NEMAMCHA A,REHSPR1NGER J L,KHATMI D,Synthesis of Palladium Nanoparticles by Sonochemical Reduction of Palladium(Ⅱ) Nitrate in Aqueous Solution[J].J Phys Chem B,2006,110:383-393.
    [70]LEE C L,HUANG Y C,KUO L C,LIN Y W.Preparation of Carbon Nanotube-supported Palladium Nanoparticles by Self-regulated Reduction of Surfactant[J].Carbon,2007,45:203-228.
    [71]BERHAULT G.,BAUSACH M,BISSON L,et al.Seed-Mediated Synthesis of Pd Nanocrystals:Factors Influencing a Kinetic-or Thermodynamic-Controlled Growth Regime[J].J Phys Chem C,2007,111:5915-5925.
    [72]XIONG Y J,XIA Y N.Shape-Controlled Synthesis of Metal Nanostructures:The Case of Palladium[J].Adv Mater,2007,19:3385-3391.
    [73]LIM U,JIANG M J,TAO J,et al.Shape-Controlled Synthesis of Pd Nanocrystals in Aqueous Solutions[J].Adv Funct Mater,2009,19:189-200.
    [74]OKITSU K,YUE A,TANABE S,MATSUMOTO H.Sonochemical Preparation and Catalytic Behavior of Highly Dispersed Palladium Nanoparticles on Alumina[J].Chem Mater,2000,12:3006-3011.
    [75]LI K T,HSU M H,WANG I.Palladium Core-porous Silica Shell-nanoparticles for Catalyzing the Hydrogenation of 4-carboxybenzaldehyde[J].Catalysis Communications,2008,9:2257-2260.
    [76]LI F,ZHANG Q H,Wang Y.Size.Dependence in Solvent-free Aerobic Oxidation of Alcohols Catalyzed by Zeolite-supported Palladium Nanoparticles[J].Applied Catalysis A:General,2008,334:217-226.
    [77]TATUMI R,AKITA T,FUJIHARA H.Synthesis of Small Palladium Nanoparticles Stabilized by Bisphosphine BINAP Bearing an Alkyl Chain and their Palladium Nanoparticle Catalyzed Carbon-carbon Coupling Reactions underRoom-temperature [J]. Chem Commun, 2006,31: 3349-3351.
    
    [78] CHOU J, JAYARAMAN S, RANASINGHE A D, et al. Efficient Electrocatalyst Utilization: Electrochemical Deposition of Pt Nanoparticles Using Nafion Membrane as a Template [J]. JPhys Chem B, 2006,110:7119-7121.
    [79] FAVIER I, GOMEZ M, MULLER G, et al. Synthesis of New Functionalized Polymers and Their Use as Stabilizers of Pd, Pt, and Rh Nanoparticles. Preliminary Catalytic Studies [J]. Journal of Applied Polymer Science, 2007,105: 2772-2782.
    [80] CHENA M, FENG Y G, WANG L Y, et al. Study of Palladium Nanoparticles Prepared from Water-in-oil Microemulsion [J]. Colloids and Surfaces A: Physicochem Eng Aspects, 2006,281:119-124.
    [81] DIONRSIA M.DE J., MICHAEL S., Catalysis by Palladium Nanoparticles in Microemulsions [J]. Langmuir 2000,16,4896-4900.
    
    [82] ROBERT A W D, ANDREW O S, BRETT K. Electroless Deposition of Palladium at Bare and Templated Liquid/Liquid Interfaces [J]. J Am Chem Soc, 2003, 125:13014-13015,
    [83] HARPENESS R, GEDANKEN A. Microwave Synthesis of Core-Shell Gold/Palladium Bimetallic Nanoparticles [J]. Langmuir, 2004,20: 3431-3434.
    [84] YU M, YAN L, FRANK P, MATTHIAS B. Catalytic Activity of Palladium Nanoparticles Encapsulated in Spherical Polyelectrolyte Brushes and Core-Shell Microgels [J]. Chem Mater, 2007,19:1062-1069.
    
    [85] GOPIDAS K R, WHITESELL J K, FOX M A, Synthesis, Characterization, and Catalytic Applications of a Palladium-Nanoparticle-Cored Dendrimer [J]. Nano Lett. 2003,3:1757-1760.
    
    [86] LI Y, EL-SAYED M A. The Effect of Stabilizers on the Catalytic Activity and Stability of Pd Colloidal Nanoparticles in the Suzuki Reactions in Aqueous Solution [J]. J Phys Chem B, 2001,105:8938-8943.
