基于配体的P糖蛋白底物和抑制剂计算机辅助研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
P糖蛋白(P-glycoprotein,P-gp)是一类广泛分布于人体的小肠、肝、肾等许多重要器官细胞膜上的跨膜糖蛋白,其生理功能是在ATP酶水解能驱动下将进入细胞的药物(或异物)泵出胞外,降低药物胞内浓度而影响药效。因而,P-gp对药物的吸收、分布和排泄性质有很大影响。此外,由于P-gp在多种癌细胞中也过量表达,常诱导癌细胞产生多药耐药性,而大大降低化疗效果。因此,高效、安全P-gp抑制剂的开发始终是研究开发的热点之一,然而迄今还没有一种P-gp抑制剂药物成功问世。
     本文以基于配体的药物设计方法为研究工具,以四类能与P-gp发生特定作用的代表性药物为研究对象,建立了这些药物的结构-活性关系模型,以辅助筛选和设计具有更高活性的P-gp抑制剂药物。主要结果为:
     (1)外源性分子:类黄酮。建立了一个类黄酮抑制剂药效团模型,阐明了该类分子作为P-gp抑制剂的必需结构特征。为黄酮和查尔酮两子类分子建立了构效关系模型,确定了影响这两类分子抑制活性的结构基团和物化性质,以指导类黄酮抑制剂药物的进一步合成和筛选。
     (2)内源性分子:类固醇。利用三维定量构效关系方法,比较了该类分子分别作为P-gp底物和抑制剂的结构特征。同时,研究和阐明了影响该类分子被动扩散跨膜、被P-gp主动转运、对P-gp有抑制作用三种生物活性的疏水场空间分布,为设计、开发具有更强跨膜能力或更强P-gp抑制活性的类固醇药物提供指导。
     (3)抗癌分子:紫杉醇/烷。研究此类分子作为P-gp抑制剂的必需结构特征。所建模型可指导开发新的紫杉烷类P-gp抑制药物。
     (4)P-gp和CYP3A4的交叉底物分子。研究者普遍认为P-gp和CYP3A4之间可能采用一种协同作用来共同降低药物生物利用度。因此,本文对这两蛋白的交叉底物进行研究,构建的药效团模型阐明了类固醇类交叉底物和一般交叉底物的必需结构特征,加深了对这两蛋白协同作用机理的理解,为判别可能的P-gp和CYP3A4交叉底物提供指导。
     综上,本文通过选择性地研究影响类固醇、类黄酮、紫杉醇/烷及P-gp和CYP3A4交叉底物四类重要分子生物活性的关键结构和物化性质,建立了若干具有良好预测能力的数学模型,有助于为进一步理性筛选、设计、开发P-gp抑制剂药物提供指导,具有重要理论和应用价值。
P-glycoprotein (P-gp) is a transmembrane glycoprotein widely spreaded in many important normal tissues like the intestine, liver and kidney. Its physiological function is to pump a wide variety of drugs and xenobiotics out of the cell under the drive force of ATP hydrolysis energy, resulting in decreased intracellular drug concentration and chemotherapy effect. Thus P-gp greatly influences the absorption, distribution and excretion properties of drugs. In various tumor cells, P-gp is also found to be overexpressed and assumed as the main cause of multi-drug resistance (MDR) of tumor cells and largely decreased chemotherapy effects. Therefore, the development of highly effective and safe P-gp inhibitors is a permanent objective of chemists and pharmacologists. However, up to now there is still no sucessful P-gp inhibitor that has been produced.The object of the present work is to study four selected typical P-gp-related drugs by ligand-based drug design (LBDD) to build certain quantitative structure-activity relationship (QSAR) statistical models and aid the design of novel P-gp inhibitors with potent activity. The main results are as follows:(1) Exogenous molecules: flavonoids. A pharmacophore model clearly identified the critical structural features of flavonoid-based P-gp inhibitors was established. Additionally, certain QSAR models were also obtained for flavone- and chalcone-like flavonoid derivatives indepently, which are useful in aiding the synthesis and screening of new flavonoid inhibitors.(2) Endogenous molecules: steroids. The requisite structural features influencing the biological activites of steroid-based P-gp substrates and inhibitors were identified and compared by 3D-QSAR methods. Meanwhile, the hydrophobic field display in 3D-space of steroids influencing the passive diffusion activity, the active transport activity by P-gp or the inhibitory activity to P-gp of steroids were also studied. All these models provide helpful theoretical aid for new steroid drugs with potent transmembrane activity or inhibitory effects to P-gp.(3) Antitumor molecules: taxanes. The key structural characteristics of series of taxanes as P-gp inhibitors were studied and identified, which are valuable for aiding development of novel taxane-based P-gp inhibitors.(4) Overlapping substrates of P-gp and cytocrome P4503A4 (CYP3A4). These two proteins are assumed to cooperate with each other when decreasing the bioavailability of
    drugs. Thus, two pharmacophore models were established, clarifing the structural determinants of general overlapping substrate and steroid-based overlapping substrate of P-gp and CYP3A4 respectively, which are helpful for identifying possible ovelapping interacting drugs of P-gp and CYP3A4.In conclusion, four important P-gp interacting molecules including steroids, flavonoids, taxanes and overlapping substrates of P-gp and CYP3A4 were studied, resulting in dozens of QSAR and pharmacophore models of proper predictability. The models identified the key structural features and chemical/physical properties of the molecules and are valuable and applicable in aiding further development of P-gp inhibitory drugs.
引文
[1] Juliano R L, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochimica et Biophysica Acta, 1976, 455 (1):152-162. (本博士学位论文第一章)
    [2] Gottesmann M M, Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annual Review of Biochemistry, 1993, 62:385-427. (本博士学位论文第一章)
    [3] Marzolini C, Paus E, Buclin T, Kim R B. Polymorphisms in human MDR1 (P-glycoprotein): recent advances and clinical relevance. Clinical Pharmacology and Therapeutics, 2004, 75 (1): 13-33. (本博士学位论文第一章)
    [4] Zhang Y, Benet L Z. The gut as a barrier to drug absorption: combined role of cytochrome P450 3A and P-glycoprotein. Clinical Pharmacokinetics, 2001, 40 (3):159-168. (本博士学位论文第一、七、八章)
    [5] Wiese M, Pajeva I K. Structure-activity relationships of multidrug resistance reversers. Current Medicinal Chemistry, 2001, 8 (6):685-713. (本博士学位论文第一、四、七章)
    [6] Patel J, Mitra A K. Strategies to overcome simultaneous P-glycoprotein mediated efflux and CYP3A4 mediated metabolism of drugs. Pharmacogenomics, 2001, 2 (4):401-415. (本博士学位论文第一章)
    [7] Schwab M, Eichelbaum M, Fromm M F. Genetic polymorphisms of the humanMDR1 drug transporter. Annual Review of Pharmacology and Toxicology, 2003, 43:285-307. (本博士学位论文第一章)
    [8] Rosenberg M F, Callaghan R, Ford R C et al. Structure of the multidrug resistance P-glycoprotein to 2.5 nm resolution determined by electron microscopy and image analysis. The Journal of giological Chemistry, 1997, 272 (16):10685-10694. (本博士学位论文第一章)
    [9] Juranka P F, Zastawny R L, Ling V. P-glycoprotein: multidrug-resistance and a superfamily of membrane-associated transport proteins. Official Publication of the Federation of American Societies for Experimental Biology, 1989, 3 (14):2583-2592. (本博士学位论文第一章)
    [10] German U A. P-glycoprotein: a mediator of multidrug resistance in tumour cell. European Journal of Cancer, 1996, 32A:927-944. (本博士学位论文第一章)
    [11] Loo T W, Clarke D M. Inhibition of oxidative cross-linking between engineered cysteine residues at positions 332 in predicted transmembrane segments (TM) 6 and 975 in predicted TM12 of human P-glycoprotein by drug substrates. Journal of Biological Chemistry, 1996, 271 (44):27482-27487. (本博士学位论文第一章)
    [12] Zhang M, Wang G, Shapiro Aet al. Topological folding and proteolysis profile of P-glycoprotein in membranes of multidrug-resistant cells: implications for the drug-transport mechanism. Biochemistry, 1996, 35 (30):9728-9736. (本博士学位论文第一章)
    [13] Jones P M, George A M. A new structural model for P-glycoprotein. The Journal of Membrane Biology, 1998, 166 (2):133-147. (本博士学位论文第一章)
    [14] Stein W D. Kinetics of the multidrug transporter (P-glycoprotein) and its reversal. Physiological Reviews, 1997, 77 (2):545-590. (本博士学位论文第一章)
    [15] Twentyman P R, Rhodes T, Rayner S. A comparison of rhodamine 123 accumulation and efflux in cells with P-glycoprotein-mediated and MRP-associated multidrug resistance phenotypes. European Journal of Cancer, 1994, 30A (9):1360-1369. (本博士学位论文第一章)
