深部开采高阶段尾砂充填体力学与非线性优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
充填体力学是随着充填采矿技术发展而形成的一门新型学科。VCR采矿法与高阶段嗣后充填工艺相结合,扩大了充填采矿技术的应用领域,在深部厚大矿床安全高效开采具有广阔的应用前景,同时也为充填体力学增加了新的研究内容。目前由于对高阶段充填体力学机理及其相关理论缺乏系统的研究,高阶段充填设计大都采用经验法或经验类比法,往往造成不必要的水泥浪费或充填体强度达不到工程实际要求。为此,有必要根据深部高阶段充填工艺特征,建立高阶段充填体力学模型,开展降低成本的优化设计研究,以实现深部资源安全高效开采。本文主要研究内容如下:
     对尾砂胶结充填体进行了力学试验,建立了不同配比胶结充填体损伤本构方程,分析了不同配比充填体力学特性与能量释放规律。根据充填体损伤本构模型,从岩体开挖释放能量与充填体峰值应力变形能相近的原则探讨了充填体与深部岩体的合理匹配,并确定了冬瓜山矿床深部开采所要求的充填体强度,论证了安庆铜矿深部矿体采用最小充填配比1:12是可行的。
     为实现深部开采高质量充填,用分形理论研究了分级尾砂级配。通过对大量尾砂充填矿山的试验数据分析,建立了分级尾砂强度与水泥含量、浓度、孔隙分维数及分维数相关率的神经网络模型,从大量研究数据中揭示了尾砂级配与其强度的内在规律。研究结果表明,分级尾砂颗粒间孔隙分维数减小,充填体强度增高;尾砂分维数相关性越好,充填体强度越高。根据尾砂级配模型,用混沌优化方法研究了使充填体达到最佳强度的选矿尾砂合理分级。该模型与理论应用于安庆铜矿选矿尾砂分级设计,不仅提高了充填体强度,而且增加了尾砂使用率,节约了充填成本。
     针对高阶段嗣后充填工艺特点,分析了深部开采围岩对充填体的力学作用,建立了高阶段分层充填体力学计算模型,研究了充填体可暴露任意高度的力学条件,并用分形树和重整化群方法建立了深部开采充填体强度模型。基于深部开采的复杂性和充填体强度的不确定性,根据所建立的高阶段充填体力学模型,用可靠性理论和博弈树方法,成功解决了高阶段充填体配比优化难题。该研究方法应用于安庆
Backfill mechanics is a new subject that is formulated with the development of the technology of filling mining. Coupling the Vertical Crater Retreat method with delayed backfill in high-level mining, the applying ranges of filling technology are extended, especially in deep, thick and large-scale deposit, and at the same time new research contents are tabled for backfill mechanics. Because there are not systematical researches on mechanical mechanism of high backfill and its correlative theories at present, the design of high level backfill is mainly carried out by experience method or analogical method which often leads the cements being wasted or the strength being lower than that of the requirement in engineering. In order to mine safely and effectively, it is necessary to establish the mechanical models of high backfill according to filling technology in deep mining, and to optimize design to reduce production cost. The main contents of this paper are included as follows.Via mechanical experiment to backfills with different cement-tailing ratios, their damage constitutive equations were established, and their mechanical characters and laws of energy releasing were analyzed. According to the damage constitutive models and the principle that the deformation energy of backfill under peak stress corresponds with releasing energy from excavated rock mass during deep mining, the reasonable match relationship between backfill and deep rock mass was explored, and the required strength of backfill in Dongguashan deep mine, Anhui province, was ascertained, as well as the feasibility of the minimal cement-tailing ratio being determined as 0.0833 in Anqing copper mine was investigated.For improving filling quality in deep mining, the gradation composition of classifying tailings was researched on fractal theory. Analyzing the data tested in a lot of mines, a neural network model which embodied the relations between strength of cemented tailings and content of cement, consistence, fractal dimension of porosity and correlating coefficient of fractal dimension was established, and the intrinsic laws between strength of classifying tailings and its gradation composition
    were researched. The research results show that the strength of cemented tailings increases with the decrease of fractal dimension of porosity, and the higher the correlating coefficient of fractal dimension is the higher the strength will be. According to the gradation composition model, with a method of chaotic optimization, the reasonable classification of mill tailings that owned optimum strengths was given, which has been applied in classifying design of mill tailings in Anqing copper mine. The applying results in Anqing copper mine show that not only the supply of tailings was increased, but also the strength of cemented backfill was enhanced, and filling cost was saved.According to the technologic characters of delayed high backfill, analyzing the mechanical actions between wall rock and backfill during deep mining, a mechanical model of layered filling body and the mechanical condition that backfill can be exposed at a random height were obtained. And with the method of fractal tree and renormalization group, a strength model of backfill in deep mining was established. Because of the complexity of deep mine and indeterminateness of backfill strength, according to the mechanical models proposed above, and using dependability theory and a method of game tree, a complicated problem to optimize the cement-tailings ratios for high backfill was solved successfully, of which the excellent effects were applying in optimizing the ratios of cement to tailings in No. 5 stope in Anqing copper mine.Being complicated deformation of backfill in deep mining condition, such as indeterminateness, randomicity etc., on basis of monitoring the deformations of high backfill in Anqing copper mine, their laws were analyzed with chaotic theory, and the results proved that the deformations of backfill hold the characters of chaos. Reconstructing phase space to time series of deformation of backfill with different cement-tailing ratios, their grey prediction models was established, and a reasonable period of high-level pillar stopping in deep mining was ascertained.