    
    [87] NAKA K, SATO M., CHUJO Y. Stabilized Spherical Aggregate of Palladium Nanoparticles Prepared by Reduction of Palladium Acetate in Octa-(3-aminopropyl) Qctasilsesquioxane as a Rigid Template[J]. Langmuir, 2008,24: 2719-2726.
    [88]GOMEZ M V,GUERRA J,VELDERS A H,CROOKS R M,NMR Characterization of Fourth-Generation PAMAM Dendrimers in the Presence and Absence of Palladium Dendrimer-Encapsulated Nanoparticles[J].J Am Chem Soc,2009,131:341-350
    [89]FANG C,FAN Y,KONG J M,et al.DNA-templated Preparation of Palladium Nanoparticles and their Application[J].Sensors and Actuators B,2007,126:684-690.
    [90]JOAQUIN C G.,ROBERT W J S,CROOKS R M.Extraction of Monodisperse Palladium Nanoparticles from Dendrimer Templates[J].J Am Chem Soc,2003,125:11190-11191.
    [91]阿力塔,白淑琴,金属蒸气合成法制备Ag-Ni/C燃料电池电极催化剂[J].内蒙古大学学报(自然科学版),1999,30(3):45-49.
    [92]葛荣德,粉末团聚体强度表征的新方法[J].硅酸盐学报,1993,21(30):22-27.
    [93]UYEDA R.Studies on Ultra fine Particles in Japan:Prog[J].Mater Sci,1991,35(1):1-96.
    [94]SAMPEDRO B,ROJAS T C,FERNANDEZ A,HERNANDO A.Palladium Nanoparticles Obtained by Mechanical Milling[J].Phys Stat Sol,2006,203(6):1201-1205.
    [95]上官灵芝,乔洁,郭玉晶.电沉积纳米钯修饰玻碳电极对甲醛的电催化氧化[J].武汉大学学报(理学版),2008,54(6):661-664.
    [96]LU Y J,LI J,HAN J,et al.Room Temperature Methane Detection Using Palladium Loaded Single-walled Carbon Nanotube sensors[J].Chemical Physics Letters,2004,391:344-348.
    [97]LI Y,WANG H C,CHEN Y S,YANG M J.A multi-walled Carbon Nanotube/palladium Nanocomposite Prepared by a facile Method for the Detection of Methane at room Temperature[J].Sensors and Actuators B,2008,132:155-158.
    [98]CHENG F L,WANG H.,SUN Z H,et al.Electrodeposited Fabrication of highly Ordered Pd Nanowire Arrays for Alcohol Electrooxidation[J].Electrochemi Commun.2008,10:798-801.
    [99]YIN Z,ZHENG H J,MA D,BAO X H.Porous Palladium Nanoflowers that Have Enhanced Methanol Electro-Oxidation Activity[J].J.Phys.Chem.C,2009,113(3): 1001-1005.
    [100]李路海,王铭,蒲嘉陵.薄膜电极技术及其应用进展[J].功能材料信息,2006,3(3):34-37.
    [101]FUKUSHI Y,KOMINAMI H,NAKANISHI Y,HATANAKA Y.Effect of ITO Surface State to the Aging Characteristics of thin Film OLED[J].Applied Surface Science,2005,244(1-4):537-540.
    [102]ZHANG J D,KAMBAYASHI M,OYAMA M.A Novel Electrode Surface Fabricated by Directly Attaching gold Nanospheres and Nanorods onto Indium tin Oxide Substrate with a seed Mediated Growth Process[J].Electrochem Commun,2004,6:683-688.
    [103]KAMBAYASHI M,ZHANG J D,OYAMA M.Crystal Growth of Gold Nanoparticles on Indium Tin Oxides in the Absence and Presence of 3-Mercaptopropyl-trimethoxysilane[J].Cryst Growth Des,2005,5:81-84.
    [104]GOYAL R N,OYAMA M.,UMAR A A.et al.Determination of Methylprednisolone Acetate in Biological Fluids at gold Nanoparticles Modified ITO electrode[J].J Pharmaceut Biomed Anal,2007,44:1147-1153.
    [105]ZUDANS I,PADDOCK J R,KURAMITZ H,et al.Electrochemical and Optical Evaluation of Noble Metal- and Carbon-ITO hybrid Optically Transparent Electrodes[J].J Electroanal Chem,2004,565:311-320.
    [106]CHANG G.,ZHANG J D,OYAMA M,HIRAO K.Silver-Nanoparticle-Attached Indium Tin Oxide Surfaces Fabricated by a Seed-Mediated Growth Approach[J].J Phys Chem.B,2005,109:1204-1209.