    [16] Raviv Y, Pollard H B, Bruggemann E Pet al. Photosensitized labeling of a functional multidrug transporter in living drug-resistant tumor cells. Journal of Biological Chemistry, 1990, 265 (7):3975-3980. (本博士学位论文第一章)
    [17] Higgins C F. Flip-flop: the transmembrane translocation of lipids. Cell, 1994, 79 (3): 393-395. (本博士学位论文第一章)
    [18] Higgins C F, Callaghan R, Linton K Jet al. Structure of the multidrug resistance P-glycoprotein. Seminars in Cancer Biology, 1997, 8 (3):135-142. (本博士学位论文第一章)
    [19] Shapiro A B, Ling V. Positively cooperative sites for drug transport by P-glycoprotein with distinct drug specificities. European Journal of Biochemistry, 1997, 250 (1):130-137. (本博士学位论文第一、七章)
    [20] Ayesh S, Shao Y-M, Stein W D. Co-operative, competitive and non-competitive interactions between modulators of P-glycoprotein. Biochimica Et Biophysica Acta, 1996, 1316 (1):8-18. (本博士学位论文第一章)
    [21] Sara A. In Principles of antineoplastic drug development and pharmacology. Schilsky R L, Milano G A, Ratain M J. ed. New York: Marcel Dekker Incorproated, 1996:457-486. (本博士学位论文第一章)
    [22] Wang 6, Pincheira R, Zhang J-T. Dissection of drug-binding-induced conformational changes in P-glycoprotein. European Journal of Biochemistry, 1998, 255 (2):383-390. (本博士学位论文第一章)
    [23] Pascaud C, Garrigos M, Oriowski S. Multidrug resistance transporter P-glycoprotein has distinct but interacting binding sites for cytotoxic drugs and reversing agents. The Biochemical Journal, 1998, 333 (Pt2):351-358. (本博士学位论文第一、七章)
    [24] Martin C, Berridge G, Mistry P et al. The molecular interaction of the high affinity reversal agent XR9576 with P-glycoprotein. British Journal of Pharmacology, 1999, 128 (2): 403-411. (本博士学位论文第一章)
    [25] Dey S, Ramachandra M, Pastan I et al. Evidence for two nonidentical drug-interaction sites in the human P-glycoprotein. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94 (20): 10594-10599. (本博士学位论文第一章)
    [26] Seelig A. How does P-glycoprotein recognize its substrates? Internet Journal of Clinical Pharmacology and Therapeutics, 1998, 36 (1): 50-54. (本博士学位论文第一章)
    [27] Hafkemeyer P, Dey S, Ambudkar S V et al. Contribution to substrate specificity and transport of nonconserved residues in transmembrane domain 12 of human P-glycoprotein. Biochemistry, 1998, 37 (46): 16400-16409. (本博士学位论文第一章)
    [28] Muller M, Bakos E, Welker E et al. Altered drug-stimulated ATPase activity in mutants of the human multidrug resistance protein. The Journal of Biological Chemistry, 1996, 271 (4): 1877-1833. (本博士学位论文第一章)
    [29] Hrycyna C A, Arian L E, German U A et al. Structural flexibility of the linker region of human P-glycoprotein permits ATP hydrolysis and drug transport. Biochemistry, 1998, 37 (39): 13660-13673. (本博士学位论文第一章)
    [30] Wadkins R M, Roepe P D. Biophysical aspects of P-glycoprotein-mediated multidrug resistance. International Review of Cytology, 1997, 171: 121-165. (本博士学位论文第一章)
    [31] Weisburg J H, Roepe P D, Dzekunov S et al. Intracellular pH and multidrug resistance regulate complement-mediated cytotoxicity of nucleated human cells. The Journal of Biological Chemistry, 1999, 247 (16): 10877-10888. (本博士学位论文第一章)
    [32] Lu H, Gratzl M. Monitoring drug efflux from sensitive and multidrug-resistant single cancer cells with microvoltammetry. Analytical Chemistry, 1999, 71 (14): 2821-2830. (本博士学位论文第一章)
    [33] Hansch C. In QSAR: Rational approaches to the design of bioactive compounds. Silipo C, Vittoria A, ed. Elsivier: Amsterdam, 1991: 3-10. (本博士学位论文第一章)
    [34] Klopman G, Srivastava S, Kolossvary I et al. Structure-activity study and design of multidrug-resistant reversal compounds by a computer automated structure evaluation methodology. Cancer Research, 1992, 52 (15): 4121-4129. (本博士学位论文第一章)
    [35] Ecker G, Chiba P, Hitzler M et al. Structure-activity relationship studies on benzofuran analogs of propafenone-type modulators of tumor cell multidrug resistance. Journal of Medicinal Chemistry, 1996, 39 (24): 4767-4774. (本博士学位论文第一、四章)
    [36] Chiba P, Ecker G, Schmid D et al. Structural requirements for activity of propafenone-type modulators in P-glycoprotein-mediated multidrug resistance. Molecular Pharmacology, 1996, 49 (6): 1122-1130. (本博士学位论文第一章)
    [37] Pajeva I K, Wiese M, Cordes H-P et al. Membrane interactions of some catamphiphilic drugs and relation to their multidrug-resistance-reversing ability. Journal of Cancer Research and Clinical Oncology, 1996, 122 (1): 27-40. (本博士学位论文第一章)
    [38] Pajeva I K, Wiese M. QSAR and molecular modeling study of multidrug resistance modifiers. Quantitative Structure-Activity Relationships, 1997, 16 (1): 1-10. (本博士学位论文第一章)
    [39] Wiese M, Pajeva I K. Molecular modeling study of the multidrug resistance modifiers cis- and trans-flupentixol. Pharmazie, 1997, 52 (9): 679-685. (本博士学位论文第一、四章)
    [40] Klopman G, Shi L M, Ramu A. Quantitative structure-activity relationship of multidrug resistance reversal agents. Molecular Pharmacology, 1997, 52 (2): 323-334. (本博士学位论文第一章)
    [41] Chiba P, Hitzler M, Richter E et al. Studies on propafenone-type modulators of multidrug resistance Ⅲ: Variations on the nitrogen. Quantitative Structure-Activity Relationships, 1997, 16: 361-366. (本博士学位论文第一、四章)
    [42] Chiba P, Tell B, Jager W et al. Studies on propafenone-type modulators of multidrug-resistance Ⅳ1): synthesis and pharmacological activity of 5-hydroxy and 5-benzyloxy derivatives. Archiv der Pharmazie, 1997, 330 (11): 343-347. (本博士学位论文第一章)
    [43] Tmej C, Chiba P, Huber M et al. A combined Hansch/Free-Wilson approach as predictive tool in QSAR studies on propafenone-type modulators of multidrug resistance. Archiv der Pharmazie, 1998, 331 (7-8): 233-240. (本博士学位论文第一章)
    [44] Chiba P, Annibali D, Hitzler M et al. Studies on propafenone-type modulators of multidrug resistance Ⅵ. Synthesis and pharmacological activity of compounds with varied spacer length between the central aromatic ring and the nitrogen atom. Farmaco, 1998, 53: 357-364. (本博士学位论文第一章)
    [45] Salem M, Richter E, Hitzler M et al. Studies on propafenone-type modulators of multidrug resistance Ⅷ: Synthesis and pharmacological activity of indanone analogues;Scientia Pharmaceutica, 1998, 66: 147-158. (本博士学位论文第一章)
    [46] Chiba P, Holzer W, Landau M et al. Substituted 4-acylpyrazoles and 4-acylpyrazolones: synthesis and multidrug resistance-modulating activity. Journal of Medicinal Chemistry, 1998, 41 (21): 4001-4011. (本博士学位论文第一、四、七章)
    [47] Pajeva I K, Wiese M. Molecular modeling of phenothiazines and related drugs as multidrug resistance modifiers: a comparative molecular field analysis study, Journal of Medicinal Chemistry, 1998, 41: 1815-1826. (本博士学位论文第一、四章)
    [48] Pajeva I K, Wiese M. A comparative molecular field analysis of propafe-none-type modulators of cancer multidrug resistance. Quantitative Structure-Activity Relationships, 1998, 17 (4): 301-312. (本博士学位论文第一章)
    [49] Hiessbock R, Wolf C, Richter E et al. Synthesis and in vitro multidrug resistance modulating activity of a series of dihydrobenzopyrans and tetrahydroquinolines. Journal of Medicinal Chemistry, 1999, 42 (11): 1921-1926. (本博士学位论文第一章)
    [50] Ecker G, Huber M, Schmid D et al. The importance of a nitrogen atom in modulators of multidrug resistance. Molecular Pharmacology, 1999, 56 (4): 791-796. (本博士学位论文第一、七章)
