9p21上位点多态性与糖尿病下肢血管病变的关联研究及其与相关因素的交互作用探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
下肢血管病变(Peripheral arterial disease,PAD)是一种由环境和遗传因素共同作用的复杂慢性病变,能明显增加心血管事件、心血管死亡和全因死亡的风险。与非糖尿病患者相比,2型糖尿病患者PAD患病风险明显增加,而且发病年龄提前,病变进展更加迅速。由于大多数糖尿病PAD患者缺乏明显的临床症状,使得糖尿病人群普遍存在PAD诊断不足的现象。
     在糖尿病患者中,许多非遗传因素(如年龄、吸烟、血脂异常、高血压、高血糖和糖尿病病程)在PAD发生中扮演着重要角色。流行病学调查显示,不同种族的糖尿病人群PAD患病率明显不同,提示遗传因素在糖尿病人群PAD的发生中可能占有重要角色。
     目前多数全基因组研究表明9号染色体短臂21号区域(9p21)基因变异与动脉粥样硬化疾病如冠心病、心肌梗死和脑中风密切相关。在这个风险序列中具有代表性的两个位点rs10757274和rs10757278的单核苷酸多态性(single nucleotide polymorphism,SNP)与冠心病的相关性尤其突出。同时这两个位点与缺血性脑中风的风险增加也显著相关。PAD作为一种普通的动脉粥样硬化病变与冠心病和缺血性脑中风分享着相似或相同的病因和发病机制。据我们目前所知,关于9p21上动脉粥样硬化病变易感位点与PAD相关性探讨甚少,无论如何,9p21与糖尿病人群PAD的关联研究尚未见文献报道。
     本课题选取唐山市工人医院2型糖尿病患者为研究对象,分析其PAD的患病情况和非遗传性危险因素,探讨9p21上冠心病易感位点rs10757274和rs10757278和糖尿病人群PAD的关系以及这两个位点与环境因素的交互作用对糖尿病人群PAD发生的影响,以期为糖尿病患者PAD的早期预防、治疗和改善预后提供客观依据。
     第一部分唐山市汉族人群糖尿病下肢血管病变的发生率和非遗传性危险因素的分析
     目的:观察唐山市2型糖尿病患者下肢血管病变的患病情况和非遗传危险因素。
     方法:采取整群抽样的方法,从唐山市3所三级甲等综合性医院中随机抽样,唐山市工人医院作为调查医院。本研究共入选年龄≥45岁汉族2型糖尿病就诊患者1389例,在研究人群中PAD人数为250例,非PAD人数为1139例。研究对象均被仔细登记一般情况和临床资料,测量身高、体重、血压和踝肱指数(ABI),并检测生化指标。两组间比较采用t检验、秩和检验或卡方检验,危险因素分析使用Logistic回归分析。所有的统计学分析应用SPSS16.0完成。
     结果:所选糖尿病患者中PAD者为250人,PAD的患病率为18.0%(95%CI:16.0%-20.0%)。年龄、收缩压(SBP)、糖尿病病程、甘油三酯(TG)、高密度脂蛋白(HDL-C)、糖化血红蛋白(HbA1c)、吸烟、高血压、冠心病和脑梗死在PAD患者与非PAD患者中差异有统计学意义(p<0.05);性别、体重指数(BMI)、舒张压(DBP)、总胆固醇(TC)和低密度脂蛋白(LDL-C)在PAD患者与非PAD患者之间差异无统计学意义(p>0.05)。糖尿病患者PAD患病率随着年龄增加而增加,卡方趋势性检验表明有统计学意义(χ~2
     趋势=128.423,p<0.01),多变量logistic回归分析显示(变量包含性别、年龄、BMI、吸烟、血脂、HbA1c、糖尿病病程、高血压、冠心病和脑梗死,下同。),年龄是糖尿病患者PAD患病的独立风险因素(OR=1.084;95%CI:1.065-1.104;p<0.01)。男性与女性糖尿病患者比较,PAD患病率差异无统计学意义(χ~2=0.412,p=0.521),多变量logistic回归分析显示性别与糖尿病患者PAD患病风险无关(OR=1.428;95%CI:0.926-2.203;p=0.080)。糖尿病患者中BMI≥25者与BMI<25者比较,PAD的患病率差异无统计学意义(χ~2=0.190,p=0.663),多变量logistic回归分析显示高BMI与糖尿病患者PAD患病风险无关(OR=1.063;95%CI:0.779-1.450;p=0.701)。吸烟与不吸烟者之间PAD患病率差别有统计学意义(χ~2=8.048,p=0.005),多变量logistic回归分析显示吸烟是糖尿病患者PAD患病的独立危险因素(OR=1.831;95%CI:1.232-2.721;p=0.003)。多变量logistic回归分析显示低HDL-C和高HbA1c与糖尿病患者PAD患病风险相关(HDL-C:OR=1.419,95%CI:1.021-1.971,p=0.037;HbA1c:OR=1.495,95%CI:1.034-2.161,p=0.033);糖尿病患者PAD患病率随着糖尿病病程的增加而增加,卡方趋势性检验有统计学意义(χ~2趋势=32.249,p<0.01),多变量logistic回归分析显示糖尿病病程≥15年者PAD患病风险是<5年者2倍多,(95%CI:1.365-2.981,p<0.01)。糖尿病患者中高血压人群与非高血压人群比较,PAD患病率差异有统计学意义(χ~2=13.813,p<0.01),多变量logistic回归分析显示高血压是PAD的独立因素(OR=1.559;95%CI:1.140-2.133,p=0.005);糖尿病患者合并冠心病、脑梗死者与非合并者比较,PAD患病率差别有统计学意义(p<0.01),多变量logistic回归分析显示冠心病和脑梗死均是糖尿病患者PAD发生的独立危险因素(冠心病:OR=2.060,95%CI:1.479-2.868,p<0.01;脑梗死:OR=1.962,95%CI:1.385-2.780,p<0.01)。
     小结:本次调查中唐山市年龄≥45岁的糖尿病患者PAD的患病率为18.0%(95%CI:16.0%-20.0%)。年龄、吸烟、低HDL-C、高HbA1c、糖尿病病程、高血压、冠心病和脑梗死是PAD发生的危险因素。
     第二部分9p21上位点多态性与糖尿病下肢血管病变的关联研究
     目的:探讨9p21上位点多态性与糖尿病下肢血管病变的关系。
     方法:本研究选取的糖尿病人群年龄≥45岁。所有糖尿病人群均随机选自唐山市工人医院内分泌二科就诊的2型糖尿病患者,其中PAD患者250例,年龄匹配的非PAD患者为252例。提取外周血DNA,应用飞行质谱(MALDI–TOF–MS)的技术完成样品位点rs10757274和rs10757278单核苷酸多态性(SNP)的基因分型。
     两组间比较采用t检验、秩和检验或卡方检验,危险因素分析使用Logistic回归分析。所有的统计学分析应用SPSS16.0完成。应用haploview4.0评估基因位点的哈迪-温伯格平衡(Hardy–Weinberg equilibrium,HWE)。
     结果:
     (1)糖尿病人群中PAD组和非PAD组rs10757274和rs10757278基因型分布均符合Hardy–Weinberg平衡(p>0.05)。
     (2)在糖尿病人群中,这两个位点的等位基因和基因型频率在PAD组和非PAD组之间均存在着显著的统计学差异(p<0.05)。
     (3)在糖尿病人群中,应用累加基因模型(additive model)进行分析,调整性别、年龄、吸烟、高血压、血脂异常、HbA1c和糖尿病病程后,rs10757274是PAD患病的独立风险因素(OR=1.537,95%CI:1.169-2.020,p<0.01)。进一步应用多变量logistic回归分析调整其他因素后显示,rs10757274的AG基因型使糖尿病人群PAD的患病风险提高了约1.6倍(95%CI:1.002-2.414,p<0.05),GG基因型则使其提高了约2.4倍(95%CI:1.359-4.086,p<0.01)。同样,应用additive model进行分析,调整上述因素后,rs10757278也是PAD患病的独立风险因素(OR=1.493,95%CI:1.140-1.955,p<0.01),进一步多因素显示,其GG基因型使糖尿病人群PAD的患病风险提高了约2.2倍(95%CI:1.304-3.855,p<0.01)。
     (4)在排除大血管病变的敏感性分析中,应用additive model进行分析,在多变量logistic回归分析中调整性别、年龄、吸烟、高血压、血脂异常、HbA1c和糖尿病病程等因素后显示,rs10757274仍与PAD患病的独立相关(OR=1.476,95%CI:1.057-2.061,p<0.05。进一步应用多变量logistic回归分析调整其他因素后显示,其GG基因型使糖尿病人群PAD的患病风险提高了约2.2倍(95%CI:1.127-4.289,p<0.05)。同样,应用additive model进行分析,调整上述因素后,rs10757278也仍与PAD患病的风险独立相关(OR=1.437,95%CI:1.034-1.997;p<0.05)。进一步多因素分析显示,其GG基因型使糖尿病人群PAD的患病风险提高了约2.1倍(95%CI:1.084-4.020,p<0.05)。
     小结:9p21上rs10757274和rs10757278基因多态性与糖尿病人群PAD的患病风险相关。
     第三部分糖尿病下肢血管病变中9p21位点多态性与其他因素的交互作用研究
     目的:探讨糖尿病患者中对于PAD影响9p21上rs10757274和rs10757278位点多态性与环境因素之间是否存在交互作用。
     方法:所选糖尿病人群同第二部分。应用logistic回归模型计算OR值和95%CI。所有数据分析采用SPSS16.0统计软件进行。
     结果:以下OR值均为多因素logistic回归分析所得,包括的因素为年龄、性别、吸烟、血脂异常、高血压、HbA1c和糖尿病病程(不包括变量本身,年龄除外),其中年龄为连续变量。
     (1)年龄与9p21上位点rs10757274与rs10757278多态性交互作用分析
     应用additive model分析,在年龄<65岁的糖尿病患者中,rs10757274与PAD患病风险相关(OR=2.840,95%CI:1.579-5.109,p<0.05);在年龄≥65岁的糖尿病患者中,该位点与PAD患病风险无关,然而这个位点与年龄<65岁之间不存在交互作用(p=0.090)。同样rs10757274的AG和GG基因型与年龄<65岁之间不存在交互作用(p均>0.05)。
     应用additive model分析,在年龄<65岁的糖尿病患者中,rs10757278与PAD患病风险相关(OR=2.371,95%CI:1.334-4.213,p<0.05),在年龄≥65岁的糖尿病患者中,该位点与PAD患病风险无关,然而这个位点与年龄<65岁之间不存在交互作用(p=0.241)。同样,rs10757278的GG基因型与年龄<65岁之间不存在交互作用(p=0.266)。
     (2)性别与9p21上位点rs10757274与rs10757278多态性交互作用分析
     应用additive model分析,在男性糖尿病患者中,rs10757274与PAD患病风险相关(OR=1.770,95%CI:1.159-2.701,p<0.05),在女性糖尿病患者中,该位点与PAD患病风险无关,然而这个位点与性别之间不存在交互作用(p=0.388)。同样,rs10757274的GG基因型与性别之间不存在交互作用(p=0.382)。
     应用additive model分析,在男性糖尿病患者中,rs10757278与PAD患病风险相关(OR=1.665,95%CI:1.096-2.528,p<0.05),在女性糖尿病患者中,该位点与PAD患病风险无关,然而这个位点与性别之间不存在交互作用(p=0.521)。同样,rs10757278的GG基因型与性别之间不存在交互作用(p=0.458)。
     (3)吸烟与9p21上位点rs10757274与rs10757278多态性交互作用分析
     应用additive model分析,在不吸烟的糖尿病患者中,rs10757274与PAD患病风险相关(OR=1.710,95%CI:1.203-2.433,p<0.05),在吸烟的糖尿病患者中,该位点与PAD患病风险无关,然而这个位点与吸烟之间不存在交互作用(p=0.378)。同样,rs10757274的GG基因型与吸烟之间不存在交互作用(p=0.353)。
     应用additive model分析,在不吸烟的糖尿病患者中,rs10757278与PAD患病风险相关(OR=1.724,95%CI:1.214-2.447,p<0.05);在吸烟的糖尿病患者中,该位点与PAD患病风险无关,然而这个位点与吸烟之间不存在交互作用(p=0.231)。同样,rs10757278的GG基因型与吸烟之间不存在交互作用(p=0.236)。
     (4)血脂异常与9p21上位点rs10757274与rs10757278多态性交互作用分析
     应用additive model分析,在血脂正常的糖尿病患者中,rs10757274与PAD患病风险相关(OR=2.140,95%CI:1.103-4.154,p<0.05),在血脂异常的糖尿病患者中,该位点与PAD患病风险无关,然而这个位点与血脂异常之间不存在交互作用(p=0.099)。同样,rs10757274的AG和GG基因型与血脂异常之间不存在交互作用(p均>0.05)。
     应用additive model分析,在血脂正常的糖尿病患者中,rs10757278与PAD患病风险相关(OR=1.964,95%CI:1.091-3.537,p<0.05),在血脂异常的糖尿病患者中,该位点与PAD患病风险无关,然而这个位点与血脂异常之间不存在交互作用(p=0.236)。
     (5)高血压与9p21上位点rs10757274与rs10757278多态性交互作用分析
     应用additive model及该位点的AG和GG基因型进行分析发现,rs10757274及其AG和GG基因型与高血压之间均不存在交互作用。
     应用additive model分析,在血压正常的糖尿病患者中,rs10757278与PAD患病风险相关(OR=1.668,95%CI:1.093-2.545,p<0.05),在血压异常的糖尿病患者中,该位点与PAD患病风险无关,然而这个位点与高血压之间不存在交互作用(p=0.634)。同样,rs10757278的GG基因型与高血压之间不存在交互作用(p=0.642)。
     (6)高HbA1c与9p21上位点rs10757274与rs10757278多态性交互作用分析
     应用additive model分析,在HbA1c正常的糖尿病患者中,rs10757274与PAD患病风险无关,在高HbA1c的糖尿病患者中,该位点与PAD患病风险相关(OR=1.501,95%CI:1.103-2.042,p<0.05),然而这个位点与高HbA1c之间不存在交互作用(p=0.942)。同样,rs10757274的GG基因型与高HbA1c之间不存在交互作用(p=0.948)。
     应用additive model分析,在HbA1c正常的糖尿病患者中,rs10757278与PAD患病风险无关,在高HbA1c的糖尿病患者中,该位点与PAD患病风险相关(OR=1.457,95%CI:1.076-1.973,p<0.05),然而这个位点与高HbA1c之间不存在交互作用(p=0.899)。同样,rs10757278的GG基因型与高HbA1c之间不存在交互作用(p=0.907)。
     (7)糖尿病病程与9p21上位点rs10757274与rs10757278多态性交互作用分析
