声相关计程仪测速技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
声相关计程仪是基于“波形不变性”的一种测量船舶速度的设备,适合应用于远洋船舶、潜艇及自主水下运载器。与声多普勒计程仪相比,相关计程仪可以用更低的工作频率,垂直发射的宽波束以及较小的换能器尺寸保证更远的作用距离。因此它的研究对维护我国的海洋权益,科学开发海岛、利用海洋资源具有重大意义。
     本文首先细致讨论了声相关计程仪的基本工作原理——“波形不变原理”及其适用范围,着重分析了海底深度、接收器间距、船速及发射波束角对波形相似程度的影响。围绕声纳方程,论证了相关计程仪设计时应考虑的一些问题,如频率的选取,换能器间距等,讨论了多种发射信号的选择。从而为海底回波仿真的参数选择提供了理论依据。
     然后根据相关计程仪的测速特点,研究了一维、二维基阵的设计方法,在借鉴雷达虚拟阵元概念的基础上,给出了冗余因子、引入虚元、给出虚元位置重合度等概念,进而实现了应用于声相关测速需求的二维基阵的快速设计方法。
     以网格法建立的海底回波模型为基础,分别对时间、空间相关测速法进行了理论分析和仿真研究,并讨论了三次样条插值和多项式插值对空间相关函数的插值效果,给出了多种阵型的测速统计结果,测速精度较高。最后对时空相关测速法进行了理论分析和仿真研究,推导了海底回波的理论时空相关函数模型,建立了海底回波数据的相关矩阵,采用最大似然法对未知速度等参量进行了估计。论文引入单纯形算法实现了似然函数最优参数的搜索,但由于单纯形算法可能陷入局部最优,论文又采用模拟退火算法进行全局寻优,并将两种算法的结果进行了对比分析,证明了其有效性。
The principle of“waveform invariance principle”is used for the velocity measurement among acoustic correlation log (ACL), which is suitable to be equipped on submarines and autonomous underwater vehicles (AUV). The ACL has striking advantages compared with the acoustic Doppler log (ADL). It can work with a single beam pointing directly down at the sea bed and the return signal is much larger than from the ADL because of the normal incidence. Furthermore the beam can be fairly broad and, for the same size of transmit transducer, this enables the use of lower acoustic frequencies for which the attenuation is less. The ACL has the potential therefore for operating on the sea bed echoes at much greater depths than is possible with the ADL. The design and utilization of ACL become more and more important both for the defense of the national ocean equity and for the scientific research and exploitation of islands and ocean resource.
     In this thesis, the basic principle of ACL and its applying area, is presented in detail. The correlation properties of seafloor reverberation signals between different hydrophones on receiving arrays are discussed which is determined by the oceanic depth and launching ankle. Some problems, such as the choice of frequency and distance between transducers, are discussed according to sonar equation, which should be considered in the design of ACL.
     The design method of transducer arrays assembly plays a key role in the velocity measurement for the ACL. A design method of one dimension and two dimension arrays for the ACL is studied in this dissertation. Based on the method of restricted minimum-redundancy linear array (RMRLA), the redundancy factor is got, an ideal virtual array map is built, the conception of virtual array coverage rate is proposed and a fast two-dimensional arrays design method is obtained.
     With sufficient advisement based on sonar equation, the seabed echo simulation model for acoustic correlation log is founded by gridding method, in which the result is basically consistent with the simulation. Then, the theoretical analysis and emulation study is taken on the spatial correlation according to the model, discussing the Hermite interpolation fit and cubic spline interpolation fit to the spatial correlation function or interpolation effect, the statistical velocity measurement result of beeline array and plane array have come out, the precision of velocity measurement is preferable.
     The theoretical analysis and emulation study is taken on the temporal and the spatial correlation according to the model, the theory of the temporal-spatial correlation is deduced in details, and data the correlation matrix is set up. Using the maximum likelihood estimation method to estimate the unknown velocity parameters. Nelder-Mead Method is introduced in the paper to find the likelihood function minimization. Due to the possibility to bet into local optimum with Nelder-Mead Method, the improved method is put forward with the Simulated Annealing algorithm. Simulation proves the effectivity of the improved method.