    [51] Teodori E, Dei S, Quidu P et al. Design, Synthesis, and in Vitro Activity of Catamphiphilic Reverters of Multidrug Resistance: Discovery of a Selective, Highly Efficacious Chemosensitizer with Potency in the Nanomolar Range. Journal of Medicinal Chemistry, 1999, 42 (10): 1687-1697. (本博士学位论文第一章)
    [52] Pajeva I K, Wiese M. Interpretation of CoMFA results - a probe set study using hydrophobic fields. Quantitative Structure-Activity Relationships, 1999, 18 (4): 369-379.(本博士学位论文第一章)
    [53] Pajeva I K, Wiese M. In Molecular Modeling and Prediction of Bioactivity. Gundertofte K, Jorgensen F S, ed. New York: Kluwer Academic/Plenum Publishers, 2000: 414-416. (本博士学位论文第一章)
    [54] Ekins S, Kim R B, Leake B F et al. Three-dimensional quantitative structure-activity relationships of inhibitors of P-glycoprotein. Molecular Pharmacology, 2002, 61 (5): 964-973. (本博士学位论文第一章)
    [55] Ekins S, Kim R B, Leake B F et al. Application of three-dimensional quantitative structure-activity relationships of P-glycoprotein inhibitors and substrates. Molecular Pharmacology, 2002, 61 (5): 974-981. (本博士学位论文第一、五章)
    [56] Pajeva I K, Wiese M. Pharmacophore model of drugs involved in P-glycoprotein multidrug resistance: explanation of structural variety (hypothesis). Journal of Medicinal Chemistry, 2002, 45 (26): 5671-5686. (本博士学位论文第一、五章)
    [57] Dearden J C, Al-Noobi A, Scott A C et al. QSAR studies on P-glycoprotein-regulated multidrug resistance and on its reversal by phenothiazines. SAR and QSAR in Environmental Research, 2003, 14 (5-6): 447-454. (本博士学位论文第一章)
    [58] Rebitzer S, Annibali D, Kopp S et al. In silico screening with benzofurane- and benzopyrane-type MDR-modulators. Farmaco, 2003, 58 (3): 185-191. (本博士学位论文第一章)
    [59] Langer T, Eder M, Hoffmann R D et al. Lead identification for modulators of multidrug resistance based on in silico screening with a pharmacophoric feature model. Archiv der Pharmazie, 2004, 337 (6): 317-327. (本博士学位论文第一章)
    [60] Pleban K, Hoffer C, Kopp S et al. Intramolecular distribution of hydrophobicity influences pharmacological activity of propafenone-type MDR modulators. Archiv der Pharmazie, 2004, 337 (6): 328-334. (本博士学位论文第一章)
    [61] Li Y, Wang Y-H, Yang L et al. Comparison of steroid substrates and inhibitors of P-glycoprotein by 3D-QSAR analysis. Journal of Molecular Structure, 2005, 733: 111-118. (本博士学位论文第一、五章)
    [62] Wang Y H, Li Y, Yang S L et al. Classification of substrates and inhibitors of P-glycoprotein using unsupervised machine learning approach. Journal of Chemical Information and Modeling, 2005, 45 (3): 750-757. (本博士学位论文第一、五章)
    [63] Cianchetta G, Singleton R W, Zhang M et al. A pharmacophore hypothesis for P-glycoprotein substrate recognition using GRIND-based 3D-QSAR. Journal of Medicinal Chemistry, 2005, 48 (8): 2927-2935. (本博士学位论文第一章)
    [64] Zhou X F, Shao Q, Coburn R A et al. Quantitative structure-activity relationship and quantitative structure-pharmacokinetics relationship of 1, 4-dihydropyridines and pyridines as multidrug resistance modulators. Pharmaceutical Research, 2005, 22 (12): 1989-1996. (本博士学位论文第一章)
    [65] Wang Y H, Li Y, Yang S L et al. An in silico approach for screening flavonoids as P-glycoprotein inhibitors based on a Bayesian-regularized neural network. Journal of Computer-Aided Molecular Design, 2005, 19 (3): 137-147. (本博士学位论文第一、五章)
    [66] Li Y, Wang Y-H, Yang L et al. An in silico model for classification of P-glycoprotein substrates and non-substrates. 2005 Hangzhou International Conference on Drug Metabolism, Oct. 10. (本博士学位论文第一章)
    [67] Li Y, Wang Y, Yang L et al. Structural determinants of flavones interacting with the C-terminal nucleotide -binding domain as P - glycoprotein inhibitors. Internet Electronic Journal of Molecular Design, 2006, 5 (1): 1-12. (本博士学位论文第一、二章)
    [68] Li Y, Wang Y, Yang L et al. Impact of molecular hydrophobic field on passive diffusion, P-glycoprotein active efflux, and P-glycoprotein modulation of steroids. Internet Electronic Journal of Molecular Design, 2006, 5 (2): 60-78. (本博士学位论文第一、四章)
    [69] Globisch C, Pajeva I K, Wiese M. Structure-activity relationships of a series of tariquidar analogs as multidrug resistance modulators. Bioorganic and Medicinal Chemistry, 2006, 14 (5): 1588-1598. (本博士学位论文第一章)
    [70] Yevich J P. Drug development: From discovery to marketing. In: Krogsgaard-Larsen P, and Bundgaard H. A Textbook of Drug Design and Development. Chur, Switzerland: Harwood, 1991:606-626.(本博士学位论文第二章)
    [71] 李洪林,沈建华,罗小民,沈旭,朱维良.虚拟筛选与新药发现,生命科学,2005,17(2):125-131.(本博士学位论文第二章)
    [72] Shen J H, Xu X Y, Cheng F et al. Virtual screening on natural products for discovering active compounds and target clues. Current Medicinal Chemistry 2003, 10 (21): 2327-2342. (本博士学位论文第二章)
    [73] Liu H, Li Y, Song M et al. Structure-based discovery of potassium channel blockers from natural products: virtual screening and electrophysiological assay testing. Chemistry & Biology, 2003, 10 (11): 1103-1113. (本博士学位论文第二章)
    [74] Chen L, Gui C, Luo X et al. Cinanserin is an inhibitor of the 3C-like proteinase of severe acute respiratory syndrome coronavirus and strongly reduces virus replication in vitro. Journal of Virology, 2005, 79 (11): 7095-7103. (本博士学位论文第二章)
    [75] Liu Z, Huang C, Fan K et al. Virtual screening of novel noncovalent inhibitors for SARS-CoV 3C-like proteinase. Journal of Chemical Information and Modeling, 2005, 45 (1):10-17.(本博士学位论文第二章)
    [76] 陈凯先,蒋华良,嵇汝运.计算机辅助药物设计——原理、方法及应用.上海科学技术出版社,2000:309-332.(本博士学位论文第二章)
    [77] 徐文方主编.新药设计与开发,科学出版社,2000:238-284.(本博士学位论文第二章)
    [78] Hubinyi H. The quantitative analysis of structure-activity relationships. In: Wolff M E, ed. Burger's Medicinal Chemistry and Drug Design. 5th Edition, vol 1: Principles and Practice. New York: John Wiley & Sons, 1995: 497-571. (本博士学位论文第二章)
    [79] Hasen O R. Hammett series with biological activity. Acta Chemica Scandinavica, 1962, 16: 1593-1600. (本博士学位论文第二章)
    [80] Hansch C, Maolney P P, Fujita T et al. Correlation of biological activity of phenoxy-acetic acids with Hammett substituents constants and partition coefficients. Nature, 1962, 194: 178-180. (本博士学位论文第二章)
    [81] Hansch C, Fujita T. P-σ-π analysis - correlations of biological activity and chemical structure. Journal of the American Chemical Society, 1964, 86 (8): 1616-1626. (本博士学位论文第二章)
    [82] Free Jr S M, Wilson W M. Contribution to structure-activity studies. Journal of Medicinal Chemistry, 1964, 7: 395-399. (本博士学位论文第二章)
    [83] Kier L B, Hall L H. An electrotopological-state index for atoms in molecules. Pharmaceutical Research, 1990, 7 (8): 801-807. (本博士学位论文第二章)
    [84] Liu S S, Cao C Z, Li Z J. Approach to estimation and prediction for normal boiling point (NBP), of alkanes based on a novel molecular distance-edge (MDE) vector. Journal of Chemical Information and Computer Sciences, 1998, 38 (3): 387-394. (本博士学位论文第二章)
    [85] 梁桂兆,梅虎,周原,李志良.计算机辅助药物设计中的多维定量构效关系模型化方法.化学进展,2006,18(1):120-127.(本博士学位论文第二章)
    [86] Hansch C. A quantitative approach to biochemical structure-activity relation-ships. Accounts of Chemical Research, 1969, 2: 232-239. (本博士学位论文第二章)
    [87] Hansch C, Clayton J M. Lipophilic character and biological activity of drugs. Ⅱ. Parabolic cases. Journal of Pharmaceutical Sciences, 1973, 62: 1-21. (本博士学位论文第二章)