     应用additive model分析,在糖尿病病程<15年的患者中,rs10757274与PAD患病风险相关(OR=1.584,95%CI:1.136-2.209,p<0.05),在糖尿病病程≥15年的患者中,该位点与PAD患病风险无关,然而这个位点与糖尿病病程<15年之间不存在交互作用(p=0.870)。同样,rs10757274的AG和GG基因型与糖尿病病程<15年之间均不存在交互作用(p均>0.05)。
     应用additive model分析,在糖尿病病程<15年的糖尿病患者中,rs10757278与PAD患病风险相关(OR=1.528,95%CI:1.095-2.123,p<0.05),在糖尿病病程≥15年的患者中,该位点与PAD患病风险无关,然而这个位点与糖尿病病程<15年之间不存在交互作用(p=0.857)。同样,rs10757278的GG基因型与糖尿病病程<15年之间不存在交互作用(p=0.749)。
     小结:在对糖尿病患者PAD的影响中,9p21上rs10757274和rs10757278多态性与年龄、性别、吸烟、血脂异常、高血压、HbA1c和糖尿病病程等之间不存在交互作用。
Peripheral arterial disease (PAD) is a kind of complicated chronic disease,caused by multiple genetic and environmental factors, with high risk ofcardiovascular events, cardiovascular mortality, and all-cause mortality. Therisk of PAD was increased in the patients with type2diabetes mellitus, with amagnified risk of early-onset and faster progression compared with that in thepopulation without diabetes. At present, due to lack of remarkably clinicalsymptom in the PAD patients with diabetes, the PAD patients with diabetes areunderdiagnosed.
     In the patients with diabetes, a lot of non-inherited factors (such as age,smoking, dyslipidaemia, hypertension, high glucose and diabetes duration)played an important role in the prevalence of PAD. Epidemiological studiesshowed the prevalence of PAD was different in different ethical populationwith diabetes, suggesting the inherited factors played the important role in theprevalence of PAD in the diabetes.
     Presently, numerous genome-wide studies have shown that variants onchromosome9p21are closely associated with increased risk of atheroscleroticdiseases including coronary artery disease (CAD), myocardial infarction andstroke, with two representative single nucleotide polymorphisms (SNPs)rs10757274and rs10757278on9p21linked particularly with CAD. Moreover,both loci are also significantly associated with ischaemic stroke. PAD is acommon form of atherosclerotic disease that has a similar aetiology andpathogenesis to CAD and ischaemic stroke. According to our knowledge, onlyfew studies investigated the association of9p21with PAD. However, no studyexplored the association of9p21with PAD in diabetics.
     Therefore, the present study recruited the participates with Type2 diabetes from Tangshan Gongren hospital investigated the prevalence andnon-inherited factors of PAD in the patients with diabetes in Tangshan, andexplored the association of the polymorphisms on9p21with PAD and theinteraction of9p21and non-inherited factors on PAD in diabetics, whichcould provided evidence for prevention, therapy and improving of prognosisof PAD with diabetes.
     Part-1Prevalence and non-inherited risk factors of peripheral arterialdisease in Han patients with type2diabetes in Tangshan
     Objective:To investigated the prevalence and non-inherited risk factorsof peripheral arterial disease in the patients with type2diabetes mellitus inTangshan.Methods:Tangshan Gongren hospital were randomly chosed from threethird-grade class-A hospital by cluster sampling. This study included1389Han patients with type2diabetes aged≥45years (250patients with PAD and1139patients without PAD). For all study participants, data regardingdemographic characteristics and medical history were collected byquestionnaire interview or review of medical records. The height, body weightand ankle-brachial index (ABI) were measured. Serum total cholesterol (TC),triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), low-densitylipoprotein cholesterol (LDL-C) levels, and glycosylated hemoglobin (HbA1c)were determined. Comparisons of parameters were tested by Student’s t-test,Mann-Whitney U-test or chi-square test. Logistic regression analysis was doneto estimate odds ratios (ORs) and their corresponding95%confidenceintervals. Statistical analyses were performed using SPSS16.0.
     Results: In this study the prevalence of PAD was18.0%(95%CI,16.0%-20.0%) in the diabetic patients (250PAD patients) in Tangshan. Therewere significant differences in age, systolic blood pressure (SBP), diabetesduration, TG, HDL-C, HbA1c, smoking, hypertension, CAD and cerebralinfarction (CI) between the PAD patients and non-PAD patients (p<0.05).There were no significant differences in sex, body mass index (BMI), diastolicblood pressure (DBP), TC and LDL-C between the PAD patients and non-PAD patients (p>0.05). The trend for the increase of the prevalence ofPAD according to age was statistically significant in diabetics (χ~2
     趋势=128.423,p<0.01). Age was the independent risk factor of PAD (OR,1.084;95%CI,1.065-1.104; p<0.01) by multivariate logistic regression analysis (Thevariates included sex, age, BMI, smoking status, lipemia, HbA1c, diabetesduration, hypertension, CAD and CI, with the same to the following.). Therewere no significant difference in prevalence of PAD between male and female(χ~2=0.412, p=0.521), and the sex was not associated with PAD in diabetics(OR=1.428;95%CI:0.926-2.203;p=0.080), using multivariate logisticregression analysis. There were no significant difference in prevalence of PADbetween the diabetics with BMI≥25and those with BMI<25(χ~2=0.190,p=0.663), and the BMI was not associated with PAD in diabetics (OR=1.063;95%CI:0.779-1.450;p=0.701), using multivariate logistic regression analysis.There were significant difference in prevalence of PAD between smokers andnon-smokers in diabetics (χ~2=8.048, p=0.005), and the smoking wassignificantly associated with the increased risk of PAD in diabetics (OR=1.831;95%CI:1.232-2.721; p=0.003), using multivariate logistic regression analysis.Low HDL-C and high HbA1c level were the independent risk factors for PADin diabetics (OR=1.419,95%CI:1.021-1.971, p=0.037; OR=1.495,95%CI:1.034-2.161, p=0.033; respectively), using multivariate logistic regressionanalysis. The trend for the increase of the prevalence of PAD according todiabetes duration was statistically significant in diabetics (χ~2趋势=32.249, p<0.01). The diabetes duration≥15years were the independent risk factors forPAD (OR=2.017,95%CI:1.365-2.981, p<0.01) using multivariate logisticregression analysis, compared with the diabetes duration<15years. Therewere significant difference in prevalence of PAD between the diabetics withhypertension and those without hypertension (χ~2=13.813, p<0.01), and thehypertension was significantly associated with the increased risk of PAD(OR=1.559;95%CI:1.140-2.133; p=0.005), using multivariate logisticregression analysis. There were significant difference in prevalence of PADbetween the diabetics with CAD or CI and those without CAD or CI (p<0.01), and the CAD and CI were significantly associated with the increased risk ofPAD in diabetics (OR=2.060,95%CI:1.479-2.868,p<0.01;OR=1.962,95%CI:1.385-2.780,p<0.01;respectively), using multivariate logisticregression analysis.