引文
[1] Aubertin M, Bussiere B. Meeting environmental challenges for mine waste management. Geotechnical News, 2001, 19(3): 21-26
    [2] Mchaina D M, Januszewski S, Hallam R L. Development of an environmental impact and mitigation assessment program for a tailings storage facility stability upgrade. International Journal of Surface Mining, Reclamation and Environment, 2001, 15(2): 123-140
    [3] Burd, Brenda J. Evaluation of mine tailings effects on a benthic marine infaunal community over 29 years. Marine Environmental Research, 2002, 53(5): 481-519
    [4] Helms W. Environmental protection in the metal ore mining industry. Environmental Policy and Law, 1993, 23(5): 212-218
    [5] Rempe N T. Waste disposal in underground mines-a technology partnership to protect the environment. Mining Engineering, 1997, 49(3): 49-52
    [6] Sprute R H, Kelsh D J. Using slimes for backfill in deep mine. Mining Congress Journal, 1976, 62(4): 22-26
    [7] Macfarlane A S, Laas J J, Spearing A J S. Derivation of a backfilling strategy for tabular, deep, scattered mining on Vaal Reefs. In: Bloss D M, eds. MINEFILL '98. Brisbane, Australia: Australasian Institute of Mining and Metallurgy Publication, 1998. 309-314
    [8] Patchet S J, Currie G E R. Operation and performance of slimes fill system on a deep mine. Proceedings, 12th Congress of the Council of Mining and MetaUurgica, Marshalltown, South Africa, South African Inst of Mining & Metallurgy publisher, 1982, 971-979
    [9] Pandey P. Problems of deep hard rock mines, Journal of Mines, Metals & Fuels, 1989, 37(1): 3-8
    [10] Van E D R. Classified tailings as part of an integrated regional support system, In: Hassani F P, Scoble M J, Yu T R, eds. Innovations in mining backfill technology. Brookfield(USA): Balkema publishers, 1989. 217-220
    [11] Gurtunca R G, Toper A Z, Squelch A P, et al. Rock Engineering Criteria for Backfill in Ultra-Deep Level Mining Environments, In: Stone D, eds. MINEFILL 2001, Society for Mining, Metallurgy, and Exploration, 2001. 133-144
    [12] 卢平.制约胶结充填采矿法发展的若干充填体力学问题.黄金,1994,15(7):18-22
    [13] 王善元.我国大直径深孔采矿技术的研究与发展趋势.矿业研究与开发,1998,18(3):8-11
    [14] Biswas K, Jung S J. Review of current high density paste fill and its technology. Mineral Resources Engineering, 2002, 11(2): 165-182
    [15] 解世俊.现代地下采矿工艺技术的发展和未来采矿工艺技术改革的预测,有色矿冶,1994,No.5:1-8
    [16] Dorricott M, Grice A, Impact of stope geometry on backfill systems for bulk mining. In: Australasian Institute of Mining and Metallurgy, eds. MassMin 2000. Brisbane: Australasian Institute of Mining and Metallurgy Publication, 2000. 705-711
    [17] Feschken P, Rainer C. Cost-saving backfilling in lead mines. Bulk Solids Handling, 1994, 14(1): 151-153
    [18] Mitchell R J. Effect of stope geometry on fill stability. Proceedings of the 41st Canadian Geotechnical Conference, 1998.8-15
    [19] Mikula P A, Lee M F. Bulk low-grade mining at Mount Charlotte mine. In: Sandvik, Tamrock, Dyno N. eds. MassMin 2000. Australasian Institute of Mining and Metallurgy publisher, 2000. 623-635
    [20] Butcher R J. Block cave undercutting-Aims, strategies, methods and management. In: Sandvik, Tamrock, Dyno N. eds. MassMin 2000. Australasian Institute of Mining and Metallurgy publisher, 2000. 405-412
    [21] Schwab N M. Massive mining techniques at 2300 m depth. In: Sandvik, Tamrock, Dyno N. eds. MassMin 2000. Australasian Institute of Mining and Metallurgy publisher, 2000. 813-818
    [22] Farsangi P N, Hayward A G, Hassani F P. Consolidated rockfill optimization at Kidd Creek Mines. CIM Bulletin, 1996, 89(1001): 129-134
    [23] 刘同友,黄业英.国外金属矿山充填采矿技术的研究与应用.中国矿业协会采矿专业委员会编印,1997