    [107]CHANG G.,OYAMA M,HIRAO K.In Situ Chemical Reductive Growth of Platinum Nanoparticles on Indium Tin Oxide Surfaces and Their Electrochemical Applications[J].J Phys Chem.B,2006,110:1860-1865.
    [108]CHANG G.,OYAMA M,HIRAO K.Seed-Mediated Growth of Palladium Nanocrystals on Indium Tin Oxide Surfaces and Their Applicability as Modified Electrodes[J].J Phys Chem B,2006,110(41):20362-20368.
    [1]李路海,王铭,蒲嘉陵.薄膜电极技术及其应用进展[J].功能材料信息,2006,3(3):34-37.
    [2]FUKUSHI Y,KOMINAMI H,NAKANISHI Y,HAYANAKA Y.Effect of ITO Surface State to the Aging Characteristics of Thin Film OLED[J].Applied Surface Science,2005,244(1-4):537-540.
    [3]ZHANG J D,KAMBAYASHI M,OYAMA M.A Novel Electrode Surface Fabricated by Directly Attaching Gold Nanospheres and Nanorods onto Indium Tin Oxide Substrate with a Seed Mediated Growth Process[J].Electrochem Commun.2004,6:683-688.
    [4]GOYAL R N,OYAMA M.,UMAR A A.et al.Determination of Methylprednisolone Acetate in Biological Fluids at Gold Nanoparticles Modified ITO Electrode[J].J Pharmaceut Biomed Anal,2007,44:1147-1153.
    [5]KAMBAYASHI M,ZHANG J D,OYAMA M.Crystal Growth of Gold Nanoparticles on Indium Tin Oxides in the Absence and Presence of 3-Mercaptopropyl-trimethoxysilane[J].Cryst Growth Des,2005,5:81-84.
    [6]ZUDANS I,PADDOCK J R,KURAMITZ H,et al.Electrochemical and Optical Evaluation of Noble Metal- and Carbon-ITO hybrid Optically Transparent Electrodes[J].J Electroanal Chem,2004,565:311-320.
    [7]ZHENG H T,CHEN S X,SHEN P K.Spontaneous Formation of Platinum Particles on Electrodeposited Palladium[J].Electrochem Commun,2007,9:1563-1566.
    [8]CHANG G.,OYAMA M,HIRAO K.In Situ Chemical Reductive Growth of Platinum Nanoparticles on Indium Tin Oxide Surfaces and Their Electrochemical Applications[J].J Phys Chem B,2006,110:1860-1865.
    [9]CHANG G.,ZHANG J D,OYAMA M.Silver-Nanoparticle-Attached Indium Tin Oxide Surfaces Fabricated by a Seed-Mediated Growth Approach[J].J Phys Chem B,2005,109:1204-1209.
    [10]CHANG G.,OYAMA M.,HIRAO K.Seed-Mediated Growth of Palladium Nanocrystals on Indium Tin Oxide Surfaces and Their Applicability as Modified Electrodes[J].J.Phys.Chem.B,2006,110(41):20362-20368.
    [11]ZHANG J T,HUANG M H,et al.High Catalytic Activity of Nanostructured Pd Thin Films Electrochemically Deposited on Polycrystalline Pt and Au Substrates towards Electro-oxidation of Methanol[J].Electrochemi Commun,2007,9:1298-1304.
    [12]许姣姣,司云森,余强,曾初生.电化学沉积技术分析及其应用[J].云南冶金,2007,36(3):49-51.
    [13]吴丽君.发展中的溅射靶材[J].真空科学与技术,2001,21(4):342-347.
    [14]董绍俊.化学修饰电极[M].科学出版社,2003,56-63.
    [15] SENTHILKUMAR M, MATHIYARASU J, JOSEPH J. Electrochemical Instability of Indium tin Oxide (ITO) Glass in Acidic pH range During Cathodic Polarization [J]. Mater Chem Phys, 2008,108: 403-407.
    [16] HU C C, WEN T C. Voltammetric Investigation of Palladium Oxides-I: Their Formation/Reduction in NaOH [J]. Electrochim Acta, 1995, 40: 495-503.
    [17] CZERWINSKI A, KIERSZTYN I, G MICHAL. The Study of Hydrogen Sorption in Palladium Limited Volume Electrodes (Pd-LVE) Part Ⅱ. Basic Solutions [J]. J. Electroanal Chem. 2000,492:128-136.
    [18] CZERWISNKI A, MARUSZCZAK G, ZELAZOWSKA M, et al. The Absorption of Hydrogen and Deuterium in Thin Palladium Electrodes Part Ⅲ: The Influence of Solution Composition [J]. J. Electroanal. Chem. 1995,386: 207-211.