     Conclusion: In this study, the prevalence of PAD was18%(95CI,16%-20%) in the diabetics aged≥45years in Tangshan. The age,smoking, low HDL-C, high HbAIc, diabetes duration, hypertension, CAD andCI were significantly associated with the increased risk of PAD.
     Part-2The association of the polymorphisms on9p21with peripheralarterial disease in the patients with type2diabetes
     Objective:To explore the association of the polymorphisms on9p21with peripheral arterial disease in the patients with type2diabetes mellitus.
     Methods:The study randomly recruited the participates with diabetesaged≥45years (250cases and252age-matched controls), who were attendingthe Second Department of Endocrinology in Tangshan Gongren hospital.Genomic DNA was isolated using a QIAamp DNA mini kit. Genotyping ofrs10757274and rs10757278was performed by matrix-assisted laserdesorption/ionization time-of-flight mass spectrometry (MALDI–TOF–MS).
     Comparisons of parameters were tested by Student’s t-test,Mann-Whitney U-test or chi-square test. Logistic regression analysis was doneto estimate odds ratios (ORs) and their corresponding95%confidenceintervals. Statistical analyses were performed using SPSS16.0. TheHardy–Weinberg equilibrium for rs10757274and rs10757278was analyzedusing Haploview, version4.0.
     Results:
     (1) Both rs10757274and rs10757278were in Hardy–Weinbergequilibrium in both groups in the population with diabetes mellitus (p>0.05).
     (2) There were significant differences in genotype distribution ofrs10757274and rs10757278between the PAD patients and non-PAD patientsin the diabetics (p<0.05).
     (3) Rs10757274was the independent risk factors for PAD in diabetics in additive model (OR=1.537,95%CI:1.169-2.020, p<0.01) after adjustmentfor sex, age, smoking, hypertension, dyslipidaemia, HbA1c and diabetesduration. Moreover, the AG genotype of rs10757274increased1.6folds riskof PAD (95%CI:1.002-2.414, p<0.05) and GG genotype of this locusincreased2.4folds risk of PAD (95%CI:1.359-4.086, p<0.01). Similarly,rs10757278was also the independent risk factors for PAD in diabetics inadditive model after adjustment for other factors (OR=1.493,95%CI:1.140-1.955,p<0.01). Moreover, GG genotype of this locus increased2.2folds risk of PAD (95%CI:1.304-3.855, p<0.01).
     (4) Rs10757274was still the independent risk factors for PAD indiabetics in additive model, further excluding the patients with macrovasculardiseases with adjustment for the traditional factors (OR=1.476,95%CI:1.057-2.061, p<0.05). Moreover, GG genotype of this locus increased2.2folds risk of PAD (95%CI:1.127-4.289,p<0.05).Similarly, rs10757278werestill the independent risk factors for PAD in diabetics in additive model afteradjustment for other factors (OR=1.437,95%CI:1.034-1.997; p<0.05).Moreover, GG genotype of this locus increased2.1folds risk of PAD (95%CI:1.084-4.020,p<0.05).
     Conclusion: Rs10757274and rs10757278on9p21were significantlyassociated with the increased risk of PAD in diabetics.
     Part-3The interaction of the polymorphisms on9p21and environmentalfactors on peripheral arterial disease in the patients with diabetes
     Objective:To explore the interaction of rs10757274and rs10757278andenvironmental factors on peripheral arterial disease in the patients withdiabetes mellitus.
     Methods: The study population with diabetes was same to those in Part-2.Comparisons of parameters were tested by Student’s t-test, Mann-WhitneyU-test or chi-square test. Logistic regression analysis was done to estimateodds ratios (ORs) and their corresponding95%confidence intervals.Statistical analyses were performed using SPSS16.0.Results: The following OR were estimated by multivariate logistic regression analysis with adjusting for age (continuous variable), sex, smoking,dyslipidaemia, hypertension, HbA1c and diabetes duration, with excludingthe variate itself (not including the age).
     (1)The interaction of age and the polymorphisms of rs10757274andrs10757278
     In the diabetics aged<65years, rs10757274was associated with theincreased risk of PAD in additive model (OR=2.840,95%CI:1.579-5.109, p<0.05). In the diabetics aged≥65years, rs10757274was not associated withthe increased risk of PAD in additive model. No significant interactions werefound between the locus and age (p=0.090). Similarly, no significantinteractions were found between the AG and GG genotype of locus and age (pall>0.05).
     In the diabetics aged<65years, rs10757278was associated with theincreased risk of PAD in additive model (OR=2.371,95%CI:1.334-4.213,p<0.05); In the diabetics aged≥65years, rs10757278was not associated withthe increased risk of PAD in additive model. No significant interactions werefound between the locus and age (p=0.241). Similarly, no significantinteractions were found between the GG genotype of the locus and age(p=0.266).
     (2)The interaction of sex and the polymorphisms of rs10757274andrs10757278
     In the male diabetics, rs10757274was associated with the increased riskof PAD in additive model (OR=1.770,95%CI:1.159-2.701,p<0.05). In thefemale diabetics, rs10757274was not associated with the increased risk ofPAD in additive model. No significant interactions were found between thelocus and sex (p=0.388). Similarly, no significant interactions were foundbetween the GG genotype of the locus and sex (p=0.382).
     In the male diabetics, rs10757278was associated with the increased riskof PAD in additive model (OR=1.665,95%CI:1.096-2.528,p<0.05). In thefemale diabetics, rs10757278was not associated with the increased risk ofPAD in additive model. No significant interactions were found between the locus and sex (p=0.521). Similarly, no significant interactions were foundbetween the GG genotype of the locus and sex (p=0.458).
     (3)The interaction of smoking and the polymorphisms of rs10757274andrs10757278
     In the non-smoker in diabetics, rs10757274was associated with theincreased risk of PAD in additive model (OR=1.710,95%CI:1.203-2.433,p<0.05). In the smoker in diabetics, rs10757274was not associated with theincreased risk of PAD in additive model. No significant interactions werefound between the locus and smoking (p=0.378). Similarly, no significantinteractions were found between the GG genotype of the locus and smoking(p=0.353).
     In the non-smoker in diabetics, rs10757278was associated with theincreased risk of PAD in additive model (OR=1.724,95%CI:1.214-2.447,p<0.05). In the smoker in diabetics, rs10757278was not associated with theincreased risk of PAD in additive model. No significant interactions werefound between the locus and smoking (p=0.231). Similarly, no significantinteractions were found between the GG genotype of the locus and smoking(p=0.236).
     (4)The interaction of dyslipidaemia and the polymorphisms ofrs10757274and rs10757278
     In the diabetics without dyslipidaemia, rs10757274was associated withthe increased risk of PAD in additive model (OR=2.140,95%CI:1.103-4.154,p<0.05). In the diabetics with dyslipidaemia, rs10757274was not associatedwith the increased risk of PAD in additive model. No significant interactionswere found between the locus and dyslipidaemia (p=0.099). Similarly, nosignificant interactions were found between the AG and GG genotype of thelocus and dyslipidaemia (p均>0.05).
     In the diabetics without dyslipidaemia, rs10757278were associated withthe increased risk of PAD in additive model (OR=1.964,95%CI:1.091-3.537,p<0.05). In the diabetics with dyslipidaemia, rs10757278was not associatedwith the increased risk of PAD in additive model. No significant interactions were found between the locus and dyslipidaemia (p=0.236).
     (5)The interaction of hypertension and the polymorphisms of rs10757274and rs10757278
     No significant interactions were found between rs10757274(additivemodel) and hypertension. No significant interactions were found between theAG and GG genotype of this locus and hypertension yet.
     In the diabetics with normal blood pressure, rs10757278was associatedwith the increased risk of PAD in additive model (OR=1.668,95%CI:1.093-2.545,p<0.05). In the diabetics with hypertension, rs10757274was notassociated with the increased risk of PAD in additive model. No significantinteractions were found between the locus and hypertension (p=0.634).Similarly, no significant interactions were found between the GG genotype ofthe locus and hypertension (p=0.642).
     (6)The interaction of HbA1c and the polymorphisms of rs10757274andrs10757278
     In the diabetics with normal HbA1c level, rs10757274was not associatedwith the increased risk of PAD in additive model. In the diabetics with highHbA1c level, rs10757274was associated with the increased risk of PAD inadditive model (OR=1.501,95%CI:1.103-2.042,p<0.05). No significantinteractions were found between the locus and high HbA1c level (p=0.942).Similarly, no significant interactions were found between the GG genotype ofthe locus and high HbA1c level (p=0.948).
     In the diabetics with normal HbA1c level, rs10757278was not associatedwith the increased risk of PAD in additive model. In the diabetics with highHbA1c level, rs10757278was associated with the increased risk of PAD inadditive model (OR=1.457,95%CI:1.076-1.973,p<0.05). No significantinteractions were found between the locus and high HbA1c level (p=0.899).Similarly, no significant interactions were found between the GG genotype ofthe locus and high HbA1c level (p=0.907).
     (7)The interaction of diabetes duration and the polymorphisms ofrs10757274and rs10757278
     In the diabetics with diabetes duration<15years, rs10757274wasassociated with the increased risk of PAD in additive model (OR=1.584,95%CI:1.136-2.209,p<0.05). In the diabetics with diabetes duration≥15years, rs10757274was not associated with the increased risk of PAD inadditive model. No significant interactions were found between the locus anddiabetes duration (p=0.870). Similarly, no significant interactions were foundbetween the AG and GG genotype of the locus and diabetes duration (p all>0.05).
     In the diabetics with diabetes duration<15years, rs10757278wasassociated with the increased risk of PAD in additive model (OR=1.528,95%CI:1.095-2.123,p<0.05). In the diabetics with diabetes duration≥15years, rs10757278was not associated with the increased risk of PAD inadditive model. No significant interactions were found between the locus anddiabetes duration (p=0.857). Similarly, no significant interactions were foundbetween the GG genotype of the locus and diabetes duration (p=0.749).
     Conclusion: No significant interactions were found between thepolymorphisms of rs10757274and rs10757278and age, sex, smoking,dyslipidaemia, hypertension, HbA1c and diabetes duration for PAD in thediabetics.