    [24] Grant D, DeKruijff S. Mount Isa mines-1100 orebody, 35 years on. In: Sandvik, Tamrock, Dyno N. eds. MassMin 2000. Australasian Institute of Mining and Metallurgy publisher, 2000. 591-600
    [25] Cooke R. Hydraulic backfill distribution systems for deep mines. Journal of Mines, Metals & Fuels, 45(11-12): 363-370
    [26] 谢龙水.矿山胶结充填技术的发展.湖南有色金属,2003,19(4):1-5
    [27] Vdd J E. Backfill research in Canadian mines. In: Hassani F P, Scoble M J, Yu T R, eds. Innovations in mining backfill technology. Brookfield(USA): Balkema publishers, 1989. 3-14
    [28] Grice A G. Fill research at Mount Isa mines limiteds. In: Hassani F P, Scoble M J, Yu T R, eds. Innovations in mining backfill technology. Brookfield(USA): Balkema publishers, 1989. 15-22
    [29] Ford R A,充填采矿,王鉴,王宗英,王生德,等译.北京:原子能出版社,1987
    [30] 周爱民,何哲祥,鲍爱华.矿山充填技术的发展及其新观念,第四届全国充填采矿会议.1999,1-5
    [31] 和金桥.90年代末我国胶结充填技术展望.新疆有色金属,1996,n2:11-13
    [32] 杨根祥.全尾砂胶结充填技术的现状及其发展.中国矿业,1995,18(4):40-45
    [33] 华心祝.高水速凝材料泵送充填技术在我国煤矿的应用.煤碳工程师,1996,n3:34-36
    [34] 周罗中.大厂铜坑矿块石胶结充填技术研究.湖南有色金属,1995,11(1):1-5
    [35] 刘同友,周成浦.金川镍矿充填采矿技术的发展及面临的挑战.中国有色金属学会.第四届全国充填采矿会议论文集,1999.6-10
    [36] 于学馥.信息时代岩土力学与采矿计算初步.北京:科学出版社,1991
    [37] Hu K X, Kemeny J. Fracture mechanics analysis of the effect of backfill on the stability of cut and fill mine workings. International Journal of Rock Mechanics and Mining Sciences, 1994, 31(3): 231-241
    [38] Raffield M P, James J V, Petho S Z. Monitoring of the performance of a crushed waste/classified tailings backfill for shaft pillar pre-extraction in the South Deep section, Western Areas Gold Mine. In: Bloss D M, eds. MINEFILL '98. Brisbane, Australia: Australasian Institute of Mining and Metallurgy Publication, 1998. 185-190
    [39] Johnson R A, York G. Backfill alternatives for regional support in ultra-depth South African gold mines. In: Bloss D M, eds. MINEFILL '98. Brisbane, Australia: Australasian Institute of Mining and Metallurgy Publication, 1998. 239-244
    [40] Gurtunca R G, Adams D J. Rock-engineering monitoring programme at West Driefontein gold mine. Journal of The South African Institute of Mining and Metallurgy, 1991, 91(12): 423-433
    [41] Ryder J A. Application of numerical stress analyses to the design of deep mine. In: South African Inst of Mining & Metallurgy, eds. GOLD 100, Johannesburg: South African Inst of Mining & Metallurgy Publisher, 1986. 245-253
    [42] Ryder J A. Excess shear stress in the assessment of geologically hazardous situations. Journal of The South African Institute of Mining and Metallurgy, 1988, 88(1): 27-39
    [43] James J V, Macdonald A J, Raffield M P. Backfilling philosophy for massive mining at depth in the South Deep section, Western Areas Gold Mine. In: Bloss D M, eds. MINEFILL '98. Brisbane, Australia: Australasian Institute of Mining and Metallurgy Publication, 1998. 153-157
    [44] Henderson A, Jardine G, WoodaU C. Implementation of paste fill at the Henty Gold Mine. In: Bloss D M, eds. MINEFILL '98. Brisbane, Australia: Australasian Institute of Mining and Metallurgy Publication, 1998. 299-304
    [45] Gundersen R E. Hydro-power. Extracting the coolth, Journal of The South African Institute of Mining and Metallurgy, 1990, 90(5): 103-109
    [46] Jones M Q W, Rawlins C A. Thermal properties of backfill from a deep South African gold mine. Journal of the Mine Ventilation Society of South Africa, 2001, 54(4): 100-105
    [47] Haase H. Potential for cost reductions by reducing heat loads in deep level mines. Journal of the Mine Ventilation Society of South Africa, 1994, 47(3): 34-44
    [48] Grice A G. Recent Minefill Developments in Australia, In: Stone D, eds. MINEFILL 2001, Society for Mining, Metallurgy, and Exploration , 2001. 351-358