    [88] Fujita T, Ban T. Structure-activity study of phenethylamines as substrates of biosynthetic enzymes of sympathetic transmitters. Journal of Medicinal Chemistry, 1971, 14 (2): 148-152. (本博士学位论文第二章)
    [89] Unger S H, Hansch C. On model building in structure-activity relationships. A reexamination of adrenergic blocking activity of beta-halo-beta-arylalkylamines. Journal of Medicinal Chemistry, 1973, 16 (7): 745-749. (本博士学位论文第二章)
    [90] Randic M. On characterization of molecular branching. Journal of the American Chemical Society, 1975, 97 (23): 6609-6615. (本博士学位论文第二章)
    [91] Kier L B, Murray W J, Hall L H. Molecular connectivity. 4. Relationships to biological activities. Journal of Medicinal Chemistry, 1975, 18 (12): 1272-1274. (本博士学位论文第二章)
    [92] Galvez J. On a topological interpretation of electronic and vibrational molecular energies. Journal of Molecular Structure-Theochem, 1998, 429: 255-264. (本博士学位论文第二章)
    [93] Kier L B, Hall L H. The E-State as the basis for molecular structure space definition and structure similarity. Journal of Chemical Information and Computer Sciences, 2000, 40 (3): 784-791. (本博士学位论文第二章)
    [94] Golbraikh A, Bonchev D, Tropsha A. Novel ZE-isomerism descriptors derived from molecular topology and their application to QSAR analysis. Journal of Chemical Information and Computer Sciences, 2002, 42: 769-787. (本博士学位论文第二章)
    [95] Todeschini R, Lasagni M, Marengo E. New molecular descriptors for 2D and 3D structures-Theory. Journal of Chemometrics, 1994, 8: 263-272. (本博士学位论文第二章)
    [96] Todeschini R, Gramatica P, Provenzani R et al. Weighted holistic invariant molecular (WHIM) descriptors. Part2. The development and application on modeling physico-chemical properties of polyaromatic hydrocarbons, hemometrics and Intelligent Laboratory Systems, 1995, 27: 221-229. (本博士学位论文第二章)
    [97] Ferguson A M, Heritage T, Jonathon P et al. RVA: a new theoretically based molecular descriptor for use in QSAR/QSPR analysis. Journal of Computer-Aided Molecular Design, 1997, 11 (2): 143-152. (本博士学位论文第二章)
    [98] Ginn C M R, Turner D B, Willett P. Similarity searching in files of three-dimensional chemical structures: evaluation of the EVA descriptor and combination of ranking using data fusion. Journal of Chemical Information and Computer Sciences, 1997, 37: 23-37. (本博士学位论文第二章)
    [99] Menezes I R A, Lopes J C D, Montanari C A et al. 3D QSAR studies on binding affinities of coumarin natural products towards gGAPDH of Trypanosome cruzi. Journal of Computer-Aided Molecular Design, 2003, 17: 277-290. (本博士学位论文第二章)
    [100] Wildman S A, Crippen G M. Three-dimensional molecular descriptors and a novel QSAR method. Journal of Molecular Graphics and Modeling, 2002, 21 (3): 161-170. (本博士学位论文第二章)
    [101] Verli H, Albuquerque M G, Bicca de Alencastro R et al. Local intersection volume: a new 3D descriptor applied to develop a 3D-QSAR pharmacophore model for benzodiazepine receptor ligands. European Journal of Medicinal Chemistry, 2002, 37 (3): 219-229. (本博士学位论文第二章)
    [102] Hasegawa K, Matsuoka S, Arakawa M et al. New molecular surface-based 3D-QSAR method using Kohonen neural network and 3-way PLS. Journal of Computer-Aided Molecular Design, 2002, 26 (6): 583-589. (本博士学位论文第二章)
    [103] Polanski J, Gieleciak R, Bak A. The comparative molecular surface analysis (COMSA)—a nongrid 3D QSAR method by a coupled neural network and PLS system: predicting pK(a) values of benzoic and alkanoic acids. Journal of Chemical Information and Computer Sciences, 2002, 42 (2): 184-191. (本博士学位论文第二章)
    [104] Cramer Ⅲ R D, Patterson D E, Bunce J D. Comparative molecular field analysis (CoMFA). 1. effect of shape on binding of steroids to carrier proteins. Journal of the American Chemical Society, 1988, 110: 5959-5967. (本博士学位论文第二章)
    [105] Jojart B, Martinek T A, Marki A. The 3D structure of the binding pocket of the human oxytocin receptor for benzoxazine antagonists, determined by molecular docking, scoring functions and 3D-QSAR methods. Journal of Computer-Aided Molecular Design, 2005, 19 (5): 341-356. (本博士学位论文第二章)
    [106] Xie L, Zhao C H, Zhou T et al. Molecular modeling, design, synthesis, and biological evaluation of novel 3', 4'-dicamphanoyl-(+)-cis-khellactone (DCK) analogs as potent anti-HIV agents. Biorganic and Medicinal Chemistry, 2005, 13 (23): 6435-6449. (本博士学位论文第二章)
    [107] 李仁利.药物构效关系.北京:中国医药科技出版社,2004:507-509. (本博士学位论文第二章)
    [108] Kellogg G E, Semus S F, Abraham D J. HINT: a new method of empirical hydrophobic field calculation for CoMFA. Journal of Computer-Aided Molecular Design, 1991, 5 (6): 545-552.
    [109] Kellogg G E, Phatak S, Nicholls A et al. Validation of Poisson-Boltzmann electrostatic potential fields in 3D QSAR: A CoMFA study on multiple data sets. QSAR & Combinatorial Sciences, 2003, 22: 959-964. (本博士学位论文第二章)
    [110] Hasegawa K, Eimura T, Funatsu K. GA strategy for variable selection in QSAR studies: application of GA-based region selection to a 3D-QSAR study of acetylcholinesterase inhibitors. Journal of Chemical Information and Computer Sciences, 1999, 39 (1): 112-120. (本博士学位论文第二章)
    [111] Tetko I V, Kovalishyn V V, Livingstone D J. Volume learning algorithm artificial neural networks for 3D QSAR studies. Journal of Medicinal Chemistry, 2001, 44 (15): 2411-2420. (本博士学位论文第二章)
    [112] Klebe G, Abraham U, Mietzner T. Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. Journal of Medicinal Chemistry, 1994, 37 (24): 4130-4146. (本博士学位论文第二章)
    [113] Klebe G, Abraham U. Comparative molecular similarity index analysis (CoMSIA) to study hydrogen-bonding properties and to score combinatorial libraries. Journal of Computer-Aided Molecular Design, 1999, 13 (1): 1-10. (本博士学位论文第二、三章)
    [114] Viswanadhan V N, Ghose A K, Revankar G R et al. Atomic physicochemical parameters for three dimensional structure directed quantitative structure-activity relationships. 4. Additional parameters for hydrophobic and dispersive interactions and their application for an antomated superposition of certain naturally occurring nucleoside antibiotics. Journal of Chemical Information and Computer Sciences, 1989, 29: 163-172. (本博士学位论文第二章)
    [115] Klebe G. The use of composite crystal-field environments in molecular recognition and the de novo design of protein ligands. Journal of Molecular Biology, 1994, 237 (2): 212-235. (本博士学位论文第二章)
    [116] Chandrasekaran V, McGaughey G B, Cavallito C J et al. Three-dimensional quantitative structure-activity relationship (3D-QSAR) analyses of choline acetyltransferase inhibitors. Journal of Molecular Graphics and Modeling, 2004, 23 (1): 69-76. (本博士学位论文第二章)
    [117] Makhija M T, Kulkarni V M. 3D-QSAR and molecular modeling of HIV-1 integrase inhibitors. Journal of Computer-Aided Molecular Design, 2002, 16 (3): 181-200. (本博士学位论文第二章)
    [118] Chen G, Luo X, Zhu W et al. Elucidating inhibitory models of the inhibitors of epidermal growth factor receptor by docking and 3D-QSAR. Bioorganic and Medicinal Chemistry, 2004, 12 (9): 2409-2417. (本博士学位论文第二章)
    [119] Hibert M F, Gittos M W, Middlemiss D N et al. Graphics computer-aided receptor mapping as a predictive tool for drug design: development ofpotent, selective, and stereospecific ligands for the 5-HTIA receptor. Journal of Medicinal Chemistry, 1988, 31 (6): 1087-1093.(本博士学位论文第二章)
