c-BN/SiAlON及B_4C陶瓷复合材料的制备及其组织与性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对c-BN和B_4C难烧结致密化,通过SiAlON生成过程产生的液相来降低c-BN的烧结温度,在较低的温度下实现c-BN的致密化,对于B_4C材料,通过添加Si在高温产生液相来实现B_4C的致密化,采用放电等离子烧结法制备c-BN/SiAlON和含Si的B_4C基复合材料。系统研究了成份和烧结工艺对复合材料力学性能和摩擦磨损性能的影响,探讨了复合材料的强化及磨损机理。
     研究结果表明,采用粒径为0.5~1μm的c-BN,c-BN/Y-α-SiAlON和c-BN/Yb-α-SiAlON复合材料的在1550℃/50MPa/5minSPS烧结过程中,75wt%以上的c-BN发生c-BN→h-BN转变,c-BN加入抑制α-SiAlON的形成,且随着c-BN含量的增加,抑制作用增大。当采用粒径为2~4μm的c-BN时,c-BN在液相烧结过程中未发生相变,c-BN粒径为2~4μm的20wt%c-BN/Yb-α-SiAlON复合材料的硬度达到了21.586GPa。
     采用粒径为2~4μm的c-BN时,c-BN/β-SiAlON复合材料的力学性能随着c-BN含量的增加先增加后减小。10wt%c-BN/β-SiAlON维氏硬度和抗弯强度达到最大值,达到了15.4GPa和432MPa。随着c-BN含量的继续增加,复合材料力学性能下降,主要是由于c-BN增加降低了材料的致密度。SEM分析表明:复合材料的力学性能提高的主要原因是:c-BN的加入阻碍裂纹扩展导致裂纹偏转。
     在载荷为20N的干摩擦下, 20wt%c-BN/Yb1510E2复合材料,与Yb1510E2相比,摩擦系数和磨损率都升高,主要是由于Yb1510E2陶瓷为摩擦化学反应和粘着磨损;而20wt%c-BN/Yb1510E2主要为表面疲劳磨损和磨粒磨损。对于磨损方式主要为表面疲劳磨损和磨粒磨损的c-BN/β-SiAlON复合材料摩擦系数随着c-BN含量的增加而减小,而磨损率随着c-BN含量的增加而增大,这主要是由于c-BN与基体结合弱,在摩擦磨损的进行,c-BN含量高的试样磨损量大,与摩擦副的接触面积也大,摩擦系数随之会降低。
     添加Si粉可以显著提高B_4C的致密度和力学性能,当Si含量为8wt%时,在1800℃/50MPa/5minSPS烧结后,相对密度可以达到99.78%,维氏硬度和抗弯强度达到最高,分别为41.83GPa,654MPa。随着Si含量的增加,硬度有所下降,主要是由于生成的SiC硬度低于B_4C硬度。添加Si后复合材料力学性能提高的主要原因是:①致密度的提高;②晶粒细化;③S iC的韧化作用。XRD分析表明,含Si试样的B_4C晶格常数增大,这是由于Si取代B_4C结构中C-B-C原子链的C原子并且Si可能会进入B_4C晶体结构的空隙位置,而且置换出来的C会与Si继续反应生成SiC相。
     在载荷为20N的干摩擦下,Si含量为4wt%、6wt%、10wt%的B_4C复合材料的摩擦系数在整个试验过程中一直以较大的幅度波动,其波动范围为0.3~0.6,这主要是由于随着摩擦磨损的进行,润滑膜和氧化膜相互交替;Si含量为8wt%的B_4C复合材料的摩擦系数曲线在整个试验过程比较平滑,其摩擦系数为0.2;且磨损率最低,为1.75109×10~(-6)mm~(-3)/N·m,这是由于在摩擦磨损过程中生成了H3BO3和Si(OH)4润滑膜。根据摩擦系数和磨损表面分析可知,纯B_4C和含Si的B_4C复合材料在室温下干磨损机理为摩擦化学反应和化学诱导断裂。
To improve the sinterability of cubic Boron Nitride and Boron carbide, SiAlON and Si were added into c-BN and B_4C, respectively, to supply transient liquid phase during the sintering. c-BN/SiAlON and B_4C ceramic composites with high density were fabricated at low sintering temperature by SPS. The effect of composition and preparation process on the mechanical and wear properties of composites, the toughening mechanism and wear mechanism were studied.
     When the particle size of c-BN which used is 0.5~1μm, c-BN/α-SiAlON composites were prepared by spark plasma sintering. Over 70% c-BN had transformed to h-BN during the sintering at 1550℃for 5min. The added c-BN inhibited the formation ofα-SiAlON, and the role of inhibition enhanced with the increasing of the content of c-BN. On the contrary, when using the larger size of c-BN (2~4μm), c-BN didn’t transforme to h-BN during the same sintering condition. The obtained Vickers hardness of the 20wt%c-BN/Yb-α-SiAlON composites could reach 21.586GPa.