    [49] Desouza E, Degagne D, Archibald J F. Minefill Applications, Practices and Trends in Canadian Mines, In: Stone D, eds. MINEFILL 2001, Society for Mining, Metallurgy, and Exploration, 2001.311-320
    [50] Connors C. Methods to Reduce Portland Cement Consumption in Backfill at Jerritt Canyon's Underground Mines,In:Stone D,eds.MINEFILL 2001, Society for Mining,Metallurgy, and Exploration,2001.301-310
    [51] Thomas E G, Cowling R. 胶结充填中细磨艾萨矿炉渣在高炉渣.水泥比时的凝硬性.见:Ford R A(王鉴,王宗英,王生德,等译),编.充填采矿(第十二届加拿大岩石力学讨论会文集).北京:原子能出版社,1987.318-328
    [52] 孙恒虎,刘文永.高水固结充填采矿.北京:机械工业出版社,1998
    [53] 孙恒虎,刘文永,杨宝贵.高水固结充填技术的应用研究与进展.中国有色金属学会.第四届全国充填采矿会议论文集,1999.373-378
    [54] Sun Henghu, Liu Wenyong, Huang Yucheng, et al. Use of high-water rapid-solidifying material as backfill binder and its application in metal mines. In: Bloss D M, eds. MINEFILL '98. Brisbane, Australia: Australasian Institute of Mining and Metallurgy Publication, 1998.21-24
    [55] 刘文永,孙恒虎,杨宝贵等.高水固结充填的应用与进展.中国有色金属学会.第四届全国充填采矿会议论文集,1999.45-48
    [56] Cayoutte J. Optimization of the paste backfill plant of Louvicourt mine. CIM Bulletin, 2003, 96(1075): 51-57
    [57] Seppanen P. Mine backfill technology in the Outokumpu Group. Transactions of the Institution of Mining & Metallurgy, Section A: Mining Industry, 1995, v 104: 178-183
    [58] Potgieter J H, Potgieter S S. Mining backfill formulations from various cementitious and waste materials. Indian Concrete Journal, 2003, 77(5): 1071-1075
    [59] 饶运章.尾砂胶结充填应用粉煤灰的机理及试验研究.南方冶金学院学报,2003,24(2):1-5
    [60] Wang X M, Li J X, Fan P Z. Applied technique of the cemented fill with fly ash and fine-sands. Journal of Central South University of Technology (English Edition), 2001, 8(3): 189-192
    [61] 王新民,胡家国.粉煤灰全尾砂胶结充填中活化剂的应用.岳阳师范学院学报,2000,13(3):72-74
    [62] Petrolito J, Anderson R M, Pigdon S P. Strength of backfills stabilised with calcined gypsum. In: Bloss D M, eds. MINEFILL '98. Brisbane, Australia: Australasian Institute of Mining and Metallurgy Publication, 1998.83-86
    [63] Archibald J F, Chew J L, Lausch P. Use of ground waste glass and Normal Portland cement mixtures for improving slurry and paste backfill support performance. CIM Bulletin, 1999, 92(10): 74-80
    [64] De Souza E, Archibald J F, Degagne D. Glassfill-an environmental alternative for waste glass disposal. CIM Bulletin, 1997, 90(1010): 58-64
    [65] 刘同友.充填采矿技术与应用.北京:冶金工业出版社,2001
    [66] Mkrtchian T, Dight P. Experience in electroactivation backfill hardening. Australasian Institute of Mining and Metallurgy Publication Series, 1998, n1: 333-335
    [67] Amaratunga L M. Designing a strong total tallings pastefill using cold-bonded tailings agglomerates. CIM Bulletin, 2000, 93(1043): 119-122
    [68] Amaratunga L M, Yaschyshyn D N. Development of a high modulus paste fill using fine gold mill tailings. Geotechnical and Geological Engineering, 1997, 15(3): 205-219
    [69] Kumar S, Su X T, Misra M. Safe disposal of reactive flotation tailings and retorted fines of Eastern Oil Shale by an agglomeration process. Fuel, 1994, 73(9): 1472-1475
    [70] Sprute R H,Kelsh D J.水砂充填的电动脱水.见:Ford R A(王鉴,王宗英,王生德,等译),编.充填采矿(第十二届加拿大岩石力学讨论会文集).北京:原子能出版社,1987.283-302
    [71] Chappell B, Huggins G. Effect of backfill strength and stiffness on stope stability. Australasian Institute of Mining and Metallurgy Publication Series, 1998, n2: 213-217
    [72] Huggins G, Chappell B. Preliminary investigation into electro-strengthening of tailings for surface and underground disposal. In: Bloss D M, eds. MINEFILL '98. Brisbane, Australia: Australasian Institute of Mining and Metallurgy Publication, 1998. 347-351
    [73] 孙恒虎,黄玉诚,杨宝贵.当代胶结充填技术.北京:冶金工业出版社,2002
    [74] 彭续承.充填理论及应用.长沙:中南工业大学出版社,1998.