    [120] Bureau R, Daveu C, Lemaitre S et al. Molecular design based on 3D-pharmacophore. Application to 5-HT4 receptor. Journal of Chemical Information and Computer Sciences, 2002, 42 (4): 962-967. (本博士学位论文第二章)
    [121] Bureau R, Daveu C, Lancelot J C et al. Molecular design based on 3D-pharmacophore. Application to 5-HT subtypes receptors. Journal of Chemical Information and Computer Sciences, 2002, 42 (2): 429-436. (本博士学位论文第二章)
    [122] Wang S, Sakamuri S, Enyedy I J et al. Discovery of a novel dopamine transporter inhibitor, 4-hydroxy-1-methyl-4-(4-methylphenyl)-3-piperidyl 4-methylphenyl ketone, as a potential cocaine antagonist through 3D-database pharmacophore searching. Molecular modeling, structure-activity relationships, and behavioral pharmacological studies. Journal of Medicinal Chemistry, 2000, 43 (3): 351-360. (本博士学位论文第二章)
    [123] Wehling M. Specific, nongenomic actions of steroid hormones. Annuual Review of Physiology, 1997, 59: 365-393. (本博士学位论文第三章)
    [124] Grady D, Gebretsadik T, Kerlikowske K et al. Hormone replacement therapy and endometrial cancer: a meta-analysis. Obstetrics and Gynecology, 1995, 85: 304-313. (本博士学位论文第三章)
    [125] Colditz G A, Hankinson S E, Hunter D J et al. The use of estrogens and progestins and the risk of breast cancer in postmenopausal women. New England Journal of Medicine, 1995, 332: 1589-1593. (本博士学位论文第三章)
    [126] Hulley S, Grady D, Bush T et al. Heart and estrogen/progestin replacement study (HERS) research group, randomized trial of estrogen plus progestin for secondary prevention of coronary heart disease in postmenopausal women, Journal of The American Medical Association, 1998, 280: 605-613. (本博士学位论文第三章)
    [127] Dai D, Wolf D M, Litman E S et al. Progesterone inhibits human endometrial cancer cell growth and invasiveness: down-regulation of cellular adhesion molecules through progesterone B receptors. Cancer Research, 2002, 62: 881-886. (本博士学位论文第三章)
    [128] Fojo A T, Ueda K, Slamon D J et al. Expression of a multidrug-resistance gene in human tumors and tissues. Proceedings of The National Academy of Sciences of The United States of America, 1987, 84: 265-269. (本博士学位论文第三章)
    [129] Thiebaut F, Tsuruo T, Hamada H et al. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proceedings of The National Academy of Sciences of The United States of America, 1987, 84: 7735-7738. (本博士学位论文第三章)
    [130] Wang R B, Kuo C L, Lien L L et al. Structure-activity relationship: analyses of P-glycoprotein substrates and inhibitors. Journal of Clinical Pharmacy and Therapeutics, 2003, 28: 203-228. (本博士学位论文第三章)
    [131] Bourgeois S, Gruol D J, Newby R F et al. Expression of an mdr gene is associated with a new form of resistance to dexamethasone-induced apoptosis. Molecular Endocrinology, 1993, 7: 840-851. (本博士学位论文第三章)
    [132] Gruoland D J, Bourgeois S. Chemosensitizing steroids: gluco-corticoid receptor agonists capable of inhibiting P-glycoprotein function. Cancer Research, 1997, 57: 720-727. (本博士学位论文第三章)
    [133] Barnes K M, Dickstein B, Cutler Jr G B et al. Steroid treatment, accumulation, and antagonism of P-glycoprotein in multidrug-resistant cells. Biochemistry, 1996, 35 (15): 4820-4827. (本博士学位论文第三、四、七章)
    [134] Ueda K, Okamura N, Hirai M et al. Human P-glycoprotein transports cortisol, aldosterone, and dexamethasone, but not progesterone. Journal of Biological Chemistry, 1992, 267: 24248-24252. (本博士学位论文第三章)
    [135] Yang C P, DePinho S G, Greenberger L M et al. Progesterone interacts with P-glycoprotein in multidrug-resistant cells and in the endometrium of gravid uterus. Journal of Biological Chemistry, 1989, 264: 782-788. (本博士学位论文第三章)
    [136] Hamilton K O, Yazdanian M A, Audus K L. Modulation of P-glycoprotein activity in Calu-3 cells using steroids and β-ligands. International Journal of Pharmaceutics, 2001, 228: 171-179. (本博士学位论文第三章)
    [137] Ueda K, Saeki T, Hirai M et al. Human P-glycoprotein as a multi-drug transporter analyzed by using a transepithelial transport system. Japanese Journal of Physiology, 1994, 44 (Suppl. 2): S67-S71. (本博士学位论文第三章)
    [138] Arceci R J, Bans F, Raponi R et al. Multidrug resistance gene expression is controlled by steroid hormones in the secretory epithelium of the uterus. Molecular Reproduction and Development, 1990, 25: 101-109. (本博士学位论文第三章)
    [139] Se're'e'E, Yillar P H, Heve'r A et al. Modulation of MDR1 and CYP3A expression by dexamethasone: evidence for an inverse regulation in adrenals. Biochemical Biophysical Research Commununications, 1998, 252: 392-395. (本博士学位论文第三章)
    [140] Demeule M, Jodoin J, Beaulieu E et al. Dexamethasone modulation of multidrug transporters in normal tissues, FEBS Letters, 1999, 442: 208-214. (本博士学位论文第三章)
    [141] Wolf D C, Horwitz S B. P-glycoprotein transports corticosterone and is photoaffinity-labeled by the steroid. International Journal of Cancer, 1992, 52 (1): 141-146. (本博士学位论文第三章)
    [142] Fleming G F, Amato J M, Agresti M et al. Megestrol acetate reverses multidrug resistance and interacts with P-glycoprotein. Cancer Chemotherapy and Pharmacology, 1992, 29: 445-449. (本博士学位论文第三章)
    [143] Clark M, Cramer Ⅲ R D, Van Opdenbosch N. Validation of the General Purpose Tripos 5.2 Force Field. Journal of Computational Chemistry, 1989, 10: 982-1012. (本博士学位论文第三章)
    [144] Gasteiger J, Saller H. Calculation of the Charge Distribution. in Conjugated Systems by a Quantification of the Resonance. Concept. Angewandte Chemie-International Edition, 1985, 24: 687-689. (本博士学位论文第三章)
    [145] Geladi P. Notes on the history and nature of partial least squares (PLS) modeling. Journal of Chemometrics, 1988, 2: 231-246. (本博士学位论文第三章)
    [146] So S S, Karplus M. Three-dimensional quantitative structure-activity relationships from molecular similarity matrices and genetic neural networks. 2. Applications. Journal of Medicinal Chemistry, 1997, 40: 4360-4371. (本博士学位论文第三章)
    [147] Yates C R, Chang C, Kearbey J D et al. Structural determinants of P-glycoprotein-mediated transport of glucocorticoids. Pharmaceutical Research, 2003, 20 (11): 1794-1803. (本博士学位论文第三、五、七章)
    [148] Hansch C, Leo A J. Substituent Constants for Correlation Analysis in Chemistry and Biology. New York, USA: Wiley Interscience, 1979: 1-339. (本博士学位论文第三章)
    [149] Wu S J, Robinson J R. Transport of human growth hormone across Caco-2 cells with novel delivery agents: evidence for P-glycoprotein involvement, Journal of Controlled Release, 1999, 62: 171-177. (本博士学位论文第四章)
    [150] Faassen F, Kelder J, Lenders J et al. Physicochemical properties and transport of steroids across Caco-2 cells, Pharmaceutical Research, 2003, 20: 177-186. (本博士学位论文第四章)
    [151] Abraham D J, Kellog G E, Kubinyi H. ed. Escom: Leiden, "Hydrophobic Fields" In: 3D QSAR in Drug Design Theory Methods and Application, 1993: 506-522. (本博士学位论文第四章)
    [152] Loo T W, Clarke D M. The transmembrane domains of the human multidrug resistance P-glycoprotein are sufficient to mediate drug binding and trafficking to the cell surface. Journal of Biological Chemistry, 1999, 274: 24759-24765. (本博士学位论文第四章)