    [19] ANTONIA L H D, TREMILIOSI-FILHO G, JERKIEWICZ G. Influence of Temperature on the Growth of Surface Oxides on Palladium Electrodes [J]. J. Electroanal. Chem. 2001, 502: 72-81.
    [20] BOLZAN A E, MARTINS M E., ARVIA A J. The Electrodissolution of Base Palladium in Relation to the Oxygen Electroadsorption and Electrodesorption in Sulphuric Acid Solution [J]. J. Electroanal. Chem. 1984,172: 221.
    [21] BOLZFIN A E. Phenomenological Aspects Related to the Electrochemical Behaviour of Smooth Palladium Electrodes in Alkaline Solutions [J]. J. Electroanal. Chem. 1995,380: 127-138.
    [22] HU C C, WEN T C. Voltammetric Investigation of Palladium Oxides Ⅲ: Effects of Hydration and pH on the Electocatalytic Properties of Pd(Ⅳ)/Pd(Ⅱ) and the Reduction Behaviour of Palladous Oxide [J]. Electrochim Acta. 1996, 41(9):1505-1514.
    [1]LIU J P,YE J Q,XU C W,et al.Electro-oxidation of Methanol,1-propanol and 2-propanol on Pt and Pd in Alkaline Medium[J].J Power Sources,2008,177:67-70.
    [2]唐亚文.直接甲醇质子交换膜燃料电池阳极催化剂的研究.硕士学位论文.2002,4.
    [3]LEE K S,CHO Y H,et al.Electrocatalytic Activity and Stability of Pt Supported on Sb-doped SnO_2 Nanoparticles for Direct Alcohol Fuel Cells[J].J.Catal.2008,258:143-152.
    [4]SHEN P K,XU C W.Alcohol Oxidation on Nanocrystalline oxide Pd/C Promoted Electrocatalysts[J].Electrochem Commun,2006,8:184-188.
    [5]SONG E,SHI C,ANSON C F.Comparison of the Behavior of Several Cobalt Porphyrins as Electrocatalysts for the Reduction of O2 at Graphite Electrodes[J]Langmuir,1998,14(15):4315-4321.
    [6]EL-DEAB M S,OHSAKA T.An Extraordinary Eelectrocatalytic Reduction of Oxygen on gold Nanoparticles-electrodeposited Gold Electrodes[J].Electrochem Commun,2002,4(4):288-292.
    [7]FINOTA M O,BRAYBROOKB G.D,MCDERMOTT M T.Characterization of Electrochemically Deposited gold Nanocrystals on Glassy Carbon Electrodes[J].J Electroanal Chem,1999,466(2):234-241.
    [8]BEDEN B,LAMY C,BEWICK A,KUNIMATSU K.Electrosorption of Methanol on a Platinum Electrode.IR Spectroscopic Evidence for Adsorbed co Species[J].J Electroanal Chem,1981,121:343-347.
    [9]KUNIMATSU K.Infrared Spectroscopic Study of Methanol and Formic Acid Adsorbates on a Platinum Electrode:Part Ⅰ.Comparison of the Infrared Absorption Intensities of Linear CO(a) Derived from CO,CH_3OH and HCOOH[J].J Electroanal Chem,1986,213(1):149-157.
    [10]BREITER M W.A Study of Intermediates Adsorbed on Platinized-platinum During the Stedy-state Oxidation of Methanol,Formic acid and Formaldehyde[J].J Electroanal Chem,1967,14(4):407-413.
    [11]BIEGLER T.Composition of Electrosorbed Methanol[J].J Phys Chem,1968, 72(5): 1571-1577.
    [12] ZHENG H T, CHEN S X, SHEN P K. Spontaneous Formation of Platinum Particles on Electrodeposited Palladium [J]. Electrochem Commun, 2007, 9: 1563-1566.
    [13] HUANG J J, HWANG W S, WENG Y C. Determination of Alcohols Using a Ni-Pt Alloy Amperometric Sensor [J]. Thin Solid Films, 2008,516: 5210-5216.
    
    [14] YU C F, JIA F L, ZHANG L Z. Direct Oxidation of Methanol on Self-Supported Nanoporous Gold Film Electrodes with High Catalytic Activity and Stability [J]. Chem. Mater, 2007,19: 6065-6067.
    [15] HERNANDEZ J, SOLLA-GULLON J, et al. Methanol oxidation on gold Nanoparticles in Alkaline Media: Unusual Electrocatalytic Activity [J]. Electrochim Acta, 2006, 52: 1662-1669.