    [75] 刘可任.充填理论基础.北京:冶金工业出版社,1982
    [76] 霍米亚科夫.国外矿山充填经验.长沙:长沙矿山研究院译印,1992.5
    [77] Helms W, Mersch T. Comparison of fine grained tailings with regard to their use for backfill. Journal for Exploration, Mining and Metallurgy, 1998, 51(7-8): 533-540
    [78] 张礼钦,彭续承,王新民等.尾砂坝内不同位置尾砂对充填体强度的影响.中南工业大学学报,1995,26(1):30-33
    [79] 周科平.充填体粒径分布对其强度影响的灰色关联分析.矿业研究与开发,1995,15(4):32-35
    [80] Kesimal A, Ercikdi B, Yilmaz E. The effect of desliming by sedimentation on paste backfill performance. Minerals Engineering, 2003, 16(10): 1009-1011
    [81] Benzaazoua M, Ouellet J, Servant S, et al. Cementitious backfill with high sulfur content: Physical, chemical, and mineralogical characterization. Cement and Concrete Research, 1999, 29(5): 719-725
    [82] Benzaazoua M, Belem T, Bussiere B. Chemical factors that influence the performance of mine sulphidic paste backfill. Cement and Concrete Research, 2002, 32(7): 1133-1144
    [83] Benzaazoua M, Fall M, Belem T. A contribution to understanding the hardening process of cemented pastefill. Minerals Engineering, 2004, 17(2): 141-152
    [84] Stewart J M, Clark I H, Morris A N. Assessment of fill quality as basis for selecting and developing optimal backfill systems for South African gold mines. South African Inst of Mining & Metallurgy, 1986, v1: 255-270
    [85] 杨宝根,孙豁然,王升铎.新城金矿充填体弹性模量的正交回归试验研究.矿业研究与开发,2001,21(1):14-16
    [86] McGuire A J.鹰桥镍业公司用炉渣作充填料中的胶结剂.见:Ford R A(王鉴,王宗英,王生德,等译),编.充填采矿(第十二届加拿大岩石力学讨论会文集).北京:原子能出版社,1987.329-345
    [87] 杨根祥.焦家金矿全尾砂胶结充填体强度试验研究.沈阳黄金学院学报,1994,13(1):32-37
    [88] 李庶林,桑玉发.尾砂胶结充填体的破坏机理及其损伤本构方程.黄金,1997,18(1):24-29
    [89] 郭然,潘长良,于润沧.有岩爆倾向硬岩矿床采矿理论与技术.北京:冶金工业出版社,2003
    [90] Askew J E, McCarthy P L, Fitzgerald D J. 锌公司和新布罗肯希尔联合公司所属矿山矿柱回采时的充填研究.见:Ford R A(王鉴,王宗英,王生德,等译),编.充填采矿(第十二届加拿大岩石力学讨论会文集).北京:原子能出版社,1987.238-266
    [91] 邓建,李夕兵,彭怀生.确定充填体临界高度的极限分析法.金属矿山, 1999, 277(7): 13-15
    [92] Bloss M L, Revell M. Cannington paste fill system-Achieving demand capacity. In: Sandvik, Tamrock, Dyno N. eds. MassMin 2000. Australasian Institute of Mining and Metallurgy publisher, 2000. 713-720
    [93] 王劼.尾砂胶结充填体力学作用机理与应用.中国有色金属学报,1998,8(2):797-801
    [94] Bloss M L, Modand R. Influence of backfill stability on stope production in the copper mine at Mount Isa Mines. In: Conference Series-Australasian Institute of Mining & Metallurgy, Proceedings of the 1995 6th Underground Operators' Conference, 1995. 237-245
    [95] Bloss M L, Greenwood A G. Cemented rock fill research at Mount Isa Mines Limited 1992-1997. In: Bloss D M, eds. MINEFILL '98. Brisbane, Australia: Australasian Institute of Mining and Metallurgy Publication, 1998. 207-215
    [96] 采矿手册(第二卷,地下开采),北京冶金工业出版社,1990
    [97] 倪师军,张成江,滕彦国等.矿业环境影响的地球化学研究.矿物岩石,2001,21(3):190-193
    [98] David C P. Heavy metal concentrations in marine sediments impacted by a mine-tailings spill, Marinduque Island, Philippines. Environmental Geology, 2002, 42(8): 955-965
    [99] Peterson M J, Smith J G, Southworth G R, et al. Trace element contamination in benthic macroinvertebrates from a small stream near a uranium mill tailings site. Environmental Monitoring and Assessment, 2002, 74(2): 193-208
    [100] Van S P. Mercury contamination associated with small-scale gold mining in Tanzania and Zimbabwe. Science of the Total Environment, 2000, 259(1): 105-113
    [101] 蒋卫东.尾矿坝非线性系统混沌与安全研究[博士学位论文].长沙:中南大学,2003
    [102] 山东省三山岛金矿.综合利用尾砂变宝.中国黄金经济,1994,No.5,27-28
    [103] 丁彩霄.尾矿利用是矿业环境治理和经济增长的新途径.内蒙古环境保护,2001,13(4):29-35