    [153] Ambudkar S V, Dey S, Hrycyna C A et al. Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annual Review of Pharmacology and Toxicology, 1999, 39: 361-398. (本博士学位论文第四章)
    [154] Camenisch G, Alsenz J, van de Waterbeemd H et al. Estimation of permeability by passive diffusion through Caco-2 cell monolayers using the drugs' lipophilicity and molecular weight. European Journal of Pharmaceutical Sciences, 1998, 6: 313-319. (本博士学位论文第四章)
    [155] Ooms F, Wouters J, Collin S et al. Molecular lipophilicity potential by Clip, a reliable tool for the description of the 3D distribution of lipophilicity: application to 3-phenyloxazolidin-2-one, a prototype series of reversible MAOA inhibitors. Bioorganic Medicinal Chemistry Letters, 1998, 8: 1425-1430. (本博士学位论文第四章)
    [156] Kellogg G E, Abraham D J. Hydrophobicity: is LogPo/w more than the sum of its parts? European Journal of Medicinal Chemistry, 2000, 35: 651-661. (本博士学位论文第四章)
    [157] Camenisch G, Folkers G, van de Waterbeemd H. Review of theoretical passive drug absorption models: historical background, recent developments and limitations. Pharmaceutica Acta Helvetiae, 1996, 71: 309-327. (本博士学位论文第四章)
    [158] Liu X, Tu M, Kelly R S et al. Development of a computational approach to predict blood-brain barrier permeability. Drug Metabolism and Disposition, 2004, 32: 132-139. (本博士学位论文第四章)
    [159] Rubas W, Cromwell M E M. The effect of chemical modifications on octanol/water partition (LogD) and permeabilities across Caco-2 monolayers. Advanced Drug Delivery Reviews, 1997, 23: 157-162. (本博士学位论文第四章)
    [160] Berger D, Citarella R, Dutia M et al. Novel multidrug resistance reversal agents. Journal of Medicinal Chemistry, 1999, 42: 2145-2161. (本博士学位论文第四章)
    [161] Ford J M, Prozialeck W C, Hair W N. Structural features determining activity of phenothiazine and related drugs for inhibition of cell growth and reversal of multidrug resistance. Molecular Pharmacology, 1989, 35: 105-115. (本博士学位论文第四章)
    [162] Wang Y-H, Han K-L, Yang S-L et al. Structural determinants of steroids for cytochrome P450 3A4-mediated metabolism. Journal of Molecular Structure-Theochem, 2004, 710 (1-3): 215 - 221. (本博士学位论文第四、七章)
    [163] Lampidis T J, Kolonias D, Podona T et al. Circumvention of P-gp MDR as a function of anthracycline lipophilicity and charge. Biochemistry, 1997, 36: 2679-2685. (本博士学位论文第四章)
    [164] Eytan G D, Regev R, Oren G et al. The role of passive transbilayer drug movement in multidrug resistance and its modulation. Journal of Biological Chemistry, 1996, 271: 12897-12902. (本博士学位论文第四章)
    [165] Ford J M. Experimental reversal of P-glycoprotein-mediated multidrug resistance by pharmacological chemosensitizers. European Journal of Cancer, 1996, 32A: 991-1001. (本博士学位论文第五章)
    [166] Woodcock D M, Linsenmeyer M E, Chojnowski G et al. Reversal of multidrug resistance by surfactants. British Journal of Cancer, 1992, 66: 62-68. (本博士学位论文第五章)
    [167] Leveille-Webster C R, Arias I M. The biology of the P-glycoprotein. Journal of Membrane Biology, 1995, 143: 89-102. (本博士学位论文第五章)
    [168] Gruol D J, Zee M C, Trotter J et al. Reversal of multidrug resistance by RU 486. Cancer Research, 1994, 54: 3088 - 3091. (本博士学位论文第五章)
    [169] Lecureur V, Fardel O, Guillouzo A. The antiprogestatin drug RU486 potentiates doxorubicin cytotoxicity in multidrug resistant cells through inhibition of P-glycoprotein function. FEBS Letters, 1994, 355: 187- 191. (本博士学位论文第五章)
    [170] Hollman P C H, Katan M B. Dietary flavonoids: intake, health effects and bioavailability. Food and Chemical Toxicology, 1999, 37: 937-942. (本博士学位论文第五章)
    [171] Harborne J B, Williams C A. Advances in flavonoid research since 1992. Phytochemistry, 2000, 55: 481-504. (本博士学位论文第五章)
    [172] Middleton E Jr, Kandaswami C, Theoharides T C. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease and cancer. Pharmacological Reviews, 2000, 52: 673-751. (本博士学位论文第五章)
    [173] J. M. Phang, C. M. Poore, J. Lopaczynska, G. C. Yeh. Flavonol-stimulated efflux of 7, 12-dimethylbenz(a)-anthracene in multidrug-resistant breast cancer cells. Cancer Research, 1993, 53: 5977-5981. (本博士学位论文第五章)
    [174] Critchfield J W, Welsh C J, Phang J M et al. Modulation of adriamycin accumulation and efflux by flavonoids in HCT-15 colon cells: activation of P-glycoprotein as a putative mechanism. Biochemical Pharmacology, 1994, 48: 1437-1445. (本博士学位论文第五章)
    [175] Versantvoort C H, Schuurhuis G J, Pinedo H M et al. Genistein modulates the decreased drug accumulation in non-P-glycoprotein mediated multidrug resistant tumour cells. British Journal of Cancer, 1993, 68: 939-946. (本博士学位论文第五章)
    [176] Scambia G, Ranelletti F O, Panici P B et al. Quercetin potentiates the effect of adriamycin in a multidrug-resistant MCF-7 human breast-cancer cell line: P-glycoprotein as a possible target, Cancer Chemotherapy and Pharmacology, 1994, 34: 459-464. (本博士学位论文第五章)
    [177] Shapiro A B, Ling V. Effect of quercetin on Hoechst 33342 transport by purified and reconstituted P-glycoprotein. Biochemical Pharmacology, 1997, 53: 587-596. (本博士学位论文第五章)
    [178] Zhang S, Morris M E. Effects of the flavonoids biochanin A, morin, phloretin, and silymarin on P-glycoprotein-mediated transport. Journal of Pharmacology and Experimental Therapeutics, 2003, 304: 1258-1267. (本博士学位论文第五章)
    [179] Castro A F, Altenberg G A. Inhibition of drug transport by genistein in multidrug-resistant cells expressing P-glycoprotein. Biochemical Pharmacology, 1997, 53: 89-93. (本博士学位论文第五章)
    [180] Chieli E, Romiti N, Cervelli F et al. Effects of flavonols on P-glycoprotein activity in cultured rat hepatocytes. Life Sciences, 1995, 57: 1741-1751. (本博士学位论文第五章)
    [181] FerteJ, Kuhnel J-M, Chapuis J et al. Flavonoid-related modulators of multidrug resistance: synthesis, pharmacological activity, and structure-activity relationships. Journal of Medicinal Chemistry, 1999, 42: 478-489. (本博士学位论文第五章)
    [182] Conseil G, Baubichon-Cortay H, Dayan G et al. Flavonoids: a class of modulators with bifunctional interactions at vicinal ATP- and steroid-binding sites on mouse P-glycoprotein, Proceedings of The National Academy of Sciences of The United States of America, 1998, 95: 9831-9836. (本博士学位论文第五章)
    [183] Di Pietro A, Conseil G, Perez-Victoria J M et al. Modulation by flavonoids of cell multidrug resistance mediated by P-glycoprotein and related ABC transporters. Cellular and Molecular Life Sciences, 2002, 59: 307-322. (本博士学位论文第五章)
    [184] Martin Y C, Bures M G, Danaher E A et al. A fast new approach to pharmacophore mapping and its application to dopaminergic and benzodiazepine agonists. Journal of Computer-Aided Molecular Design, 1993, 7: 83-102. (本博士学位论文第五章)
    [185] Pajeva I K, Globisch C, Wiese M. Structure-function relationships of multidrug resistance P-glycoprotein. Journal of Medicinal Chemistry, 2004, 47: 2523-2533. (本博士学位论文第五章)
    [186] Suzuki T, Fukazawa N, San-nohe K et al. Structure-activity relationship of newly synthesized quinoline derivatives for reversal of multidrug resistance in cancer. Journal of Medicinal Chemistry, 1997, 40 (13): 2047-2052. (本博士学位论文第五、七章)
    [187] Comte G, Daskiewicz J B, Bayet C et al. C-isoprenylation of flavonoids enhances binding affinity toward P-glycoprotein and modulation of cancer cell chemoresistance. Journal of Medicinal Chemistry, 2001, 44: 763-768. (本博士学位论文第五章)