引文
1Golomb BA, Dang TT, Criqui MH. Peripheral arterial disease. Circulation2006;114:688-699
    2Criqui MH, Langer RD, Fronek A, et al. Mortality over a period of10years in patients with peripheral arterial disease. New England Journal ofMedicine1992;326:381-386
    3Resnick HE, Lindsay RS, McDermott MM, et al. Relationship of high andlow ankle brachial index to all-cause and cardiovascular disease mortality.Circulation2004;109:733-739
    4Brevetti G, Schiano V, Verdoliva S, et al. Peripheral arterial disease andcardiovascular risk in Italy. Results of the Peripheral Arteriopathy andCardiovascular Events (PACE) study. Journal of Cardiovascular Medicine2006;7:608-613
    5Murabito JM, D'Agostino RB, Silbershatz H, et al. Intermittent claudication:a risk profile from the Framingham Heart Study. Circulation1997;96:44-49
    6PERIPHERAL IO. Peripheral arterial disease in people with diabetes.Diabetes Care2003;26:3333
    7Pollex R, Mamakeesick M, Zinman B, et al. Methylenetetrahydrofolatereductase polymorphism677C> T is associated with peripheral arterialdisease in type2diabetes. Cardiovascular diabetology2005;4:17
    8McPherson R, Pertsemlidis A, Kavaslar N, et al. A common allele onchromosome9associated with coronary heart disease. Science2007;316:1488-1491
    9Helgadottir A, Thorleifsson G, Magnusson KP, et al. The same sequencevariant on9p21associates with myocardial infarction, abdominal aorticaneurysm and intracranial aneurysm. Nat Genet2008;40:217-224
    10Zhang W, Chen Y, Liu P, et al. Variants on Chromosome9p21.3CorrelatedWith ANRIL Expression Contribute to Stroke Risk and Recurrence in aLarge Prospective Stroke Population. Stroke2012;43:14-21
    11Xie F, Chu X, Wu H, et al. Replication of putative susceptibility loci fromgenome-wide association studies associated with coronary atherosclerosisin Chinese Han population. PLoS One2011;6:e20833
    12Patel RS, Su S, Neeland IJ, et al. The chromosome9p21risk locus isassociated with angiographic severity and progression of coronary arterydisease. European heart journal2010;31:3017-3023
    13Anderson CD, Biffi A, Rost NS, et al. Chromosome9p21in ischemicstroke: population structure and meta-analysis. Stroke2010;41:1123-1131
    14Cluett C, McDermott MM, Guralnik J, et al. The9p21MyocardialInfarction Risk Allele Increases Risk of Peripheral Artery Disease in OlderPeopleCLINICAL PERSPECTIVE. Circulation: Cardiovascular Genetics2009;2:347-353
    15Ye S, Willeit J, Kronenberg F, et al. Association of Genetic Variation onChromosome9p21With Susceptibility and Progression ofAtherosclerosisA Population-Based, Prospective Study. Journal of theAmerican College of Cardiology2008;52:378-384
    16Yamagishi K, Folsom AR, Rosamond WD, et al. A genetic variant onchromosome9p21and incident heart failure in the ARIC study. Europeanheart journal2009;30:1222-1228
    17Newman A, Siscovick D, Manolio T, et al. Ankle-arm index as a marker ofatherosclerosis in the cardiovascular health study. Cardiovascular heartstudy (CHS) collaborative research group. Circulation1993;88:837-845
    18Prompers L, Huijberts M, Apelqvist J, et al. High prevalence of ischaemia,infection and serious comorbidity in patients with diabetic foot disease inEurope. Baseline results from the Eurodiale study. Diabetologia2007;50:18-25
    19Beckert S, Witte M, Wicke C, et al. A new wound-based severity score fordiabetic foot ulcers a prospective analysis of1,000patients. Diabetes Care2006;29:988-992
    20Jeffcoate WJ, Chipchase SY, Ince P, et al. Assessing the outcome of themanagement of diabetic foot ulcers using ulcer-related and person-relatedmeasures. Diabetes Care2006;29:1784-1787
    21Osmundson P, Chesebro J, O'Fallon W, et al. A prospective study ofperipheral occlusive arterial disease in diabetes. II. Vascular laboratoryassessment. Mayo Clinic proceedings. Mayo Clinic,1981;223
    22The effect of intensive treatment of diabetes on the development andprogression of long-term complications in insulin-dependent diabetesmellitus. The Diabetes Control and Complications Trial Research Group.N Engl J Med1993;329:977-986
    23KANNEL WB, SKINNER JR JJ, SCHWARTZ MJ, et al. Intermittentclaudication: incidence in the Framingham Study. Circulation1970;41:875-883
    24Hirsch AT, Criqui MH, Treat-Jacobson D, et al. Peripheral arterial diseasedetection, awareness, and treatment in primary care. JAMA: the journal ofthe American Medical Association2001;286:1317-1324
    25Cacoub P, Cambou JP, Kownator S, et al. Prevalence of peripheral arterialdisease in high-risk patients using ankle-brachial index in general practice:a cross-sectional study. International journal of clinical practice2008;63:63-70
    26Samanta A, Burden A, Jagger C. A comparison of the clinical features andvascular complications of diabetes between migrant Asians andCaucasians in Leicester, UK. Diabetes research and clinical practice1991;14:205-213
    27Rhee SY, Guan H, Liu ZM, et al. Multi-country study on the prevalenceand clinical features of peripheral arterial disease in Asian type2diabetespatients at high risk of atherosclerosis. Diabetes research and clinicalpractice2007;76:82-92
    28Li W, Fan D, Hong M, et al. Prevalence and related risk factors ofperipheral arterial disease in elderly patients with type2diabetes in Wuhan,Central China. Chinese Medical Journal2011;124:4264-4268
    29He Y, Jiang Y, Wang J, et al. Prevalence of peripheral arterial disease andits association with smoking in a population-based study in Beijing, China.Journal of Vascular Surgery2006;44:333-338
    30Li J, Luo Y, Xu Y, et al. Risk factors of peripheral arterial disease andrelationship between low ankle-brachial index and mortality fromall-cause and cardiovascular disease in Chinese patients with type2diabetes. Circulation journal: official journal of the Japanese CirculationSociety2007;71:377
    31Tunstall-Pedoe H, Kuulasmaa K, Amouyel P, et al. Myocardial infarctionand coronary deaths in the World Health Organization MONICA Project.Registration procedures, event rates, and case-fatality rates in38populations from21countries in four continents. Circulation1994;90:583-612
    32Premalatha G, Shanthirani S, Deepa R, et al. Prevalence and risk factors ofperipheral vascular disease in a selected South Indian population: theChennai Urban Population Study. Diabetes Care2000;23:1295-1300
    33Yu JH, Hwang JY, Shin M-S, et al. The prevalence of peripheral arterialdisease in Korean patients with type2diabetes mellitus attending auniversity hospital. Diabetes&Metabolism Journal2011;35:543-550
    34Sarnak MJ, Levey AS, Schoolwerth AC, et al. Kidney disease as a riskfactor for development of cardiovascular disease. Circulation2003;108:2154-2169
    35Narayanan RML, Koh W-P, Phang J, et al. Peripheral arterial disease incommunity-based patients with diabetes in Singapore: results from aPrimary Healthcare Study. Annals Academy of Medicine Singapore2010;39:525
    36Adler AI, Stevens RJ, Neil A, et al. UKPDS59: hyperglycemia and otherpotentially modifiable risk factors for peripheral vascular disease in type2diabetes. Diabetes Care2002;25:894-899
    37Ungvari Z, Kaley G, de Cabo R, et al. Mechanisms of vascular aging: newperspectives. The Journals of Gerontology Series A: Biological Sciencesand Medical Sciences2010;65:1028
    38Lakatta EG. Arterial and cardiac aging: major shareholders incardiovascular disease enterprises. Circulation2003;107:490-497
    392011ACCF/AHA Focused Update of the Guideline for the Management ofpatients with peripheral artery disease (Updating the2005Guideline): areport of the American College of Cardiology Foundation/American HeartAssociation Task Force on practice guidelines. Circulation2011;124:2020-2045
    40Abbott RD, Brand FN, Kannel WB. Epidemiology of some peripheralarterial findings in diabetic men and women: experiences from theFramingham Study. The American journal of medicine1990;88:376-381
    41Walters D, Gatling W, Mullee M, et al. The prevalence, detection, andepidemiological correlates of peripheral vascular disease: a comparison ofdiabetic and non-diabetic subjects in an English community. Diabeticmedicine2009;9:710-715
    42Cacoub PP, Abola MT, Baumgartner I, et al. Cardiovascular risk factorcontrol and outcomes in peripheral artery disease patients in the Reductionof Atherothrombosis for Continued Health (REACH) Registry.Atherosclerosis2009;204:e86-92
    43Tseng C-H. Prevalence and risk factors of peripheral arterial obstructivedisease in Taiwanese type2diabetic patients. Angiology2003;54:331-338
    44Hooi JD, Kester AD, Stoffers HE, et al. Incidence of and risk factors forasymptomatic peripheral arterial occlusive disease: a longitudinal study.American journal of epidemiology2001;153:666-672
    45Hoffmann D, Hoffmann I, El-Bayoumy K. The less harmful cigarette: acontroversial issue. A tribute to Ernst L. Wynder. Chemical research intoxicology2001;14:767-790
    46Executive Summary of The Third Report of The National CholesterolEducation Program (NCEP) Expert Panel on Detection, Evaluation, AndTreatment of High Blood Cholesterol In Adults (Adult Treatment PanelIII). JAMA2001;285:2486-2497
    47MacGregor AS, Price JF, Hau CM, et al. Role of systolic blood pressureand plasma triglycerides in diabetic peripheral arterial disease. TheEdinburgh Artery Study. Diabetes Care1999;22:453-458
    48Selvin E, Wattanakit K, Steffes MW, et al. HbA1c and Peripheral ArterialDisease in Diabetes The Atherosclerosis Risk in Communities study.Diabetes Care2006;29:877-882
    49Hoogeveen EK, Kostense PJ, Jakobs C, et al. Hyperhomocysteinaemia isnot associated with isolated crural arterial occlusive disease: The HoornStudy. Journal of internal medicine2000;247:442-448
    50Bianchi C, Penno G, Pancani F, et al. Non-traditional cardiovascular riskfactors contribute to peripheral arterial disease in patients with type2diabetes. Diabetes research and clinical practice2007;78:246-253
    51Bowie A, Owens D, Collins P, et al. Glycosylated low density lipoprotein ismore sensitive to oxidation: implications for the diabetic patient?Atherosclerosis1993;102:63-67
    52Koya D, King GL. Protein kinase C activation and the development ofdiabetic complications. Diabetes1998;47:859-866