    [104] 戈华清.论我国的矿业环境保护法律规制.中国环境管理,2001,6:4-6
    [105] 孙庆先,胡振琪.中国矿业的环境影响及可持续发展.中国矿业,2003,12(7):23-26
    [106] 广东省大宝山矿业有限公司,中南大学资源与安全工程学院.矿山安全生产现状综合评估报告,2004
    [107] Dyni R C, Bumett M. Speedy backfilling for old mines. Civil Engineering (New York), 1993, 63(9): 56-58
    [108] 铜陵有色金属公司,长沙矿山研究院.安庆铜矿高阶段强化开采技术试验研究(鉴定资料),1995
    [109] Bull G, Page C H. Sublevel caving-Today's dependable low-cost 'ore factory'. In: Sandvik, Tamrock, Dyno N. eds. MassMin 2000. Australasian Institute of Mining and Metallurgy publisher, 2000. 537-556
    [110] Hustrulid W. Method selection for large-scale underground mining. In: Sandvik, Tamrock, Dyno N. eds. MassMin 2000. Australasian Institute of Mining and Metallurgy publisher, 2000.29
    [111] Chanda E K, Katonga C. Evolution of vertical crater retreat mining at Mindola Mine, Zambia. In: Sandvik, Tamrock, Dyno N. eds. MassMin 2000. Australasian Institute of Mining and Metallurgy publisher, 2000. 685-695
    [112] Ghali A. Concrete structures: stresses and deformations. New York: Chapman and Hall, 1986
    [113] 冯乃谦主编.实用混凝土大全.北京:科学出版社,2001
    [114] Ilgner H J, Kramers C P, Developments in backfill technology in South Africa. Australasian Institute of Mining and Metallurgy Publication Series, 1998, n1: 129-135
    [115] Peterson S, Szymanski J, Planeta S. Statistical model for strength estimation of cemented rockfill in vertical block mining. In: Bloss D M, eds. MINEFILL '98. Brisbane, Australia: Australasian Institute of Mining and Metallurgy Publication, 1998. 173-177
    [116] Luker I, Waters J A. Large scale in-situ test to investigate the mechanical characteristics of the backfilled soil and rock from a surface mining operation. Proceedings of the International Conference on Ground Movements and Structures[C], 1992.29-35
    [117] Ouellet J, Bidwell T J, Servant S. Physical and mechanical charactedsation of paste backfill by laboratory and in-situ testing. In: Bloss D M, eds. MINEFILL '98. Brisbane, Australia: Australasian Institute of Mining and Metallurgy Publication, 1998. 249-253
    [118] Ouellet J, Servant S. In-situ mechanical characterization of a paste backfill with a self-boring pressuremeter. CIM Bulletin, 2000, 93(1042): 110-115
    [119] Wang C, Tannant D D, Padrutt A, et al. Influence of admixtures on cemented backfill strength. Mineral Resources Engineering, 2002, 11(3): 261-270
    [120] Krauland N. Developments in Sweden of rock mechanics of cut and fill mining. In: Hassani F P, Scoble M J, Yu T R, eds. Innovations in mining backfill technology. Brookfield(USA): A. A. Balkema publishers, 1989. 23-32
    [121] Palarski J. The experimental and practical results of applying backfill. In: Hassani F P, Scoble M J, Yu T R, eds. Innovations in mining backfill technology. Brookfield(USA): A. A. Balkema publishers, 1989. 33-38
    [122] Kamp N. Backfilling on gold mines of the Gold Fields Group. In: Hassani F P, Scoble M J, Yu T R, eds. Innovations in mining backfill technology. Brookfield(USA): A. A. Balkema publishers, 1989.39-49
    [123] Yamaguchi U, Yamatomi J. An experimental study to investigate the effect of backfill for the ground stability. In: Hassani F P, Scoble M J, Yu T R, eds. Innovations in mining backfill technology. Brookfield(USA): A. A. Balkema publishers, 1989. 71-80
    [124] Eringen A C.连续统力学(程昌均,俞焕然译).北京:科学出版社,1991
    [125] 徐定华,徐敏.混凝土材料学概论.北京:中国标准出版社,2002
    [126] 沈观林.复合材料力学.北京:清华大学出版社,1996
    [127] 沈威.水泥工艺学.北京:中国建筑工业出版社,1986