    [188] Wani M C, Taylor H L, Wall M E et al. Plant antitumor agents. Ⅵ. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. Journal of the Amercian Chemical Society, 1971, 93 (9): 2325-2327. (本博士学位论文第六章)
    [189] Horwitz S B, Lothstein L, Manfredi J J et al. Taxol: mechanisms of action and resistance. Annals of the New York Academy of Sciences, 1986, 466: 733-744. (本博士学位论文第六章)
    [190] Einzig A I, Schuchter L M, Recio A et al. Phase Ⅱ trial of docetaxel (Taxotere) in patients with metastatic melanoma previously untreated with cytotoxic chemotherapy. Medical Oncology, 1996, 13 (2): 111-117. (本博士学位论文第六章)
    [191] Runowicz C D, Wiernik P H, Einzig A I et al. Taxol in ovarian cancer. Cancer, 1993, 71 (4 Suppl): 1591-1596. (本博士学位论文第六章)
    [192] Miller K D, Sledge Jr G W. Taxanes in the treatment of breast cancer: a prodigy comes of age. Cancer Investigation, 1999, 17 (2): 121-136. (本博士学位论文第六章)
    [193] van Asperen J, van Tellingen O, Sparreboom A et al. Enhanced oral bioavailability of paclitaxel in mice treated with the P-glycoprotein blocker SDZ PSC 833. British Journal of Cancer, 1997, 76 (9): 1181-1183. (本博士学位论文第六章)
    [194] Gruol D J, Bernd J, Phippard A E et al. The use of a novel Laxane-based P-glycoprotein inhibitor to identify mutations that alter the interaction of the protein with paclitaxel. Molecular Pharmacology, 2001, 60 (1): 104-113. (本博士学位论文第六章)
    [195] 黄光燕,郭积玉,梁晓天.紫杉烷类化合物SINENXAN A的结构修饰及其衍生物的构效关系研究.药学学报,1988,33(8):576-586.(本博士学位论文第六章)
    [196] 刘瑞武,尹大力,王东辉,李春,郭积玉,梁晓天.新型14β2侧链紫杉醇衍生物的合成及构效关系研究.药学学报,1988,33(12):910-918.(本博士学位论文第六章)
    [197] 刘斌,石炳兴,元英进,孙命,缪方明.紫杉醇类似物结构与活性关系模型.天津大学学报,2000,33(1):51-55.(本博士学位论文第六章)
    [198] 石炳兴,梁世乐,元英进,孙命,缪方明.紫杉醇衍生物的三维定量构效关系研究.高等学校化学学报,2000,21(3):401-406.(本博士学位论文第六章)
    [199] 徐旋,徐志广,罗一帆,李卫华.抗癌药10-0Ac取代紫杉醇类似物的构效关系研究.中国药物化学杂志,2001,11(6):317-321.(本博士学位论文第六章)
    [200] 胡步超,王宏伦,高广江,李续武.神经网络用于46种紫杉烷衍生物的模式识别分类研究.数理医药学杂志,1999,12(1):11-13.(本博士学位论文第六章)
    [201] 徐志广,徐旋,罗一帆,李卫华.紫杉醇类似物的电子结构与抗癌活性关系的研究(Ⅰ).华南师范大学学报(自然科学版),2001,3:97-102.(本博士学位论文第六章)
    [202] Brooks T, Minderman H, O' Loughlin K L et al. Taxane-based reversal agents modulate drug resistance mediated by P-glycoprotein, multidrug resistance protein, and breast cancer resistance protein. Molecular Cancer Therapeutics, 2003, 2: 1195-1205. (本博士学位论文第六、八章)
    [203] Islam M N, Song Y, Iskander M N. Investigation of structural requirements of anticancer activity at the paclitaxel/tubulin binding site using CoMFA and CoMSIA. Journal of Molecular Graphics and Modeling, 2003, 21: 263-272. (本博士学位论文第六章)
    [204] Benet L Z, Izumi T, Zhang Y et al. Intestinal MDR transport proteins and P-450 enzymes as barriers to oral drug delivery. Journal of Controlled Release, 1999, 62 (1-2): 25-31. (本博士学位论文第七章)
    [205] Wrighton S A, VandenBrander M, Ring B J. The human drug metabolizing cytochromes P450. Journal of Pharmacokinetics and Biopharmaceutics, 1996, 24: 461-473. (本博士学位论文第七章)
    [206] 朱大岭,韩维娜,张荣.细胞色素P450酶系在药物代谢中的作用.医药导报,2004,23(7):440-443.(本博士学位论文第七章)
    [207] Korolev D, Balakin K V, Nikolsky Y et al. Modeling of human cytochrome P450-mediated drug metabolism using unsupervised machine learning approach. Journal of Medicinal Chemistry, 2003, 46 (17): 3631-3643. (本博士学位论文第七章)
    [208] Rendic S, DiCarlo F J. Human cytochrome P450 enzymes: a status report summarizing their reactions, substrates, inducers and inhibitors. Drug Metabolism Reviews, 1997, 29 (1-2):413-580.(本博士学位论文第七章)
    [209] 彭华,程泽能.细胞色素P4503A4相关的药物相互作用.中国临床药理学杂志,2001,17(5):3791-385.(本博士学位论文第七章)
    [210] 吴丽花,马萌.肠壁CYP3A和P-糖蛋白与口服药物生物利用度.中国药方,2003,14(7):437-439.(本博士学位论文第七章)
    [211] Wang Y-H, Li Y, Y-H Li et al. Modeling Km Values Using Electrotopological State: Substrates for Cytochrome P450 3A4-Mediated Metabolism. 2005, 15: 4076-4084. Bioorganic and medicinal chemistry letters. (本博士学位论文第七章)
    [212] Wacher V J, Eu C Y, Benet L Z. Overlapping substrates specificities and tissue distribution of cytochromo P450 3A and P-glycoprotein: Implications for drug delivery and cancer chemotherapy. Molecular Carcinogenesis, 1995, 13 (3): 129-134. (本博士学位论文第七章)
    [213] Cummins C L, Jacobsen W, Benet L Z. Unmasking the dynamic interplay between intestinal P - glycoprotein and CYP3A4. The Journal of Pharmacology and Experimental Therapeutics, 2002, 300 (3): 1036-1045. (本博士学位论文第七章)
    [214] Suzuki H, Sugiyama Y. Role of metabolic enzymes and efflux transporters in the absorption of drugs from the small intestine. European Journal of Pharmaceutical Sciences, 2000, 12: 3-12. (本博士学位论文第七章)
    [215] Cornwell M M, Safa A R, Felsted R L et al. Membrane vesicles from multidrug-resistant human cancer cells contain a specific 1502 to 1702 kua protein detected by photoaffinity labeling. Proceedings of the National Academy of Sciences of the United States of America, 1986, 83: 3847-3850. (本博士学位论文第七章)
    [216] Akiyama S I, Cornwell M M, Kuwano M et al. Most drugs that reverse multidrug resistance also inhibit photoaffinity labeling of P-glycoprotein by a vinblastine analog. Molecular Pharmacology, 1988, 33: 144-147. (本博士学位论文第七章)
    [217] Hosea N A, Miller G P, Guengerich P. Elucidation of distinct ligand binding sites for Cytochrome P450 3A4. Biochemistry, 2000, 39 (20): 5929-5939. (本博士学位论文第七章)
    [218] Domanski T L, He Y A, Khan K K et al. Phenylalanine and tryptophan scanning mutagenesis of CYP3A4 substrates recognition site residues and effect on substrate oxidation and cooperativity. Biochemistry, 2001, 40 (34): 10150-10160. (本博士学位论文第七章)
    [219] Michalets E L. Update: clinically significant cytochrome P-450 drug interactions, Pharmacotherapy, 1998, 18: 84-112. (本博士学位论文第七章)
    [220] Zhou-Pan X-R, Seree E, Zhou X-J et al. Involvement of human liver cytochrome P4503A in vinblastine metabolism: drug interactions. Cancer Research, 1993, 53 (21): 5121-5126. (本博士学位论文第七章)
    [221] Ducharme M P, Warbasse L H, Edwards D J. Disposition of intravenous and oral cyclosporine after administration with grapefruit juice. Clinical Pharmacology and Therapeutics, 1995, 57 (5): 485-491. (本博士学位论文第七章)
    [222] Schinkel A H, Wagenaar E, van Deemter L et al. Absence of the mdrla P-glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin A. Journal of Clinical Investigation, 1995, 96 (4): 1698-1705. (本博士学位论文第七章)
    [223] Fuhr U, Harder S, Lopez-Rojas P et al. Increase of verapamil concentration in steady state by coadiministration of grapfruit juice. Naunyn-Schmiedeberg Archives of Pharmacology, 1994, 349: R134 (Abstract). (本博士学位论文第七章)
    [224] Katoh M, Nakajima M, Shimada N et al. Inhibition of human cytochrome P450 enzymes by 1, 4-dihydropyridine calcium antagonists prediction of in vivo drug-drug interactions. European Journal of Clinical Pharmacology, 2000, 55 (11-12): 843-852. (本博士学位论文第七章)
    [225] Zhang Y, Guo X, Lin E T et al. Overlapping substrate specificities of cytochrome P450 3A and P-glycoprotein for a novel cysteine protease inhibitor. Drug Metabolism and Disposition, 1998, 26 (4): 360-366. (本博士学位论文第七章)
    [226] Waxman D J, Attisano C, Guengerich F P et al. Human liver microsomal steroid metabolism: identification of the major microsomal steroid hormone 6-beta-hydroxylase cytochrome P-450 enzyme. Archives of Biochemistry and Biophysics, 1988, 263 (2): 424-436. (本博士学位论文第七章)