    53Uusitupa M, Niskanen L, Siitonen O, et al.5-year incidence ofatherosclerotic vascular disease in relation to general risk factors, insulinlevel, and abnormalities in lipoprotein composition innon-insulin-dependent diabetic and nondiabetic subjects. Circulation1990;82:27-36
    54Kreines K, Johnson E, Albrink M, et al. The course of peripheral vasculardisease in non-insulin-dependent diabetes. Diabetes Care1985;8:235-243
    55Coce F, Metelko, Jak i B, et al. Peripheral Arterial Disease AndDiabetes Mellitus. Diabetologia Croatica2008;37:47-53
    56Melton LJ, Kathleen MM, Palumbo P, et al. Incidence and prevalence ofclinical peripheral vascular disease in a population-based cohort ofdiabetic patients. Diabetes Care1980;3:650-654
    57Semba RD, Najjar SS, Sun K, et al. Serum carboxymethyllysine, anadvanced glycation end product, is associated with increased aortic pulsewave velocity in adults. American journal of hypertension2008;22:74-79
    58Holman RR, Paul SK, Bethel MA, et al. Long-term follow-up after tightcontrol of blood pressure in type2diabetes. New England Journal ofMedicine2008;359:1565-1576
    59Chobanian AV, Bakris GL, Black HR, et al. Seventh report of the jointnational committee on prevention, detection, evaluation, and treatment ofhigh blood pressure. Hypertension2003;42:1206-1252
    60Hussein AA, Uno K, Wolski K, et al. Peripheral arterial disease andprogression of coronary atherosclerosis. Journal of the American Collegeof Cardiology2011;57:1220-1225
    61Steg PG, Bhatt DL, Wilson PW, et al. One-year cardiovascular event ratesin outpatients with atherothrombosis. JAMA: the journal of the AmericanMedical Association2007;297:1197-1206
    62Sen S, Lynch DR, Kaltsas E, et al. Association of asymptomatic peripheralarterial disease with vascular events in patients with stroke or transientischemic attack. Stroke2009;40:3472-3477
    63Tsivgoulis G, Bogiatzi C, Heliopoulos I, et al. Low Ankle-Brachial Indexpredicts early risk of recurrent stroke in patients with acute cerebralischemia. Atherosclerosis2011
    64Badheka AO, Rathod AD, Bharadwaj AS, et al. Outcomes and RiskPrediction Model for Peripheral Arterial Disease in Patients with StableCoronary Artery Disease. Angiology2011;62:473-479
    65Kumakura H, Kanai H, Araki Y, et al. Sex-related differences in Japanesepatients with peripheral arterial disease. Atherosclerosis2011;219:846-850
    66Narins CR, Zareba W, Moss AJ, et al. Relationship between intermittentclaudication, inflammation, thrombosis, and recurrent cardiac eventsamong survivors of myocardial infarction. Archives of internal medicine2004;164:440
    67Dormandy JA, Rutherford RB. Management of peripheral arterial disease(PAD). TASC Working Group. TransAtlantic Inter-Society Consensus(TASC). J Vasc Surg2000;31:S1-S296
    68Edmonds M, Laws J, Watkins P. Medial arterial calcification and diabeticneuropathy. British medical journal (Clinical research ed.)1982;284:1712-1712
    1Allison MA, Ho E, Denenberg JO, et al. Ethnic-specific prevalence ofperipheral arterial disease in the United States. American journal ofpreventive medicine2007;32:328-333
    2Ix JH, Allison MA, Denenberg JO, et al. Novel Cardiovascular RiskFactors Do Not Completely Explain the Higher Prevalence of PeripheralArterial Disease Among African Americans: The San Diego PopulationStudy. Journal of the American College of Cardiology2008;51:2347-2354
    3Bennett PC, Silverman S, Gill PS, et al. Ethnicity and peripheral arterydisease. QJM2009;102:3-16
    4Berg AO, Baird MA, Botkin JR, et al. National Institutes of HealthState-of-the-Science Conference Statement: Family History and ImprovingHealth. Ann Intern Med2009;151:872-877
    5Knowles JW, Assimes TL, Li J, et al. Genetic susceptibility to peripheralarterial disease: a dark corner in vascular biology. Arterioscler ThrombVasc Biol2007;27:2068-2078
    6Zintzaras E, Zdoukopoulos N. A field synopsis and meta-analysis ofgenetic association studies in peripheral arterial disease: TheCUMAGAS-PAD database. Am J Epidemiol2009;170:1-11
    7McPherson R, Pertsemlidis A, Kavaslar N, et al. A common allele onchromosome9associated with coronary heart disease. Science2007;316:1488-1491
    8Helgadottir A, Thorleifsson G, Magnusson KP, et al. The same sequencevariant on9p21associates with myocardial infarction, abdominal aorticaneurysm and intracranial aneurysm. Nat Genet2008;40:217-224
    9Zhang W, Chen Y, Liu P, et al. Variants on chromosome9p21.3correlatedwith ANRIL expression contribute to stroke risk and recurrence in a largeprospective stroke population. Stroke2012;43:14-21
    10Xie F, Chu X, Wu H, et al. Replication of putative susceptibility loci fromgenome-wide association studies associated with coronary atherosclerosisin Chinese Han population. PLoS One2011;6:e20833
    11Patel RS, Su S, Neeland IJ, et al. The chromosome9p21risk locus isassociated with angiographic severity and progression of coronary arterydisease. European heart journal2010;31:3017-3023
    12Anderson CD, Biffi A, Rost NS, et al. Chromosome9p21in IschemicStroke Population Structure and Meta-Analysis. Stroke2010;41:1123-1131
    13Cluett C, McDermott MMG, Guralnik J, et al. The9p21MyocardialInfarction Risk Allele Increases Risk of Peripheral Artery Disease in OlderPeopleCLINICAL PERSPECTIVE. Circulation: Cardiovascular Genetics2009;2:347-353
    14Ye S, Willeit J, Kronenberg F, et al. Association of Genetic Variation onChromosome9p21With Susceptibility and Progression of Atherosclerosis::A Population-Based, Prospective Study. Journal of the American Collegeof Cardiology2008;52:378-384
    15Wagenknecht LE, Bowden DW, Carr JJ, et al. Familial aggregation ofcoronary artery calcium in families with type2diabetes. Diabetes2001;50:861-866
    16Lange LA, Bowden DW, Langefeld CD, et al. Heritability of carotid arteryintima-medial thickness in type2diabetes. Stroke2002;33:1876-1881
    17Kullo IJ, Bailey KR, Kardia SL, et al. Ethnic differences in peripheralarterial disease in the NHLBI Genetic Epidemiology Network ofArteriopathy (GENOA) study. Vasc Med2003;8:237-242
    18Valentine RJ, Guerra R, Stephan P, et al. Family history is a majordeterminant of subclinical peripheral arterial disease in young adults. JVasc Surg2004;39:351-356
    19Wassel CL, Loomba R, Ix JH, et al. Family history of peripheral arterydisease is associated with prevalence and severity of peripheral arterydisease: the San Diego population study. J Am Coll Cardiol2011;58:1386-1392
    20Samani NJ, Erdmann J, Hall AS, et al. Genomewide association analysis ofcoronary artery disease. New England Journal of Medicine2007;357:443-453
    21Helgadottir A, Thorleifsson G, Manolescu A, et al. A common variant onchromosome9p21affects the risk of myocardial infarction. Science2007;316:1491-1493
    22Shah AM, Banerjee T, Mukherjee D. Coronary, peripheral andcerebrovascular disease: a complex relationship. Herz2008;33:475-480
    23Tsai PC, Liao YC, Lin TH, et al. Additive effect of ANRIL and BRAPpolymorphisms on ankle-brachial index in a Taiwanese population. Circ J2012;76:446-452
    24Yamagishi K, Folsom AR, Rosamond WD, et al. A genetic variant onchromosome9p21and incident heart failure in the ARIC study. Europeanheart journal2009;30:1222-1228
    25Murabito JM, White CC, Kavousi M, et al. Association betweenchromosome9p21variants and the ankle-brachial index identified by ameta-analysis of21genome-wide association studies. Circ CardiovascGenet2012;5:100-112
    26A haplotype map of the human genome. Nature2005;437:1299-1320
    27Bacci S, Menzaghi C, Ercolino T, et al. The+276G/T single nucleotidepolymorphism of the adiponectin gene is associated with coronary arterydisease in type2diabetic patients. Diabetes Care2004;27:2015-2020
    28Qi L, Li T, Rimm E, et al. The+276polymorphism of the APM1gene,plasma adiponectin concentration, and cardiovascular risk in diabetic men.Diabetes2005;54:1607-1610
    29Bacci S, Ludovico O, Prudente S, et al. The K121Q polymorphism of theENPP1/PC-1gene is associated with insulin resistance/atherogenicphenotypes, including earlier onset of type2diabetes and myocardialinfarction. Diabetes2005;54:3021-3025
    30Boonyasrisawat W, Eberle D, Bacci S, et al. Tag polymorphisms at the A20(TNFAIP3) locus are associated with lower gene expression and increasedrisk of coronary artery disease in type2diabetes. Diabetes2007;56:499-505
    31Broadbent HM, Peden JF, Lorkowski S, et al. Susceptibility to coronaryartery disease and diabetes is encoded by distinct, tightly linked SNPs inthe ANRIL locus on chromosome9p. Hum Mol Genet2008;17:806-814
    32Doria A, Wojcik J, Xu R, et al. Interaction between poor glycemic controland9p21locus on risk of coronary artery disease in type2diabetes.JAMA2008;300:2389-2397
    33Wang W, Peng WH, Lu L, et al. Polymorphism on chromosome9p21.3contributes to early-onset and severity of coronary artery disease innon-diabetic and type2diabetic patients. Chin Med J (Engl)2011;124:66-71
    34Holdt LM, Beutner F, Scholz M, et al. ANRIL expression is associated withatherosclerosis risk at chromosome9p21. Arterioscler Thromb Vasc Biol2010;30:620-627
    35Jarinova O, Stewart AF, Roberts R, et al. Functional analysis of thechromosome9p21.3coronary artery disease risk locus. ArteriosclerThromb Vasc Biol2009;29:1671-1677
    36Kim WY, Sharpless NE. The regulation of INK4/ARF in cancer and aging.Cell2006;127:265-275
    37Visel A, Zhu Y, May D, et al. Targeted deletion of the9p21non-codingcoronary artery disease risk interval in mice. Nature2010;464:409-412
    38Motterle A, Pu X, Wood H, et al. Functional analyses of coronary arterydisease associated variation on chromosome9p21in vascular smoothmuscle cells. Human Molecular Genetics2012
    39Cunnington MS, Santibanez Koref M, Mayosi BM, et al. Chromosome9p21SNPs Associated with Multiple Disease Phenotypes Correlate withANRIL Expression. PLoS Genet2010;6:e1000899
    40Holdt LM, Sass K, G bel G, et al. Expression of Chr9p21genes CDKN2B(p15(INK4b)), CDKN2A (p16(INK4a), p14(ARF)) and MTAP in humanatherosclerotic plaque. Atherosclerosis2011;214:264
    41Kamb A, Gruis NA, Weaver-Feldhaus J, et al. A cell cycle regulatorpotentially involved in genesis of many tumor types. Science1994;264:436-440
    42Pomerantz J, Schreiber-Agus N, Liegeois NJ, et al. The Ink4a tumorsuppressor gene product, p19Arf, interacts with MDM2and neutralizesMDM2's inhibition of p53. Cell1998;92:713-723