    [128] Mostafa B, Tikou B, Bruno B. Chemical factors that influence the performance of mine sulphidic paste backfill. Cement and Concrete Research, 2002, 32(7): 1133-1144
    [129] 于骁中,谯常忻,周群力.岩石和混凝土断裂力学.长沙:中南工业大学出版社,1991
    [130] 李兆霞.损伤力学及其应用.北京:科学出版社,2002
    [131] Mazars J. A description of micro-and macroscale damage of concreted structures. Engineering Facture Mechanics, 1986, 25(5/6): 729-737
    [132] 何明,符晓陵,徐道远.混凝土的损伤模型.福州大学学报,1994,22(4):109-114
    [133] 陈湘才,郭昌寰,胡增强.固体力学基础.南京:东南大学出版社,1990
    [134] 北京有色设计研究总院,铜陵有色金属公司.铜陵有色金属公司狮子山铜 矿地应力测量及矿区地应力场特性,1997
    [135] Been K, Brown E T, Hepworth N. Liquefaction potential of paste fill at Neves Corvo mine, Portugal. Transactions of the Institution of Mining and Metallurgy, Section A: Mining Industry, 2001, 111(1): 47-58
    [136] Lames A W, Clark I H. The influence of material composition and sample geometry on the strength of cemented backfill. In: Hassani F P, Scoble M J, Yu T R, eds. Innovations in mining backfill technology. Brookfield(USA): A. A. Balkema publishers, 1989.89-94
    [137] Viles R F, Boily M S, Davis R T H. New materials technology applied in mining with backfill. In: Hassani F P, Scoble M J, Yu T R, eds. Innovations in mining backfill technology. Brookfield(USA): A. A. Balkema publishers, 1989. 95-101
    [138] Ouellet J, Hassani F, Servant S. Practical Aspects of In Situ Pressuremeter Testing in a Cemented Mine Backfill: Logistic and Implementation, In: Stone D, eds. MINEFILL 2001, Society for Mining, Metallurgy, and Exploration, 2001.91-104
    [139] Mandelbrol B.B, The fractal geometry of mature(M), san fransisco: freeman, 1983
    [140] 刘亚俊,叶邦彦,夏伟.分形理论及其在材料非线性力学行为研究中的应用.材料科学与工程,2001,19(3):104-107
    [141] 桂卫华,胡志坤,彭小奇.前馈网络的混沌梯度搜索耦合学习算法及应用.中南工业大学学报,2002,33(6):629-631
    [142] Cilliers J J, Hinde A L. Improved hydrocyelone model for backfill preparation. Minerals Engineering, 1991, 4(7-11): 683-693
    [143] 王谦源,胡京爽.混凝土集料级配与分形.岩土力学,1997,18(3):93-100
    [144] 特科特D L.分形与混沌.北京:地震出版社,1993
    [145] 唐绍辉,桑玉发.胶结充填体物理力学性质的分形特性,有色金属(矿山部分),1996,n5:14-17
    [146] 徐永富,孙婉莹,吴正根.我国膨胀土的分形结构研究.河海大学学报,1997,25(1):17-23
    [147] 何国光,周坚强.基于前向神经网络的知识获取.吉首大学学报(自然科学版),2002,23(6):62-65
    [147] Kobayashi M, Hattori M, Yamazaki H. Multidirectional associative memory with a hidden layer. Systems and Computers in Japan, 2002, 33(6): 1-9
    [149] 飞思达科技产品研发中心编著.MATLAB(6.5)辅助神经网络分析与设计.北京:电子工业出版社,2003
    [150] 余英林,李海洲.神经网络与信号分析.广州:华南理工大学出版社,1996
    [151] 戴葵.神经网络实现技术.长沙:国防科技大学出版社,1998
    [152] Choi C, Lee J. Chaotic local search algorithm. Artificial Life & Robotics, 1998, 2(1):41-47.
    [153] 李兵,蒋慰孙.混沌优化方法及其应用.控制理论与应用,1997,14(4):613-615
    [154] 张际先,宓霞.神经网络及其在工程中的应用.北京:机械工业出版社,1996
    [155] 沈世镒.神经网络系统理论及其应用.北京:科学出版社,1998
    [156] 王东升,曹磊.混沌、分形及其应用.合肥:科学技术大学出版社,1995
    [157] 张彤,王宏伟,王子才.变尺度混沌优化方法及其应用.控制与决策,1999,14(3):285-288
    [158] 尤勇,王孙安,盛万兴.新型混沌优化方法的研究及应用.西安交通大学学报,2003,37(1):69-72
    [159] 邓聚龙.灰理论基础.武汉:华中理工大学出版社,2002
    [160] 邓聚龙.灰色系统基本方法.武汉:武汉华中理工大学出版社,1996
    [161] Boldt C M K, Mcwilliams P C, Atkins L A. Backfill properties of total tailings. Report of Investigations-United States, Bureau of Mines, 1989, n9243:24-38
    [162] 邹恩,李祥飞,陈建国.混沌控制及其优化应用.长沙:国防科技大学出版社,2002
    [163] 金属矿山充填采矿法设计参考资料编写组.金属矿山充填采矿法设计参考资料,北京:冶金工业出版社,1978
    [164] 蔡嗣经.充填采矿技术的应用现状及发展方向,国外金属矿山,1998,No.6:25-32
    [165] Leahy F J,Cowling R.芒特艾萨矿采场充填的发展.见:Ford R A(王鉴,王宗英,王生德,等译),编.充填采矿(第十二届加拿大岩石力学讨论会文集).北京:原子能出版社,1987.50-70
    [166] 于学馥.岩石力学新概念与开挖结构优化设计.北京:科学出版社,1995