引文
[1] R.J.Urick.洪申译.第3版.水声原理.哈尔滨船舶工程学院出版社. 1990:1页
    [2]邹明达,徐继渝.船用测速声呐原理及其应用.人民交通出版社. 1992:1-2页
    [3]杨在金.航海仪器.大连海事大学出版社. 1998:174-175,185页
    [4]田坦.水下定位与导航技术.国防工业出版社. 2007,9:96-99页,115-116页
    [5] S.K.Hole,B.Woodward and W.Forsythe.Design constraints and error analysis of the temporal correlation log.IEEE J.Oceanic.Eng,vol 17.July 1992:269-279P
    [6] P.N.Denbigh.A design study for a correlation log to measure speed at sea.J.Navigation,vol35,1982:160-184P
    [7] F.R.Dickey.Jr,De Witt.N.Y.Speed Measuring System. U.S.Patent No.3147477,Sep.1,1964
    [8] F.R.Dicky.Jr and J.A.Edward.Velocity Measurement using Correlation Sonar. Proc.IEEE Conf.Position Location and Navigation. San Diego,CA,Nov,1978
    [9] F.R.Dickey.Jr.Velocity Measuring Correlation Sonar. U.S.Patent No 4244026,Jan.6 1981
    [10] Steven E.Bradley.Correlation Sonar System U.S.Patent No 5315562. Issued May 24,1994
    [11] F.R.Dickey,W.C.Bookheimer and K.W.Rhoades.Implementation and Testing of a Deep Water Correlation Velocity Sonar. Offshore Technology Conference,2003:437-446
    [12] P.N.Denbigh.A design study for a correlation log to measure speed at sea. J.Navigation,vol35,1982:160-184P
    [13] S.K.Hole,B.Woodward and W.Forsythe.Design constraints and error analysis of the temporal correlation log.IEEE.J.Oceanic.Eng,vol 17,July 1992:269-279P
    [14] S.K.Hole,B.Woodward and W.Forsythe.Estimating Backscattering Strength for a Correlation Log.IEEE.J.Oceanic.Eng,vol 19,July 1994:476-483P
    [15] Y.Doisy.General motion estimation from correlation sonar. IEEE.J. Oceanic.Eng,vol 23,Apr 1998:127-140P
    [16] Yingbo Hua,Tapan K.Sarkar,Donald D.Weiner.An L-Shaped Array forEstimating 2-D Directions of Wave Arrival. IEEE Transactions on Antennas and Propagation,vo1.39,No.2,1991:143-146
    [17] Robinson,Henry.Transducer for Acoustic Correlation Velocity Log. WO97/47990.1997
    [18] P.Boltryk,M.Hillt,A.Keary,B.Phillips,H.Robinson and P.White. Improvement of velocity estimate resolution for a Correlation Velocity Log using surface fitting methods. Oceans 2002,Biloxi,USA,2002:18401848
    [19] Smith.B.V and Atkins,P.A high accuracy two-axis velocity measuring device. Proceedings of the IERE conference on electronics for ocean technology,Edinburgh,UK,1987:77-82P
    [20] G..Griffiths,S.Bradley,G..Watson and B.Dupee.Acoustic correlation sonar for vertical profiling of ocean currents to a range of 1 km. IEE Proc.-Radur,Sonar Nuvig. Vol.143,No.3,June 1996:177-183P
    [21] G..Griffiths , S.Bradley and G..Murdock.Factors affecting the performance of a shipboard acoustic correlation current profiler. IEEE,May 1999:295-299P