    [227] Zuber R, Anzenbacherova E, Anzenbacher P. Cytochromes P450 and experimental models of drug metabolism. Journal of Cellular and Molecular Medicine, 2002, 6 (2): 189-198. (本博士学位论文第七章)
    [228] Kim W Y, Benet L Z. P-glycoprotein (P-gp/MDR1)-mediated efflux of sex-steroid hormones and modulation of P-gp expression in vitro. Pharmaceutical Research, 2004, 21 (7): 1284-1293. (本博士学位论文第七章)
    [229] Saitoh H, Hatakeyama M, Eguchi O et al. Involvement of intestinal P-glycoprotein in the restricted absorption of methylprednisolone from rat small intestine. Journal of Pharmaceutical Sciences, 1998, 87 (1): 73-75. (本博士学位论文第七章)
    [230] Jonsson G, Astrom A, Andersson P. Budesonide is metabolised by cytochrome P450 3A (CYP3A) enzymes in human liver. Drug Metabolism and Disposition, 1995, 23 (1): 137-142. (本博士学位论文第七章)
    [231] Guengerich F P. Human cytochrome P450 enzymes, in P. R. Ortiz de Montellano (ed.), Cytochrome P450 - Structure, Mechanism and Biochemistry, 2nd ed. Plenum Press. N. Y., 1995, p. p. 473-535. (本博士学位论文第七章)
    [232] Varis T, Kaukonen K M, Kivisto K T et al. Plasma concentrations and effects of oral methylprednisolone are considerably increased by itraconazole. Clinical Pharmacology and Therapeutics, 1998, 64 (4): 363-368. (本博士学位论文第七章)
    [233] Patel J, Mitra A K. Strategies to overcome simultaneous P-glycoprotein mediated efflux and CYP3A4 mediated metabolism of drugs. Pharmacogenomics, 2001, 2 (4): 401-415. (本博士学位论文第七章)
    [234] Kharasch E D, Russell M, Garton K et al. Assessment of cytochrome P450 3A4 activity during the menstrual cycle using alfentanil as a noninvasive probe. Anesthesiology, 1997, 87 (1): 26-35. (本博士学位论文第七章)
    [235] Putman M, Kole L A, Van Veen H W et al. The secondary multidrug transporter LmrP contains multiple drug interaction sites. Biochemistry, 1999, 38: 13900-13905. (本博士学位论文第七章)
    [236] Lewis D F. On the recognition of mammalian microsomal Cytochrome P450 substrates and their characteristics. Biochemical Pharmacology, 2000, 60 (3): 293-306. (本博士学位论文第七章)
    [237] Christensen J G, Parks L G, McNutt R W et al. Reversal of multidrug resistance by derivatives of acrivastine: A study of structure-activity relationships of P-glycoprotein inhibitors in vitro and in vivo. Oncology Reports, 1997, 4: 1353-1360. (本博士学位论文第七章)
    [238] Pearce H L, Safa A R, Bach N J et al. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86: 5128-5132. (本博士学位论文第七章)
    [239] Ramu A, Ramu N. Reversal of multidrug resistance by phenothiazines and structurally related compounds. Cancer Chemotherapy and Pharmacology, 1992, 30 (3): 165-173. (本博士学位论文第七章)
    [240] Toffoli G, Simone F, Corona G et al. Structure-activity relationship of verapamil analogs and reversal of multidrug resistance Biochemical Pharmacology, 1995, 50 (8): 1245-1255. (本博士学位论文第七章)
    [241] Ferte J, Kuhnel J-M, Chapuis G et al. Flavonoid-related modulators of multidrug resistance: synthesis, pharmacological activity, and structure-activity relationships. Journal of Medicinal Chemistry, 1999, 42 (3): 478-489. (本博士学位论文第七章)
    [242] Seelig A. A general pattern for substrate recognition by P-glycoprotein. European Journal of Biochemistry, 1998, 251: 252-261. (本博士学位论文第七章)
    [243] Ekins S, Bravi G, Wikel J H et al. Three-dimensional quantitative structure activity relationship analysis of cytochrom P-450 3A4 substrates. Journal of Pharmacology and Experimental Therapeutics, 1999, 291 (1): 424-433. (本博士学位论文第七章)
    [244] Gorski J C, Jones D R, Haehner-Daniels B D et al. The contribution of intestinal and hepatic CYP3A to the interaction between midazolam and clarit hromycin. Clinical Pharmacology and Therapeutics, 1998, 64 (2): 133-143. (本博士学位论文第八章)
    [245] Pedersen K E, Dorph-Pedersen A, Hvidt S et al. Digoxin-verapamil interaction. Clinical Pharmacology and Therapeutics, 1981, 30: 311-316. (本博士学位论文第八章)
    [246] Ito S, Woodland C, Harper P A et al. The mechanism of the verapamil-digoxin interaction in renal tubular cells (LLC-PK1). Life Sciences, 1993, 53: PI399-403. (本博士学位论文第八章)
    [247] Ito S, Woodland C, Harper P A et al. P-glycoprotein-mediated renal tubular secretion of digoxin: toxicological significance of the urine-blood barrier model. Life Sciences, 1993, 53: PL25-31. (本博士学位论文第八章)
    [248] Kim R B, Wandel C, Leake B et al. Wilkinson. Interrelationship between substrates and inhibitor of human CYP3A and P-glycoprotein. Pharmaceutical Research, 1999, 16 (3): 408-414. (本博士学位论文第八章)
    [249] Palkama V J, Ahonen J, Neuvonen P J et al. Effect of saquinavir on the pharmacokinetics and pharmacody2namics of oral and intravenous midazolam. Clinical Pharmacology and Therapeutics, 1999, 66 (1): 33-39. (本博士学位论文第八章)
    [250] Lemma G L, Wang Z, Hamman M A et al. The effect of short- and long-term administration of verapamil on the disposition of cytochrome P450 3A and P-glycoprotein substrates. Clinical Pharmacology & Therapeutics, 2006, 79 (3): 218-230. (本博士学位论文第八章)
    [251] Grenier J, Fradette C, Morelli G et al. Pomelo juice, but not cranberry juice, affects the pharmacokinetics of cyclosporine in humans. Clinical Pharmacology & Therapeutics, 2006, 79 (3): 255-262. (本博士学位论文第八章)
    [252] Marco M P D, Edwards D J, Wainer I W et al. The effect of grapefruit juice and seville orange juice on the pharmacokinetics of dextromethorphan: The role of gut CYP3A and P-glycoprotein. Life Sciences, 2002, 71: 1149-1160. (本博士学位论文第八章)
    [253] Ojima I, Slater J C, Kuduk S D et al. Syntheses and structure-activity relationships of taxoids derived from 14β-hydroxy-10-deacetylbaccatin Ⅲ. Journal of Medicinal Chemistry, 1997, 40: 267-278. (本博士学位论文第八章)
    [254] Ojima I, Wang T, Miller M L et al. Synthesis and structure-activity relationships of new second-generation taxoids. Bioorganic & Medicinal Chemistry Letters, 1999, 9: 3423-3428. (本博士学位论文第八章)
    [255] Yuan H, Fairchild C R, Liang X et al. Synthesis and biological activity of C-6 and C-7 modified paclitaxels. Tetrahedron, 2000, 56: 6407-6414. (本博士学位论文第八章)
    [256] Morihira K, Nishimori T, Kusama H et al. Synthesis of C-ring aromatic taxoids and evaluation of their multidrug resistance reversing activity. Bioorganic & Medicinal Chemistry Letters, 1998, 8: 2973-2976. (本博士学位论文第八章)
    [257] Ojima I, Borella C P, Wu X et al. Design, synthesis and structure-activity relationships of novel taxane-based multidrug resistance reversal agents. Journal of Medicinal Chemistry, 2005, 48: 2218-2228. (本博士学位论文第八章)
    [258] Greiner B, Eichelbaum M, Fritz P et al. The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. Journal of Clinical Investigation, 1999, 104 (2): 147-153. (本博士学位论文第八章)
    [259] 蒋达,王永华,李燕,张述伟,杨胜利,杨凌.基元通量模式预测酵母生长现象,高等学校化学学报.2006,已接受.(本博士学位论文第八章)
    [260] Wang Y-H, Li Y, Li Y-H et al. Investigations into the Analysis and Modeling of the Cytochrome P450 Cycle. Journal of Physical Chemistry B. 2006, Accepted. (本博士学位论文第八章)
    [261] Li Y-H, Wang Y-H, Li Y et al. MDR1 Gene Polymorphisms and Clinical Relevance. Acta Genetica Sinica, 2006, 33 (2): 93-104. (本博士学位论文第八章)
    [262] Li Y-H, Wang Y-H, Sun J et al. Distribution of the Functional MDR1 C3435T Polymorphism in Chinese Population of Han Nationality. Swiss Medical Weekly, 2006, Accepted. (本博士学位论文第八章)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700