    [167] Barrett A J, Kirsten H A D, Stacey T R. Backfilling in deep level tabular stopes. In: Hassani F P, Scoble M J, Yu T R. eds. Innovations in mining backfill technology. A. A. Balkema publisher, 1989. 177-186
    [168] Whyatt J K, Board M P, Williams T J. Examination of the support potential of cemented fills for rock bust control. In: Hassani F P, Scoble M J, Yu T R. eds. Innovations in mining backfill technology. A. A. Balkema publisher, 1989. 209-216
    [169] Quesnel W J F, Ruiter H, Pervik A. The assessment of cemented rockfill for regional and local support in a rockbust environment, LAC Minerals Ltd, Macassa Division. In: Hassani F P, Scoble M J, Yu T R. eds. Innovations in mining backfill technology. A. A. Balkema publisher, 1989. 217-224
    [170] Ozbay M U, Ryder JA. Effect of foundation damage on the performance of stabilizing pillars. Journal of The South African Institute of Mining and Metallurgy, 1990, 90(2): 29-35
    [171] 刘志祥,李夕兵.爆破动载下高阶段充填体稳定性研究.矿冶工程,2003,24(3):21-24
    [172] 李夕兵,古德生.岩石冲击动力学.长沙:中南工业大学出版社,1994
    [173] 铜陵有色金属公司,长沙矿山研究院.冬瓜山矿床深井斜壁充填采矿技术研究(鉴定技术资料).2000
    [174] 徐芝纶.弹性力学简明教程.北京:高等教育出版社,1986
    [175] 高磊.矿山岩石力学.北京:机械工业出版社,1987
    [176] 张世超,姚中亮.安庆铜矿特大型采场充填体稳定性研究.矿业研究与开发,2001,21(4):12-15
    [177] Harlow D G, Phoenix S L. Probability distributions for the strength of fibrous materials under load sharing[J], Adv. Appl. prob., 1982, vol 14:68-94
    [178] 高社生,张玲霞.可靠性理论与工程应用.北京:国防工业出版社,2002
    [179] 祝玉学.边坡可靠性分析.北京:冶金工业出版社,1993
    [180] 王维纲.高等岩石力学理论.北京:冶金工业出版社,1996
    [181] 钟义信,潘新安,杨义先著.智能技术与理论.北京:人民邮电出版社,1992
    [182] Gurtunca R G, Adams D J, Determination of the in situ modulus of the rockmass by the use of backfill measurements. Journal of The South African Institute of Mining and Metallurgy, 1991, 91(3): 81-88
    [183] Gitter M. Order and chaos: Are they contradictory or complementary?. European Journal of Physics, 2002, 23(2): 119-122
    [184] Sivakumar B. Chaos theory in geophysics: Past, present and future. Chaos, Solitons and Fractals, 2004, 19(2): 441-462
    [185] Serletis A, Shintani M. No evidence of chaos but some evidence of dependence in the US stock market. Chaos, Solitons and Fractals, 2003, 17(2-3): 449-454
    [186] 吴彤.非线性动力学混沌理论方法及其意义.清华大学学报(哲学社会科学版),2000,15(3):72-79
    [187] 郁俊莉.资本市场非线性特性与混沌控制研究:[博士学位论文].天津:天津大学,2001
    [188] 姚洪兴.混沌经济系统的复杂性及非线性方法的研究:[博士学位论文].东南大学,2001
    [189] 曾开华,陆兆溱.边坡变形破坏预测的混沌与分形研究.河海大学学报,1999,27(3):9-13
    [190] 简湘超,郑君里.混沌和神经网络相结合预测短波频率参数.清华大学学报(自然科学版),2001,41(1):16-19
    [191] Sivakumar B, Jayawardena A W, Fernando T M. River flow forecasting: Use of phase-space reconstruction and artificial neural networks approaches. Journal of Hydrology, 2002, 265(1): 225-245
    [192] Tiwari R K, Rao K N. Phase Space Structure,Attractor Dimension,Lyapunov Exponent and Nonlinear Prediction from Earth's Atmospheric Angular Momentum Time Series. Pure appl. geophys., 1999, 156:719-736
    [193] Albano A M, Muench J, Schwartz C, et al. Singular-value decomposition and the Grassberger-Procaccia algorithm. Phys. Rew. A, 1988, 38: 3017-3026
    [194] 权先璋,蒋传文,张勇传.径流预报的混沌神经网络理论及应用.武汉城市建设学院学报,1999,16(3):33-36
    [195] 安鸿志,陈敏.非线性时间序列分析.上海:上海科学技术出版社,1998
    [196] 陈士华,陆军安.混沌动力学初步.武汉:武汉水利电力出版社,1998
    [197] Wolf A, Swift J B, Swinney H L. Determining Lyapunov exponents from a time seres. Physica D, 1985, 16:285-317
    [198] 王文平,邓聚龙.灰色系统中GM(1,1)模型的混沌特性研究.系统工程,1997,15(2):13-15
    [199] 李造鼎.岩体测试技术,北京:冶金工业出版社,1993
    [200] 高飞.股票灰色预测.济南:山东人民出版社,1993

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700