    [16] ZHANG J T, HUANG M H, MA H Y. High Catalytic Activity of Nanostructured Pd thin Films Electrochemically Deposited on Polycrystalline Pt and Au Substrates towards Electro-oxidation of Methanol [J]. Electrochemi Commun, 2007, 9: 1298-1304.
    [17] ZHENG H T, LI Y L, CHEN S X. Effect of Support on the Activity of Pd Electrocatalyst for Ethanol Oxidation [J]. J Power Sources, 2006,163:371-375.
    [18] BOLZFIN A E. Phenomenological Aspects Related to the Electrochemical Behaviour of Smooth Palladium Electrodes in Alkaline Solutions [J]. J Electroanal Chem, 1995,380: 127-138.
    [19] HU C C, WEN T C. Voltammetric Investigation of Palladium Oxides-Ⅰ: Their Formation/Reduction in NaOH [J]. Electrochim Acta, 1995,40: 495-503.
    [20] HU C C, WEN T C. Voltammetric Investigation of Palladium Oxides Ⅲ: Effects of Hydration and pH on the Electocatalytic Properties of Pd (Ⅳ)/Pd(Ⅱ) and the Reduction Behaviour of Palladous Oxide [J]. Electrochim Acta. 1996. 41(9):1505-1514.
    [1]LIN W F,WANG J T,SAVINELL R F.Online FTIR Spectroscopic Investigations of Methanol Oxidation in a Direct Methanol Fuel Cell[J].J Electrochem Soc,1997,144:1917-1923.
    [2]FAN Q,PU C,SMOTKIN E S.In Situ Fourier transform Infrared-diffuse Reflection Spectroscopy of Direct Methanol fuel cell Anodes and Cathodes[J].J Electrochem Soc,1996,143:3053-3059.
    [3]畲沛亮.钯铁、钯铂合金电沉积及沉积层结构与性能研究[D].厦门:厦门大学,1999.
    [4]陈国良,林珩,卢江红.4种有机小分子伯醇在Pt电极上吸附和氧化的比较研究[J].漳州师范学院学报(自然科学版),2004,17(4):71-74.
    [5]林珩,邓友娥,林爱兰,陈国良.Pt电极上吸附原子对正丙醇电催化氧化性能的影响[J].福建师范大学学报(自然科学版),2003,19(1):54-58.
    [6]林珩,陈国良,郑子山,碱性介质中异丙醇在铂电极表面的吸附和电化学氧化[J].物理化学学报(英文版),2005,21(11):1280-1284.
    [7]LIU J P,YE J Q,XU C W,JIANG S P.Electro-oxidation of Methanol,1-propanol and 2-propanol on Pt and Pd in Alkaline Medium[J].J Power Sources,2008,177:67-70.
    [8]KIM J H,CHOI S M,NAM S H,SEO M H,et al.Influence of Sn Content on PtSn/C Catalysts for Electrooxidation of C1-C3 alcohols:Synthesis,Characterization and Electrocatalytic Activity[J].Applied Catalysis B:Environmental,2008,82:89-102.
    [9]孙世刚,杨东方,田昭武.正丁醇在铂电极上吸附和氧化的原位FTIR反射光谱 研究[J].化学学报,1992,50:533-538.
    [10]陈国良,陈声培,林珩,等.Pt及其修饰电极对正丁醇氧化的电催化性能研究[J].厦门大学学报,2002,41(2):211-216.
    [1]LAWRENCE N S.Analytical Detection Methodologies for Methane and Related Hydrocarbons[J].Talanta,2006,69(2):385-392
    [2]HAHN F,MELENDRES C A.Anodic Oxidation of Methane at noble Metal Electrodes:An in-situ Surface Enhanced Infrared Spectroelectrochemical Study[J].Electrochimica Acta,2001,46:3525-3534.
    [3]PHILIP N.BARTLETT,SAMUEL G,A Micromachined Calorimetric Gas Sensor:an Application of Electrodeposited Nanostructured Palladium for the Detection of Combustible Gases[J],Anal.Chem.2003,75:126-132.
    [4]LU Y J,LI J,HAN J,et al.Room Temperature Methane Detection using Palladium loaded Single-walled Carbon Nanotube Sensors[J].Chemical Physics Letters,2004,391(4-6):344-348.
    [5]YU M,YAN L,FRANK P.Catalytic Activity of Palladium Nanoparticles Encapsulated in Spherical Polyelectrolyte Brushes and Core-Shell Microgels[J].Chem Mater,2007,19(5):1062-1069
    [6]HOSHI N,KIDA K,NAKAMURA M,et al.Structural Effects of Electrochemical Oxidation of Formic Acid on Single Crystal Electrodes of Palladium[J].J Phys Chem B,2006,110:12480-12484.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700