     The Vickers hardness and the flexural strength of the c-BN /β-SiAlON composites with the c-BN size of 2~4μm increased with the increasing c-BN content. The composites containing 10wt% c-BN possessed the maximum mechanical properties. The HV and flexural strength are 15.4GPa and 432MPa, respectively. It is attributed to the crack deflection caused by c-BN particles. Subsequently, the mechanical properties decreased with the increasing c-BN content due to the low density.
     Wear tests were carried out under non-lubricated condition with load of 20N. Compared with the Yb1510E2, the 20wt%c-BN/Yb1510E2 composite showed the appreciably bigger friction coefficient and wear rate. It is due to the different wear modes. The wear modes of the Yb1510E were tribochemical wear and adhesive wear, the wear modes of the 20wt%c-BN/Yb1510E2 were surface fatigue wear and abrasive wear. The predominant modes c-BN/β-SiAlON composites are surface fatigue wear and abrasive wear, their the friction coefficient decreased with the increasing of the content of c-BN, in contrast, the wear rate of the c-BN/β-SiAlON composites increased with the increasing of the content of c-BN. It is due to the weak bonding strength between c-BN and the matrix, which resulte in the higher wear volume for the composites with higher c-BN content. The higher wear colume also increased the area of the composites contacted with the friction pair, hence decrease the friction coefficient.
     The density and mechanical properties of B_4C composites increased with the increasing silicon content. The B_4C composites with 8wt% Si could obtain the highest relative density and mechanical properties in the investigated B_4C based composites. Its Vickers hardness and the flexural strength are 41.83GPa, 654MPa, respectively. Subsequently, the mechanical properties decreased with the increasing Si content, probably due to the Hv of the SiC is lower then the Hv of the B_4C. It is concluded that the improvement of mechanical properties is due to:①the high relative density;②grain refinement;③grain boundary strengthening and crack deflection caused by SiC particles. The phase composition was studied by the means of XRD. The results showed that the lattice parameters of boron carbide for the specimens containing Si were bigger than those for pure boron carbide specimen. It is due to the fact that silicon solid solute into by replacing the carbon atoms belong to C-B-C atomic chain and solute into the interstices in the B_4C structure as interstitial atoms, leading to the increase of the lattice parameters, and the SiC was synthesized by in-situ reaction between the carbon atoms replaced by the Si atoms and Si.
     Wear tests on B_4C composites were carried out under non-lubricated condition with load of 20N, the results show that the friction coefficient of the composites with the Si content of 4,6,10wt% were fluctuating between 0.3 and 0.6 as function of the sliding distance. It is due to the alternate of lubricating film and oxidized film. When the Si content was 8wt%, the curve of the friction coefficient was gentle and minimum wear rate could be obtained, its friction coefficient and wear rate was 0.2, 1.75109×10~(-6)mm~(-3)/N·m, respectively. Because of the formation of the H3BO3 and Si(OH)4. The predominant wear mode of pure B_4C and the B_4C composites was tribochemical wear.
引文
1 Z. A. Zoya, R. Krishnamurthy. The Performance of CBN Tools in the Machining of Titanium Alloys. Journal of Materials Processing Technology. 2000, 100(1-3): 80-86Kk
    2 G. Andrzej, K. Tomasz. Assessment Method of Cutting Ability of c-BN Grinding Wheels. International Journal of Machine Tools and Manufacture. 2005, 45(11): 1256-1260
    3丁硕,温广武,雷廷权.碳化硼材料研究进展.材料科学与工艺. 2003, 11(1): 101-105