    43Hannon GJ, Beach D. p15INK4B is a potential effector ofTGF-beta-induced cell cycle arrest. Nature1994;371:257-261
    44Krishnamurthy J, Torrice C, Ramsey MR, et al. Ink4a/Arf expression is abiomarker of aging. Journal of Clinical Investigation2004;114:1299-1307
    45Janzen V, Forkert R, Fleming HE, et al. Stem-cell ageing modified by thecyclin-dependent kinase inhibitor p16INK4a. Nature2006;443:421-426
    46Krishnamurthy J, Ramsey MR, Ligon KL, et al. p16INK4a induces anage-dependent decline in islet regenerative potential. Nature2006;443:453-457
    47Harismendy O, Notani D, Song X, et al.9p21DNA variants associatedwith coronary artery disease impair interferon-gamma signalling response.Nature2011;470:264-268
    1Knowles JW, Assimes TL, Li J, et al. Genetic susceptibility to peripheralarterial disease: a dark corner in vascular biology. Arterioscler ThrombVasc Biol2007;27:2068-2078
    2Agrawal RP, Sharma P, Pal M, et al. Magnitude of dyslipedemia and itsassociation with micro and macro vascular complications in type2diabetes: a hospital based study from Bikaner (Northwest India). DiabetesRes Clin Pract2006;73:211-214
    3Wattanakit K, Folsom AR, Selvin E, et al. Risk factors for peripheralarterial disease incidence in persons with diabetes: the AtherosclerosisRisk in Communities (ARIC) Study. Atherosclerosis2005;180:389-398
    4Zintzaras E, Zdoukopoulos N. A field synopsis and meta-analysis ofgenetic association studies in peripheral arterial disease: theCUMAGAS-PAD database. American journal of epidemiology2009;170:1-11
    5Sticchi E, Sofi F, Romagnuolo I, et al. eNOS and ACE genes influenceperipheral arterial disease predisposition in smokers. J Vasc Surg2010;52:97-102e101
    6Flex A, Gaetani E, Angelini F, et al. Pro-inflammatory genetic profiles insubjects with peripheral arterial occlusive disease and critical limbischemia. J Intern Med2007;262:124-130
    7Wang W, Peng WH, Lu L, et al. Polymorphism on chromosome9p21.3contributes to early-onset and severity of coronary artery disease innon-diabetic and type2diabetic patients. Chin Med J (Engl)2011;124:66-71
    8Thorgeirsson TE, Geller F, Sulem P, et al. A variant associated withnicotine dependence, lung cancer and peripheral arterial disease. Nature2008;452:638-642
    9de Magalhaes JP, Wuttke D, Wood SH, et al. Genome-environmentinteractions that modulate aging: powerful targets for drug discovery.Pharmacol Rev2012;64:88-101
    10Womack JE, Jang HJ, Lee MO. Genomics of complex traits. Ann N Y AcadSci2012;1271:33-36
    11Dunn EC, Uddin M, Subramanian SV, et al. Research review:gene-environment interaction research in youth depression-a systematicreview with recommendations for future research. J Child PsycholPsychiatry2011;52:1223-1238
    12Andreasen CH, Stender-Petersen KL, Mogensen MS, et al. Low physicalactivity accentuates the effect of the FTO rs9939609polymorphism onbody fat accumulation. Diabetes2008;57:95-101
    13Demerath EW, Lutsey PL, Monda KL, et al. Interaction of FTO andphysical activity level on adiposity in African-American andEuropean-American adults: the ARIC study. Obesity (Silver Spring)2011;19:1866-1872
    14Samani NJ, Erdmann J, Hall AS, et al. Genomewide association analysis ofcoronary artery disease. New England Journal of Medicine2007;357:443-453
    15Helgadottir A, Thorleifsson G, Manolescu A, et al. A common variant onchromosome9p21affects the risk of myocardial infarction. Science2007;316:1491-1493
    16Matarin M, Brown WM, Singleton A, et al. Whole genome analysessuggest ischemic stroke and heart disease share an association withpolymorphisms on chromosome9p21. Stroke2008;39:1586-1589
    17Zhang Q, Wang X, Cheng S, et al. Three SNPs on chromosome9p21confer increased risk of myocardial infarction in Chinese subjects.Atherosclerosis2009;207:26-28
    18Shen GQ, Li L, Rao S, et al. Four SNPs on chromosome9p21in a SouthKorean population implicate a genetic locus that confers high cross-racerisk for development of coronary artery disease. Arterioscler Thromb VascBiol2008;28:360-365
    19Koch W, Türk S, Erl A, et al. The chromosome9p21region and myocardialinfarction in a European population. Atherosclerosis2011
    20Zhang W, Chen Y, Liu P, et al. Variants on Chromosome9p21.3CorrelatedWith ANRIL Expression Contribute to Stroke Risk and Recurrence in aLarge Prospective Stroke Population. Stroke2012;43:14-21
    21Anderson CD, Biffi A, Rost NS, et al. Chromosome9p21in ischemicstroke: population structure and meta-analysis. Stroke2010;41:1123-1131
    22Olsson S, Jood K, Blomstrand C, et al. Genetic variation on chromosome9p21shows association with the ischaemic stroke subtype large-vesseldisease in a Swedish sample aged≤70. European Journal of Neurology2011;18:365-367
    23Tsai PC, Liao YC, Lin TH, et al. Additive effect of ANRIL and BRAPpolymorphisms on ankle-brachial index in a Taiwanese population. Circ J2012;76:446-452
    24Helgadottir A, Thorleifsson G, Magnusson KP, et al. The same sequencevariant on9p21associates with myocardial infarction, abdominal aorticaneurysm and intracranial aneurysm. Nat Genet2008;40:217-224
    25Yamagishi K, Folsom AR, Rosamond WD, et al. A genetic variant onchromosome9p21and incident heart failure in the ARIC study. Europeanheart journal2009;30:1222-1228
    26Ye S, Willeit J, Kronenberg F, et al. Association of Genetic Variation onChromosome9p21With Susceptibility and Progression of Atherosclerosis::A Population-Based, Prospective Study. Journal of the American Collegeof Cardiology2008;52:378-384
    27Cluett C, McDermott MMG, Guralnik J, et al. The9p21MyocardialInfarction Risk Allele Increases Risk of Peripheral Artery Disease in OlderPeopleCLINICAL PERSPECTIVE. Circulation: Cardiovascular Genetics2009;2:347-353
    28Murabito JM, White CC, Kavousi M, et al. Association betweenchromosome9p21variants and the ankle-brachial index identified by ameta-analysis of21genome-wide association studies. Circ CardiovascGenet2012;5:100-112
    29Nakaoka H, Takahashi T, Akiyama K, et al. Differential effects ofchromosome9p21variation on subphenotypes of intracranial aneurysm:site distribution. Stroke2010;41:1593-1598
    30Doria A, Wojcik J, Xu R, et al. Interaction between poor glycemic controland9p21locus on risk of coronary artery disease in type2diabetes.JAMA2008;300:2389-2397
    31Rantner B, Kollerits B, Anderwald-Stadler M, et al. Association betweenthe UGT1A1TA-repeat polymorphism and bilirubin concentration inpatients with intermittent claudication: results from the CAVASIC study.Clin Chem2008;54:851-857
    1Newman A, Siscovick D, Manolio T, et al. Ankle-arm index as a marker ofatherosclerosis in the cardiovascular health study. Cardiovascular heartstudy (CHS) collaborative research group. Circulation1993;88:837-845
    2Criqui MH, Langer RD, Fronek A, et al. Mortality over a period of10years in patients with peripheral arterial disease. New England Journal ofMedicine1992;326:381-386
    3Golomb BA, Dang TT, Criqui MH. Peripheral arterial disease: morbidityand mortality implications. Circulation2006;114:688-699
    4Resnick HE, Lindsay RS, McDermott MM, et al. Relationship of high andlow ankle brachial index to all-cause and cardiovascular disease mortality.Circulation2004;109:733-739
    5Prompers L, Huijberts M, Apelqvist J, et al. High prevalence of ischaemia,infection and serious comorbidity in patients with diabetic foot disease inEurope. Baseline results from the Eurodiale study. Diabetologia2007;50:18-25
    6Orchard TJ, Strandness DE, Jr. Assessment of peripheral vascular diseasein diabetes. Report and recommendations of an international workshopsponsored by the American Diabetes Association and the American HeartAssociation September18-20,1992New Orleans, Louisiana. Circulation1993;88:819-828
    7The effect of intensive treatment of diabetes on the development andprogression of long-term complications in insulin-dependent diabetesmellitus. The Diabetes Control and Complications Trial Research Group.N Engl J Med1993;329:977-986
    8PERIPHERAL IO. Peripheral arterial disease in people with diabetes.Diabetes Care2003;26:3333
    9Kullo IJ, Bailey KR, Kardia SL, et al. Ethnic differences in peripheralarterial disease in the NHLBI Genetic Epidemiology Network ofArteriopathy (GENOA) study. Vascular Medicine2003;8:237-242
    10Berg AO, Baird MA, Botkin JR, et al. National Institutes of HealthState-of-the-Science Conference Statement: Family History and ImprovingHealth. Ann Intern Med2009;151:872-877
    11Wagenknecht LE, Bowden DW, Carr JJ, et al. Familial aggregation ofcoronary artery calcium in families with type2diabetes. Diabetes2001;50:861-866
    12Doria A, Wojcik J, Xu R, et al. Interaction between poor glycemic controland9p21locus on risk of coronary artery disease in type2diabetes.JAMA: the journal of the American Medical Association2008;300:2389-2397
    13Helgadottir A, Thorleifsson G, Manolescu A, et al. A common variant onchromosome9p21affects the risk of myocardial infarction. Science2007;316:1491-1493
    14Melton LJ, Kathleen MM, Palumbo P, et al. Incidence and prevalence ofclinical peripheral vascular disease in a population-based cohort ofdiabetic patients. Diabetes Care1980;3:650-654
    15KANNEL WB, SKINNER JR JJ, SCHWARTZ MJ, et al. Intermittentclaudication: incidence in the Framingham Study. Circulation1970;41:875-883
    16Rhee SY, Guan H, Liu ZM, et al. Multi-country study on the prevalenceand clinical features of peripheral arterial disease in Asian type2diabetespatients at high risk of atherosclerosis. Diabetes research and clinicalpractice2007;76:82-92
    17He Y, Jiang Y, Wang J, et al. Prevalence of peripheral arterial disease andits association with smoking in a population-based study in Beijing, China.Journal of vascular surgery2006;44:333-338
    18Li J, Luo Y, Xu Y, et al. Risk factors of peripheral arterial disease andrelationship between low ankle-brachial index and mortality fromall-cause and cardiovascular disease in Chinese patients with type2diabetes. Circulation journal: official journal of the Japanese CirculationSociety2007;71:377
    19Premalatha G, Shanthirani S, Deepa R, et al. Prevalence and risk factors ofperipheral vascular disease in a selected South Indian population: theChennai Urban Population Study. Diabetes Care2000;23:1295-1300