    [22] G..Griffiths,S.E.Bradley and S.Ruiz.Deep water bottom track ship's velocities from an acoustic correlation current profiler.Proc.Oceans'97,Halifax,Canada 6-9 October 1997,IEEE,Piscataway,New York,Vol.2:1404-1410P
    [23] A.L.Scoca , J.G.Huber and B.S.Schwartz.Bi-Directional TemporalCorrelation Sonar. U.S.Patent No.6804167,Oct.12 2004
    [24] ZHU Weiqing,WANG Changhong.Method and system for measuring the velocity of a vessel relative to the bottom using velocity measuring correlation sonar.C.N.Patent No:W02004083891,2004
    [25]郭纪捷等.声相关海流剖面(ACCP)测量的接收阵元分布形式对流速估计值的影响.水声换能器和基阵技术讨论会论文. 1998
    [26]王长红,朱敏,何平.声相关流速剖面仪(ACCP)原理样机研制.声学技术. 1999,18(A11):189-190
    [27]朱维庆,冯雷,王长红等.声相关载体速度测量理论和信号处理方法.声学学报. 2006,31(4):289-296
    [28]王长红,邱薇,江玉玲.大深度声相关流速剖面仪样机研制.声学技术. 2002,21(z2):421-422
    [29]冯雷,王长红,江玉玲等.相关测速声纳工作原理及海试验证.声学技术.2005,24(2): 70-75
    [30]朱维庆,王长红.相关测速声纳测量载体对底的方法及其系统.知识产权出版社. 2003:46
    [31] Weiqing ZHU,Changhong WANG,Ping HE.IOA-1 Acoustic Correlation Current Profiler (ACCP).Oceans 2000 MTS/IEEE Conference and Exhibition,2000,2:777-779
    [32] P.N.Denbigh.Ship velocity determination by Doppler and correlation techniques.Proc.Inst.Elec.Eng,vol 131,1984:315-326P
    [33]刘伯胜,雷家煜.水声学原理.哈尔滨工程大学出版社. 1993:72页
    [34] S.K.Hole,B.Woodward and W.Forsythe.Estimating Backscattering Strength for a Correlation Log.IEEE.J.Oceanic.Eng,vol 19,July 1994:476-483P
    [35]张殿伦,田坦,卢逢春.声相关测速技术仿真与试验研究.哈尔滨工程大学学报. Vol 24,No4. 2003:415-418页
    [36]张殿伦.舰船声学测速技术研究.哈尔滨工程大学博士学位论文. 2001:37页
    [37]张殿伦,田坦,卢逢春,孙大军.时空相关测速方法理论模型研究.哈尔滨工程大学学报. Vol 25,No5. 2004:578-581页
    [38] Steven M.Kay.罗鹏飞译.第1版.统计信号处理基础-估计与检测理论.电子工业出版社. 2003:129,182页
    [39]范敏毅.水下声道的仿真与应用研究.哈尔滨工程大学博士论文. 2000:96-98
    [40]高晋占.微弱信号检测.清华大学出版社. 2004,11:242-243页
    [41]王正林,龚纯等.精通MATLAB科学计算.电子工业出版社. 2007,7:357页
    [42]田坦,刘国枝,孙大军.声纳技术.哈尔滨工程大学出版社. 2000
    [43]蔡平,梁国龙等.界面混响信号的仿真研究.哈尔滨工程大学学报. 2000,21(4):31-35页
    [44]潘德明.相关原理在船速测定中的应用.海洋技术. 1991,10(2):23-26
    [45]潘德明,陈福如.声相关二维测速技术研究.舰船科学与技术. 1993(3):42-43
    [46]薛敬宏.声相关测速技术研究.哈尔滨工业大学博士论文. 2007
    [47]陈希信.声相关速度计程仪研究.哈尔滨工程大学硕士论文. 1999
    [48]刘德铸.舰船声相关测速技术研究.哈尔滨工程大学硕士论文. 2006
    [49]邸国辉.声相关测速研究.哈尔滨工业大学硕士论文. 2006
    [50]王炳辉,陈敬军.声纳换能器的新进展.声学技术. 2004(1):67-71P
    [51] Alan T.Moffet.Minimum-Redundancy Linear Arrays. IEEE Transactions on antennas and propagation,1968,AP-16 (2):172-175P
    [52]刘学斌,季飞,韦岗.一种简单快捷的完全可扩展线阵设计.电视技术. 2005,2:32-34
    [53]薛敬宏,金铭,乔晓林.模拟退火算法在声相关计程仪测速中的应用. 2006年全国声学学术会议论文集,厦门. 2006:467-468
    [54]张光澄.非线性最优化计算方法.高等教育出版社. 2005,7:99-107页
    [55]曹卫华,郭正.最优化技术方法及MATLAB的实现.化学工业出版社. 2005:58-61页
    [56]张可村,李换琴.工程优化方法及其应用.西安交通大学出版社. 2007,2:235-237页
    [57] A.D.惠伦.迟惠生译.噪声中的信号检测.科学出版社. 1977:324-326页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700