    4 Stephen L. Microstructure Coarsening during Sintering of Boron Carbide. Journal of American Ceramic society. 1989, 72(6): 958
    5王秀芬,周曦亚.放电等离子烧结技术.中国陶瓷. 2006, 42(7): 14-16
    6 R. H. Wentorf. Cubic Form of Boron Nitride. Journal of Chemical Physics. 1957, 26: 956-957
    7 S. Reinke, M. Kuhr, W. Kulisch. Recent Results in Cubic Boron Nitride Deposition in light of the Sputter Model. Diamond and Related Materials. 1995, 4(4): 272-283
    8 C. Sugino, K. Tanika, S.Kawasaki. Characterization and Field Emission of Sulfur doped Boron Nitride Synthesized by Plasma-assisted Chemical Vapor Deposition. Journal of Applied Physics. 1997, 36(4): 2-9
    9 M. Jin, S.Watanabe, S. Miyake. Trial Fabrication and Cutting Performance of c-BN-coated Taps. Surface and Coating Technology. 2000, 133-134:443-447
    10 W. P. Jiang, Abhijeet S.More, W. D. Brown. A cBN-TiN Composite Coating for Carbide Inserts: Coating Characterization and its Applications for Finish Hard Turning. Surface and Coating Technology. 2006, 201(6,4): 2443-2449
    11 A. Hara, S. Yazu. Sintered Cutting Tool and Manufacturing Process. Japanese Patent Applied. No.21633. 1979
    12 K. Hideharu, S. Kazuhiro, S.Hitoshi. Cutting Performance of a Binder-less Sintered Cubic Boron Nitride Tool in the High-speed Milling of Gray Cast Iron. Journal of Materials Processing Technology. 2002, 127(2): 217-221
    13李宏志,袁启明,杨正方.陶瓷结合立方氮化硼磨削工具材料制备研究.复合材料学报. 2003, 20(5): 39-43
    14青木清之,茶山达志.金属粘结剂砂轮.中国专利: 200410031285.1
    15 Mikinori Hotta. Spark Plasma Sintering ofβ-SiAlON-c-BN Composite. Materials science Forum. 2007, 561-565: 599-602
    16 Yucheng Zhao, Mingzhi Wang. Materials Science Effect of Sintering Temperature on the Structure and Properties of Polycrystalline Cubic Boron Nitride Prepared by SPS. Journal of materials processing technology. 2008,5: 1-5
    17 Z. Shi, S. Malkin. Wear of Electroplated CBN Grinding Wheels. Journal of Manufacturing Science and Engineering. 2006, 128(1): 110-118
    18郭景坤.中国结构陶瓷研究的进展及其应用前景.硅酸盐通报. 1995, 4: 18
    19唐国宏,张兴化.碳化硼超硬材料综述.材料导报. 1994, 4: 15
    20斯温.陶瓷的结构与性能.科学出版社, 1998: 153
    21斯温.陶瓷的结构与性能.科学出版社, 1998: 201
    22 V. I. Mateovich, J. Economy. Boron and Refraetory Borides. Beilin: Springs, 1997: 78
    23王零森.碳化硼在吸收材料中的地位及其与核应用有关的基本性能.粉末冶金材料科学与工程. 2000, 2: 13
    24李世波.热压烧结碳化硼B4C陶瓷复合材料的组织与性能.哈尔滨建筑大学工学博士学位论文. 1999: 23-26
    25 J. Conard. C and B unclear magnetic Resonance Investigation in the Boron Carbide Phase Homogeneity Range: Amodel of Solid Solution. Journal of Less-Common Metals. 1986, 117: 51
    26 G. V. T. sagareishvili. Thermal Expansion of Boron Carbide. Journal of Less-Common Metals. 1986, 117: 159
    27 D. R. Tallant. Boron carbide Evidenees for Moleeular Lever Disorder. Journal of Non-Crystalline Solids. 1988, 106: 370
    28 H. Wetheit. OPtieal Phonons of Boron Carbide Depending on Composition. Journal of Less-Common Metals. 1986, 117: 17
    29 F. Thevenot. The Structure and Properties of Boron Carbide Phase. Journal of Less-Common Metals. 1981, 82: 153
    30 F. Thevenot. A Review on Boron Carbide. Key Engineering Materials. 1991, 59: 56-57
    31 H. werheit. On the Metal-insulator Transition of Boron carbide. Journal of Less-Common Metals. 1981, 82: 153
    32 G. D. With. Note on the Temperature Dependence of the Hardness of Boron Carbide.J. Journal of Less-Common Metals. 1983, 85: 133
    33吴祯干,顾明元,张国定.碳化硼的氧化特征研究.工程材料. 1997, 5(2): 30-34
    34 S. Sgrazhulene, Determination of Boron in different Alloys and Compounds. Journal of Less-Common Metals. 1986, 117: 401-41
    35吴芳. B4C陶瓷及其摩擦学研究.中南大学工学博士论文. 2001: 45-46
    36 O. Odawara. Combustion Sythesis of Gap, In P and Punder Mierogravity Environment. Progress in Materials Science. 1994, 5: 243-273
    37 T. Oyama. Gas-phase Synthesis of Crystalline B4C Encapsulated in Graghitic Particles by Pulsed-laserIrradiation. Carbon. 1999, (37): 433-436