    20Hirsch AT, Criqui MH, Treat-Jacobson D, et al. Peripheral arterial diseasedetection, awareness, and treatment in primary care. JAMA: the journal ofthe American Medical Association2001;286:1317-1324
    21Cacoub P, Cambou JP, Kownator S, et al. Prevalence of peripheral arterialdisease in high-risk patients using ankle-brachial index in general practice:a cross-sectional study. International journal of clinical practice2008;63:63-70
    22Yu JH, Hwang JY, Shin M-S, et al. The prevalence of peripheral arterialdisease in Korean patients with type2diabetes mellitus attending auniversity hospital. Diabetes&Metabolism Journal2011;35:543-550
    23Menzoian JO, LaMorte WW, Paniszyn CC, et al. Symptomatology andanatomic patterns of peripheral vascular disease: differing impact ofsmoking and diabetes. Annals of vascular surgery1989;3:224-228
    24Veves A, King GL. Can VEGF reverse diabetic neuropathy in humansubjects? Journal of Clinical Investigation2001;107:1215-1218
    25Reaven P, Sacks J. Coronary artery and abdominal aortic calcification areassociated with cardiovascular disease in type2diabetes. Diabetologia2005;48:379-385
    26Creager MA, Luscher TF, Cosentino F, et al. Diabetes and vascular disease:pathophysiology, clinical consequences, and medical therapy: Part I.Circulation2003;108:1527-1532
    27Huysmans K, Lins RL, Daelemans R, et al. Hypertension and acceleratedatherosclerosis in endstage renal disease. Journal of nephrology1998;11:185
    28Englyst NA, Taube JM, Aitman TJ, et al. A novel role for CD36inVLDL-enhanced platelet activation. Diabetes2003;52:1248-1255
    29Nicholson AC, Hajjar DP. CD36, oxidized LDL and PPAR gamma:pathological interactions in macrophages and atherosclerosis. Vascularpharmacology2004;41:139
    30Gerhard M, Baum P, Raby KE. Peripheral arterial-vascular disease inwomen: prevalence, prognosis, and treatment. Cardiology1995;86:349-355
    31Darius H, Pittrow D, Haberl R, et al. Are elevated homocysteine plasmalevels related to peripheral arterial disease? Results from a cross-sectionalstudy of6880primary care patients. European journal of clinicalinvestigation2003;33:751-757
    32Stratton IM, Adler AI, Neil HAW, et al. Association of glycaemia withmacrovascular and microvascular complications of type2diabetes(UKPDS35): prospective observational study. Bmj2000;321:405-412
    33Allison MA, Ho E, Denenberg JO, et al. Ethnic-specific prevalence ofperipheral arterial disease in the United States. American journal ofpreventive medicine2007;32:328-333
    34Ix JH, Allison MA, Denenberg JO, et al. Novel Cardiovascular RiskFactors Do Not Completely Explain the Higher Prevalence of PeripheralArterial Disease Among African Americans: The San Diego PopulationStudy. Journal of the American College of Cardiology2008;51:2347-2354
    35Zintzaras E, Zdoukopoulos N. A field synopsis and meta-analysis ofgenetic association studies in peripheral arterial disease: theCUMAGAS-PAD database. American journal of epidemiology2009;170:1-11
    36Fatini C, Sofi F, Gensini F, et al. Influence of eNOS gene polymorphismson carotid atherosclerosis. European journal of vascular and endovascularsurgery2004;27:540-544
    37Sticchi E, Sofi F, Romagnuolo I, et al. eNOS and ACE genes influenceperipheral arterial disease predisposition in smokers. Journal of vascularsurgery2010;52:97
    38Rigat B, Hubert C, Alhenc-Gelas F, et al. An insertion/deletionpolymorphism in the angiotensin I-converting enzyme gene accounting forhalf the variance of serum enzyme levels. Journal of Clinical Investigation1990;86:1343
    39Flex A, Gaetani E, Angelini F, et al. Pro-inflammatory genetic profiles insubjects with peripheral arterial occlusive disease and critical limbischemia. Journal of internal medicine2007;262:124-130
    40Libra M, Signorelli S, Bevelacqua Y, et al. Analysis of G (-174) C IL-6polymorphism and plasma concentrations of inflammatory markers inpatients with type2diabetes and peripheral arterial disease. Journal ofclinical pathology2006;59:211-215
    41Katakami N, Sakamoto Ky, Kaneto H, et al. Association between theconnexin37polymorphism and peripheral arterial disease in subjects withtype2diabetes. Diabetes Care2009;32:e53-e54
    42Cluett C, McDermott MM, Guralnik J, et al. The9p21MyocardialInfarction Risk Allele Increases Risk of Peripheral Artery Disease in OlderPeopleCLINICAL PERSPECTIVE. Circulation: Cardiovascular Genetics2009;2:347-353
    43Wang W, Peng WH, Lu L, et al. Polymorphism on chromosome9p21.3contributes to early-onset and severity of coronary artery disease innon-diabetic and type2diabetic patients. Chin Med J (Engl)2011;124:66-71
    44Reny JL, Alhenc-Gelas M, Fontana P, et al. The factor II G20210A genepolymorphism, but not factor V Arg506Gln, is associated with peripheralarterial disease: results of a case–control study. Journal of Thrombosis andHaemostasis2004;2:1334-1340
    45Fontana P, Gaussem P, Aiach M, et al. P2Y12H2haplotype is associatedwith peripheral arterial disease. Circulation2003;108:2971-2973
    46Sofi F, Lari B, Rogolino A, et al. Thrombophilic risk factors forsymptomatic peripheral arterial disease. J Vasc Surg2005;41:255-260
    47Pollex RL, Mamakeesick M, Zinman B, et al. Methylenetetrahydrofo-latereductase polymorphism677C> T is associated with peripheral arterialdisease in type2diabetes. Cardiovascular diabetology2005;4:17
    48Gudmundsson G, Matthiasson SE, Arason H, et al. Localization of a genefor peripheral arterial occlusive disease to chromosome1p31. TheAmerican Journal of Human Genetics2002;70:586-592
    49Thorgeirsson TE, Geller F, Sulem P, et al. A variant associated withnicotine dependence, lung cancer and peripheral arterial disease. Nature2008;452:638-642
    50Jiang YD, Chang YC, Chiu YF, et al. SLC2A10genetic polymorphismpredicts development of peripheral arterial disease in patients with type2diabetes. SLC2A10and PAD in type2diabetes. BMC Med Genet2010;11:126
    51Coucke PJ, Willaert A, Wessels MW, et al. Mutations in the facilitativeglucose transporter GLUT10alter angiogenesis and cause arterialtortuosity syndrome. Nature genetics2006;38:452-457
    52Fukino K, Sata M, Seko Y, et al. Genetic background influences therapeuticeffectiveness of VEGF. Biochemical and biophysical researchcommunications2003;310:143-147
    53Dokun AO, Keum S, Hazarika S, et al. A quantitative trait locus (LSq-1) onmouse chromosome7is linked to the absence of tissue loss after surgicalhindlimb ischemia. Circulation2008;117:1207-1215
    1Broadbent HM, Peden JF, Lorkowski S, et al. Susceptibility to coronaryartery disease and diabetes is encoded by distinct, tightly linked SNPs inthe ANRIL locus on chromosome9p. Hum Mol Genet2008;17:806-814
    2McPherson R, Pertsemlidis A, Kavaslar N, et al. A common allele onchromosome9associated with coronary heart disease. Science2007;316:1488-1491
    3Helgadottir A, Thorleifsson G, Manolescu A, et al. A common variant onchromosome9p21affects the risk of myocardial infarction. Science2007;316:1491-1493
    4Burton PR, Clayton DG, Cardon LR, et al. Genome-wide association studyof14,000cases of seven common diseases and3,000shared controls.Nature2007;447:661-678
    5Samani NJ, Erdmann J, Hall AS, et al. Genomewide association analysisof coronary artery disease. New England Journal of Medicine2007;357:443-453
    6Gori F, Specchia C, Pietri S, et al. Common genetic variants onchromosome9p21are associated with myocardial infarction and type2diabetes in an Italian population. BMC medical genetics2010;11:60
    7Saxena R, Voight BF, Lyssenko V, et al. Genome-wide association analysisidentifies loci for type2diabetes and triglyceride levels. Science2007;316:1331-1336
    8Ding H, Xu Y, Wang X, et al.9p21is a Shared Susceptibility LocusStrongly for Coronary Artery Disease and Weakly for Ischemic Stroke inChinese Han PopulationCLINICAL PERSPECTIVE. Circulation:Cardiovascular Genetics2009;2:338-346
    9Hinohara K, Nakajima T, Takahashi M, et al. Replication of the associationbetween a chromosome9p21polymorphism and coronary artery disease inJapanese and Korean populations. Journal of human genetics2008;53:357-359
    10Palomaki GE, Melillo S, Bradley LA. Association between9p21genomicmarkers and heart disease. JAMA: the journal of the American MedicalAssociation2010;303:648-656
    11Assimes TL, Knowles JW, Basu A, et al. Susceptibility locus for clinicaland subclinical coronary artery disease at chromosome9p21in themulti-ethnic ADVANCE study. Human Molecular Genetics2008;17:2320-2328
    12Patel RS, Su S, Neeland IJ, et al. The chromosome9p21risk locus isassociated with angiographic severity and progression of coronary arterydisease. Eur Heart J2010;31:3017-3023
    13Dandona S, Stewart AF, Chen L, et al. Gene dosage of the common variant9p21predicts severity of coronary artery disease. Journal of the AmericanCollege of Cardiology2010;56:479-486
    14Ardissino D, Berzuini C, Merlini PA, et al. Influence of9p21.3geneticvariants on clinical and angiographic outcomes in early-onset myocardialinfarction. Journal of the American College of Cardiology2011;58:426-434
    15Anderson JL, Horne BD. The9p21Locus and Coronary Heart Disease:Initiator, Promoter, or Precipitator?. Journal of the American College ofCardiology2010;56:487-489
    16Chen Z, Qian Q, Ma G, et al. A common variant on chromosome9p21affects the risk of early-onset coronary artery disease. Molecular biologyreports2009;36:889-893
    17Yamagishi K, Folsom AR, Rosamond WD, et al. A genetic variant onchromosome9p21and incident heart failure in the ARIC study. Europeanheart journal2009;30:1222-1228
    18Newton-Cheh C, Cook NR, VanDenburgh M, et al. A common variant at9p21is associated with sudden and arrhythmic cardiac death. Circulation2009;120:2062-2068
    19Muehlschlegel JD, Liu K-Y, Perry TE, et al. Chromosome9p21variantpredicts mortality after coronary artery bypass graft surgery. Circulation2010;122:S60-S65
    20Karvanen J, Silander K, Kee F, et al. The impact of newly identified loci oncoronary heart disease, stroke and total mortality in the MORGAMprospective cohorts. Genetic epidemiology2009;33:237-246
    21Gschwendtner A, Bevan S, Cole JW, et al. Sequence variants onchromosome9p21.3confer risk for atherosclerotic stroke. Annals ofneurology2009;65:531-539
