脱油沥青基碳材料的溶剂热合成和铁磁性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳包覆纳米金属颗粒(CEMNPs)、碳纳米管(CNTs)、纳米洋葱状富勒烯(NOLFs)、碳纳米纤维(CNFs)、碳微球(CMSs)和碳纳米棒(CNRs)等多种形貌的新型碳功能材料以其特殊的结构赋予了其优异的性能和广阔的应用空间。脱油沥青(DOA)是重油加工过程中的副产物,作为一种富碳的复杂混合物,可进行合成碳材料的研究。从DOA中获得高附加值产品,可为扩展传统石油加工过程的产品链并实现资源的综合利用提供新的途径。
     本文主要以DOA为原料,采用溶剂热合成法,甲苯为反应溶剂,二茂铁为催化剂,通过改变两性共聚物P123(P123)的加入量,合成了不同形貌的碳材料。采用场发射扫描电子显微镜(FESEM)、高分辨透射电子显微镜(HRTEM)、X-射线衍射(XRD)、红外光谱(FT-IR)等对产物进行了表征和分析,并利用振动样品磁强计(VSM)测试了产物的铁磁性能。结果表明:
     1、以0.3g DOA为原料,40mL甲苯为反应溶剂,二茂铁为催化剂前躯体,0.8g P123为表面活性剂,溶剂热合成法制备了CEMNPs。考察了反应温度、反应时间、催化剂二茂铁含量和反应气氛对产物的影响:温度450℃,时间4h,二茂铁含量10wt.%,氮气气氛下合成了粒径均匀的CEMNPs,其直径分布在100-300nm,内包核为Fe3O4,外壳层为无定形碳层。FT-IR表征显示产物表面含有碳氢类基团。通过考察不同反应物组配对产物的影响,初步探讨了溶剂热合成CEMNPs的生长机理:产物是在二茂铁的催化作用及P123对DOA芳族分子的组装作用下形成的。铁磁性测试表明:所制备CEMNPs的矫顽力为160Oe,呈明显的铁磁性。
     2、以0.3g DOA为原料,40mL甲苯为反应溶剂,含量10wt.%的二茂铁为催化剂前躯体,氮气气氛下450℃反应4h,当P123的加入量为3.5g时,制备了一种新颖结构、分布均匀的蠕虫状碳材料,其直径约0.5μm,长约1-1.5μm。FT-IR表征显示产物表面含有碳氢类基团。初步探讨了其生成机理:二茂铁的催化作用及P123对DOA芳族分子的分散组装作用决定了蠕虫状碳材料的形成。铁磁性能测试表明:所制备蠕虫状碳材料的矫顽力为231Oe,也呈明显的铁磁性。
     3、当40mL甲苯中加入0.3g二茂铁时,氮气气氛下450℃溶剂热4h生成了副产物相互缠绕的CNFs,直径约100nm,产物中还发现有螺旋状CNFs。
Advanced carbon functional materials, such as cabon-encapsulated metal nanoparticle (CEMNP), carbon nanotubes (CNTs), carbon nanofibers (CNFs), carbon microspheres (CMSs) and carbon nanorods (CNRs), have excellent properties and potential applications because of their special structure. Deoiled asphalt (DOA) is a carbon-rich by-product of petroleum industry, which can be used to synthesize various carbon structures. Utilization of DOA can provide a new approach for expansion of product chains of petroleum processing and comprehensive utilization of petroleum resource.
     In this paper, carbon materials with different morphologies were achieved from DOA by solvothermal synthesis. Field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR) were employed to characterize the morphology and structure of the products. The ferromagnetic property of the products was measured with a vibrating sample magnetometer (VSM). The results are as follows:
     1. CEMNPs were synthesized by solvothermal synthesis route using DOA as carbon precursor, amphiphilic triblock copolymer P123 (P123) as surfactant and ferrocene as catalyst. The influences of different experimental parameters, such as reaction temperature, reaction time, ferrocene content and reaction atmosphere, were investigated, with respect to the morphologies of the products. CEMNPs were obtained with Fe3O4-amorphous carbon layer core-shell structure and uniform diameters of about 100-300nm using ferrocene content of 10wt.% at 450℃for 4h in N2 atmosphere. In addition, hydrogen-carbon bondings were observed on surface of CEMNPs. The discussion of growth mechanism indicates that the catalysis of ferrocene and the assemblies of the aromatic molecules of DOA directed by P123 were crucial to the formation of CEMNPs. The coercivity value (160Oe) from measurement of VSM showed an obvious ferromagnetic behavior.
     2. A novel worm-like carbon structure was obtained at 450℃for 4h in 40mL of toluene solution through a solvothermal synthesis route under N2 atmosphere, using 0.3g of DOA, 3.5g of P123 and 10wt.% of ferrocene. The obtained products had good dispersion and uniform diameters of about 0.5μm and lengthes of 1-1.5μm. In addition, hydrogen-carbon bondings were observed on surface of worm-like carbon structures. The discussion of growth mechanism indicates that the catalysis of ferrocene and the dispersities and assemblies of the aromatic molecules of DOA directed by P123 were critical for the formation of the samples. The coercivity value (231Oe) from the measurement of VSM also showed an obvious ferromagnetic behavior.
     3. CNFs were synthesized using 40mL of toluene as the solvent and ferrocene as carbon source and catalyst precursor at 450℃for 4h under N2 atmosphere,which were inter twisted with diameters of 100nm. In addition, some helical CNFs were also observed.
引文
[1] Endo M, Kim YA, Hayashi T, et al. Vapor-grown carbon fibers (VGCFs)-Basic properties and their battery applications [J]. Carbon, 2001, 39(9): 1287-1297.