    38 J.C. Vial. The Chemical Reaction of Aluminium and Boron Carbide. Material Science. 1997, 17(32): 4559-4573
    39 B. Champagne. Mechinanical Properties of Hot-pressed B-B4C Material. Journal of American Ceramic society. 1979, 62(3): 1 49-153
    40李文辉.碳化硼陶瓷的液相烧结实验研究.哈尔滨理工大学学报. 2002, 7(2): 73-75
    41肖汉宁,高朋召.高性能结构陶瓷及其应用.北京化学工业出版社, 2006: 173
    42零森,尹邦跃,方寅初.用渗碳活化烧结技术制取B4C材料.中国有色金属, 2002. 12(6): 1210-1213
    43祝宝军,肖汉宁,陶颖等. B4C陶瓷活化烧结技术进展.硬质合金, 2004, 21(2): 116-121
    44 J C.Viala. The chemical Reactions of Aluminium and Boron Carbide. Journal of Materials Science. 1997, 32(17): 4559-4573
    45 G. I. Kalandadze. Sintering of Boron and Boroncarbide. Journal of Solid State Chemistry. 2000, 154(8): 194
    46 A. Karl. Mechanical Properties of injection molded B4C-C ceramics. Journal of Solid State Chemistry. 1997, 133(1): 68
    47 Chae Hyun Lee. Pressureless Sintering and related Reaction Phenomena of A12O3- doped B4C. Journal of Materials Science. 1992, 27: 6335
    48李世波,等. B4C-A12O3复合材料的组织结构及力学性能.哈尔滨建筑大学学报. 1999, 32(5): 74
    49唐国宏. B4C-TiB2-W2B5复合材料研究.航空学报. 1994, 15(6): 76l
    50 Y. Suzuya. Mechanical and Electrical Properties of B4C-CrB2 Ceramics Fabricated by Liquid Phase Sintering. Ceramics International. 2003, 29(3): 299
    51唐军. B4C-TiB2复相陶瓷的强韧化研究.无机材料学报. 1997, 12(2): 169
    52 Moghevsky P. Reactive Formation of Coatings at Boron Carbide Interface with Ti and Cr Powders. Journal of the European Ceramic Society. 1995, 15(6): 527
    53 LevinL. The Effect of Ti and TiO2 Additions on the pressureless Sintering of B4C. Metallurgical and Material Transactions A. 1999, 30(12): 3201
    54 Radev D. D. Raman-spectroscopy Study of Metal-containing Boron Carbide-Based Ceramics. Solid State Sciences. 2002, 4: 37
    55 J. Deng. Microstructure and Mechanical Properties of Hot Pressed B4C/(W,Ti)C Ceramic Composites. Ceramics International. 2002, 28: 425
    56 Turov, Yu V, Structure Formation under Sintering of Powder Iron-Boron Carbide Composite. Poroshkovaya Metallurgiya. 1991,23(6): 25
    57 Turov, Yu V. Gas Transport Processes in Sintering of Iron-Boron Carbide Powder Composite. Soviet Powder Metallurgy and Metal Ceramics. 1990, 28(8): 618
    58 Lourenco DM. Sintering of Boron Carbide. Intnational Congress Bras Ceramics. 34th, 1990, 322
    59甄汉生.离子体加工技术.清华大学出版社, 1990: 50
    60 Matsumoto, Akihiro. Research and Development of novel Materials by Plasma Discharge Sintering Process. Zairyo to Kankyo/Corrosion Engineering, Society for the Promotion of Science. 1995
    61 Z. J. Shen, M. Johnsson, M.Nygren. TiN/A12O3 Composites and Graded Laminates there of Consolidated by Spark Plasma Sintering. Journal of the European Ceramic Society. 2003, 23(7): 1061-1068
    62 Anatoly Rosenanz. Kinetics of Phase Transformations in SiAlON Ceramics: Effects of Cation Size, Composition and Temperature. Journal of the European Ceramic Society. 1999, 19: 2325±2335
    63 K. Kakoi, T. Obara. A numerical Methed for Counterformal Rollling Contact Problems Using special Boundary Element Methed. Journal of the JapanMechnical and Engineering Society. 1993, 36(1A):57-62
    64 R. Telle. The Physics and Chemistry of Carbides, Nitrides and Borides. Kluwer Academic Publishers. 1990: 47-57
    65 H. M. Chen, H. Y. Qi, F.zheng. Thermodynamic Assessment of the B-C-Si System. Journal of Alloys and compoubds. 2009, S0925-8388(09)00501-5
    66温诗铸.摩擦学原理.清华大学出版社, 1990: 50
    67曹锡章,宋天佑,王杏乔.无机化学.高等教育出版社, 1988: 240-242
    68 W. H. Zachariasen. The precise Structure of Orthoboric Acid. Acta Crystallogr. 1954, 7: 305-310
    69 A. Erdemir. A Study of the Formation and Self-lubrication Mechanisms of Boron Acid Films on Boric Oxide Coating. Surface and Coating Technology. 1990, (43/44):588-596

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700