    22Matarin M, Brown WM, Singleton A, et al. Whole genome analysessuggest ischemic stroke and heart disease share an association withpolymorphisms on chromosome9p21. Stroke2008;39:1586-1589
    23Helgadottir A, Thorleifsson G, Magnusson KP, et al. The same sequencevariant on9p21associates with myocardial infarction, abdominal aorticaneurysm and intracranial aneurysm. Nat Genet2008;40:217-224
    24Ikram MA, Seshadri S, Bis JC, et al. Genomewide association studies ofstroke. New England Journal of Medicine2009;360:1718-1728
    25Anderson CD, Biffi A, Rost NS, et al. Chromosome9p21in ischemicstroke: population structure and meta-analysis. Stroke2010;41:1123-1131
    26Holdt LM, Beutner F, Scholz M, et al. ANRIL expression is associated withatherosclerosis risk at chromosome9p21. Arteriosclerosis, thrombosis, andvascular biology2010;30:620-627
    27Ye S, Willeit J, Kronenberg F, et al. Association of genetic variation onchromosome9p21with susceptibility and progression of atherosclerosis: apopulation-based, prospective study. Journal of the American College ofCardiology2008;52:378-384
    28Ye S, Willeit J, Kronenberg F, et al. Association of Genetic Variation onChromosome9p21With Susceptibility and Progression of Atherosclerosis::A Population-Based, Prospective Study. Journal of the American Collegeof Cardiology2008;52:378-384
    29Samani NJ, Raitakari OT, Sipil K, et al. Coronary ArteryDisease–Associated Locus on Chromosome9p21and Early Markers ofAtherosclerosis. Arteriosclerosis, thrombosis, and vascular biology2008;28:1679-1683
    30Cluett C, McDermott MMG, Guralnik J, et al. The9p21MyocardialInfarction Risk Allele Increases Risk of Peripheral Artery Disease in OlderPeopleCLINICAL PERSPECTIVE. Circulation: Cardiovascular Genetics2009;2:347-353
    31Tsai PC, Liao YC, Lin TH, et al. Additive effect of ANRIL and BRAPpolymorphisms on ankle-brachial index in a Taiwanese population. Circ J2012;76:446-452
    32Murabito JM, White CC, Kavousi M, et al. Association betweenchromosome9p21variants and the ankle-brachial index identified by ameta-analysis of21genome-wide association studies. Circ CardiovascGenet2012;5:100-112
    33Bilguvar K, Yasuno K, Niemel M, et al. Susceptibility loci for intracranialaneurysm in European and Japanese populations. Nature genetics2008;40:1472-1477
    34Thompson AR, Golledge J, Cooper JA, et al. Sequence variant on9p21isassociated with the presence of abdominal aortic aneurysm disease butdoes not have an impact on aneurysmal expansion. European Journal ofHuman Genetics2008;17:391-394
    35Nakaoka H, Takahashi T, Akiyama K, et al. Differential Effects ofChromosome9p21Variation on Subphenotypes of Intracranial AneurysmSite Distribution. Stroke2010;41:1593-1598
    36Norman P, Powell J. Site specificity of aneurysmal disease. Circulation2010;121:560-568
    37Wang W, Peng WH, Lu L, et al. Polymorphism on chromosome9p21.3contributes to early-onset and severity of coronary artery disease innon-diabetic and type2diabetic patients. Chin Med J (Engl)2011;124:66-71
    38Doria A, Wojcik J, Xu R, et al. Interaction between poor glycemic controland9p21locus on risk of coronary artery disease in type2diabetes.JAMA: the journal of the American Medical Association2008;300:2389-2397
    39Tsai P-C, Liao Y-C, Lin T-H, et al. Additive effect of ANRIL and BRAPpolymorphisms on ankle-brachial index in a Taiwanese population. Circ J2011;76:446-452
    40Nakaoka H, Takahashi T, Akiyama K, et al. Differential effects ofchromosome9p21variation on subphenotypes of intracranial aneurysm:site distribution. Stroke2010;41:1593-1598
    41Musunuru K, Post WS, Herzog W, et al. Association of SNPs onchromosome9p21.3with platelet reactivity: a potential mechanism forincreased vascular disease. Circulation. Cardiovascular genetics2010;3:445
    42Ernst FD, Uhr K, Teumer A, et al. Replication of the association ofchromosomal region9p21.3with generalized aggressive periodontitis(gAgP) using an independent case-control cohort. BMC medical genetics2010;11:119
    43Schaefer AS, Richter GM, Groessner-Schreiber B, et al. Identification of ashared genetic susceptibility locus for coronary heart disease andperiodontitis. PLoS genetics2009;5:e1000378
    44Persson GR, Persson RE. Cardiovascular disease and periodontitis: anupdate on the associations and risk. Journal of clinical periodontology2008;35:362-379
    45Ye S, Willeit J, Xiao Q, et al. Single nucleotide polymorphism onchromosome9p21and endothelial progenitor cells in a general populationcohort. Atherosclerosis2010;208:451-455
    46Turnbull C, Ahmed S, Morrison J, et al. Genome-wide association studyidentifies five new breast cancer susceptibility loci. Nature genetics2010;42:504-507
    47Stacey SN, Sulem P, Masson G, et al. New common variants affectingsusceptibility to basal cell carcinoma. Nature genetics2009;41:909-914
    48Shete S, Hosking FJ, Robertson LB, et al. Genome-wide association studyidentifies five susceptibility loci for glioma. Nature genetics2009;41:899-904
    49Uno S, Zembutsu H, Hirasawa A, et al. A genome-wide association studyidentifies genetic variants in the CDKN2BAS locus associated withendometriosis in Japanese. Nature genetics2010;42:707-710
    50van Es MA, Veldink JH, Saris CG, et al. Genome-wide association studyidentifies19p13.3(UNC13A) and9p21.2as susceptibility loci forsporadic amyotrophic lateral sclerosis. Nature genetics2009;41:1083-1087
    51Falchi M, Bataille V, Hayward NK, et al. Genome-wide association studyidentifies variants at9p21and22q13associated with development ofcutaneous nevi. Nature genetics2009;41:915-919
    52Bishop DT, Demenais F, Iles MM, et al. Genome-wide association studyidentifies three loci associated with melanoma risk. Nature genetics2009;41:920-925
    53Kim WY, Sharpless NE. The regulation of INK4/ARF in cancer and aging.Cell2006;127:265-275
    54Andreassi MG. DNA damage, vascular senescence and atherosclerosis.Journal of Molecular Medicine2008;86:1033-1043
    55Kalinina N, Agrotis A, Antropova Y, et al. Smad Expression in HumanAtherosclerotic Lesions Evidence for Impaired TGF-β/Smad Signaling inSmooth Muscle Cells of Fibrofatty Lesions. Arteriosclerosis, thrombosis,and vascular biology2004;24:1391-1396
    56González-Navarro H, Nabah YNA, Vinué á, et al. p19ARF deficiencyreduces macrophage and vascular smooth muscle cell apoptosis andaggravates atherosclerosis. Journal of the American College of Cardiology2010;55:2258-2268
    57Kuo C-L, Murphy AJ, Sayers S, et al. Cdkn2a is an atherosclerosismodifier locus that regulates monocyte/macrophage proliferation.Arteriosclerosis, thrombosis, and vascular biology2011;31:2483-2492
    58Gil J, Peters G. Regulation of the INK4b–ARF–INK4a tumour suppressorlocus: all for one or one for all. Nature Reviews Molecular Cell Biology2006;7:667-677
    59Thomas*T, Thomas T. Polyamines in cell growth and cell death: molecularmechanisms and therapeutic applications. Cellular and Molecular LifeSciences2001;58:244-258
    60Christopher SA, Diegelman P, Porter CW, et al. Methylthioadenosinephosphorylase, a gene frequently codeleted with p16cdkN2a/ARF, acts asa tumor suppressor in a breast cancer cell line. Cancer research2002;62:6639-6644
    61Liu Y, Sanoff HK, Cho H, et al. INK4/ARF transcript expression isassociated with chromosome9p21variants linked to atherosclerosis. PloSone2009;4:e5027
    62Cunnington MS, Koref MS, Mayosi BM, et al. Chromosome9p21SNPsassociated with multiple disease phenotypes correlate with ANRILexpression. PLoS genetics2010;6:e1000899
    63Jarinova O, Stewart AF, Roberts R, et al. Functional analysis of thechromosome9p21.3coronary artery disease risk locus. Arteriosclerosis,thrombosis, and vascular biology2009;29:1671-1677
    64Holdt LM, Sass K, G bel G, et al. Expression of Chr9p21genes CDKN2B(p15(INK4b)), CDKN2A (p16(INK4a), p14(ARF)) and MTAP in humanatherosclerotic plaque. Atherosclerosis2011;214:264
    65Folkersen L, Kyriakou T, Goel A, et al. Relationship between CAD riskgenotype in the chromosome9p21locus and gene expression.Identification of eight new ANRIL splice variants. PloS one2009;4:e7677
    66Visel A, Zhu Y, May D, et al. Targeted deletion of the9p21non-codingcoronary artery disease risk interval in mice. Nature2010;464:409-412
    67Pasmant E, Laurendeau I, Héron D, et al. Characterization of a germ-linedeletion, including the entire INK4/ARF locus, in a melanoma-neuralsystem tumor family: identification of ANRIL, an antisense noncodingRNA whose expression coclusters with ARF. Cancer research2007;67:3963-3969
    68Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights intofunctions. Nature Reviews Genetics2009;10:155-159
    69Yu W, Gius D, Onyango P, et al. Epigenetic silencing of tumour suppressorgene p15by its antisense RNA. Nature2008;451:202-206
    70Yap KL, Li S, Munoz-Cabello AM, et al. Molecular interplay of thenoncoding RNA ANRIL and methylated histone H3lysine27bypolycomb CBX7in transcriptional silencing of INK4a. Mol Cell2010;38:662-674
    71Kotake Y, Nakagawa T, Kitagawa K, et al. Long non-coding RNA ANRILis required for the PRC2recruitment to and silencing of p15INK4B tumorsuppressor gene. Oncogene2010;30:1956-1962
    72Sato K, Nakagawa H, Tajima A, et al. ANRIL is implicated in theregulation of nucleus and potential transcriptional target of E2F1.Oncology reports2010;24:701
    73Brautbar A, Ballantyne CM, Lawson K, et al. Impact of Adding a SingleAllele in the9p21Locus to Traditional Risk Factors on Reclassification ofCoronary Heart Disease Risk and Implications for Lipid-ModifyingTherapy in the Atherosclerosis Risk in Communities StudyCLINICALPERSPECTIVE. Circulation: Cardiovascular Genetics2009;2:279-285
    74Talmud PJ, Cooper JA, Palmen J, et al. Chromosome9p21.3coronaryheart disease locus genotype and prospective risk of CHD in healthymiddle-aged men. Clinical chemistry2008;54:467-474
    75Dov S, O'Meara Ellen RC, Judy L, et al. The contribution of a9p21.3variant, a KIF6variant, and C-reactive protein to predicting risk ofmyocardial infarction in a prospective study. BMC CardiovascularDisorders;11
    76Ripatti S, Tikkanen E, Orho-Melander M, et al. A multilocus genetic riskscore for coronary heart disease: case-control and prospective cohortanalyses. The Lancet2010;376:1393-1400

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700