    [2] Yang SM, Chen XQ, Motojima SJ, et al. Morphology and microstructure of spring-like carbon micro-coils/nano-coils prepared by catalytic pyrolysis of acetylene using Fe-containing alloy catalysts [J]. Carbon, 2005, 43(4): 827-834.
    [3] Ting JM, Huang NZ. Thickening of chemical capor deposited carbon fiber [J]. Carbon, 2001, 39(6): 835-839.
    [4] Wei BQ, Vajtai R, Ajayan PM. Sequence growth of carbon fibers and nanotube networks by CVD process [J]. Carbon, 2003, 41(1): 185-188.
    [5] Bai S, Li F, Yang QH, et al. Influence of ferrocene/benzene mole ratio on the synthesis of carbon nanostructures [J]. Chem Phys Lett, 2003, 376(1-2): 83-79.
    [6] Li YY, Bae SD, Sakoda A, et al. Formation of vapor grown carbon fibers with sulfuric catalyst precursors and nitrogen as carrier gas [J]. Carbon, 2001, 39(1): 91-100.
    [7] Li YJ, Lau SP, Tay BK, et al. Oriented carbon microfibers grown by catalytic decomposition of acetylene and their field emission properties [J]. Diam Relat Mater, 2001, 10(3-7): 878-882.
    [8] Mukai SR, Masuda T, Hashimoto K, et al. Physical properties of rapidly grown vapor-grown carbon fibers [J]. Carbon, 2000, 38(3): 491-494.
    [9]鲍斐,李锐,吴秀章等.大型炼油厂零渣油加工方案的选择[J].石油炼制与化工,2001, 32(7): 17-20.
    [10] Yang GH, Wang RA. The supercritical fluid extractive fraction and characterization of heavy oils and petroleum residua [J]. Petro Sci Eng, 1999, 22(1-3): 47-52.
    [11] Shi TP, Xu ZM, Cheng M, et al. Characterization index for vacuum residua and their sub-fractions [J]. Energ Fuel, 1999, 13(4): 871-876.
    [12] Zhao SQ, Xu ZM, Xu CM, et al. Feedstock characteristic index and critical properties of heavy crudes and petroleum residua [J]. Petro Sci Eng, 2004, 41(1-3): 233-242.
    [13] Wu WZ, Zh ZP, Liu ZY. Amorphous carbon nano-particles prepared by explosion of nitrated pitch [J]. Carbon, 2002, 40(11): 2034-2037.
    [14] Kroto HW, Heath JR, O'Brien SC, et al. C60: Buckyminister-fullerenes [J], Nature, 1985, 318(6042): 162-163.
    [15] Kratschmer W, lanb L D, Fostiropoulos K, et al. Solid C60: A new form of carbon [J]. Nature, 1990, 347(6291): 354-357.
    [16] Iijima S. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354(6348): 56-58.
    [17] Ugarte D. Curling and closure of graphitic networks under electron-beam irradiation [J]. Nature, 1992, 359(6397): 707-709.
    [18] Ruoff R S, Lorents D C, Chan B, et al. Single-crystal metals encapsulated in carbon nanoparticles [J]. Science, 1993, 259(5039): 346-348.
    [19] Yang YZ, Liu XG, Xu BS, et al. Preparation of vapor grown carbon fibers from deoiled asphalt [J]. Carbon, 2006, 44(9): 1661-1664.
    [20] Liu XG, Yang YZ, Lin X, et al. Deoiled asphalt as carbon source for preparation of various carbon materials by chemical vapor deposition [J]. Fuel Process Technol, 2006, 87(10): 919-925.
    [21] Yang YZ, Zhang CY, Ji WY, et al. Synthesis of iron-containing carbon particles from deoiled asphalt and ferrocene [J]. Chin J Aeronaut, 2006, 19(12): S228-S231.
    [22] Liu XG, Yang YZ, Liu HY, et al. Carbon nanotubes from catalytic pyrolysis of deoiled asphalt [J]. Mater Lett, 61(18): 3916-3919
    [23] Liu XG, Yang YZ, Ji WY, et al. Controllable growth of nanostructured carbon from coal tar pitch by chemical vapor deposition [J]. Mater Chem Phys, 2007, 104(2-3): 320-326.
    [24]杜爱兵,刘旭光,许并社.煤基纳米洋葱状富勒烯制备及其结构表征[J].无机材料学报, 2005, 20(4): 779-784
    [25] Du AB, Liu XG, Han PD, et al. Onion-like fullerenes synthesis from coal [J]. Fuel, 2007, 86(1-2): 294-298.
    [26]鲍慧强,韩培德,李天保等. OLFs的提纯研究[J].物理化学学报, 2005, 21(3): 296-299.
    [27]鲍慧强,张艳,韩培德等.真空热处理法制备OLFs的研究[J].材料热处理学报, 2005, 26(3): 34-37.
    [28]王海英.爆炸-真空热处理条件下纳米洋葱状富勒烯的形成[D].太原:太原理工大学, 2004.
    [29]李天保,刘光焕,刘旭光等.内包铁洋葱状富勒烯的合成和表征[J].材料热处理学报, 2005, 26(3): 28-30.
    [30]郭俊杰,王晓敏,李天保等.水下电弧放电法制备洋葱状富勒烯[J].新型炭材料, 2006, 21(2): 171-175.
    [31]刘雯,杨永珍,张艳等.液体介质放电制备洋葱状富勒烯[J].新型炭材料, 2007, 22(1): 84-87.
    [32]许并社,孙瑞平,韩培德等.洋葱状富勒烯的表面化学修饰[J].高等学校化学学报, 2006, 27(8): 1404-1408.
    [33]杨晓伟,郭俊杰,王晓敏等. Pt/洋葱状富勒烯催化剂的表征及生成机理研究[J].物理化学学报, 2006, 22(8): 967-971.
    [34] Ji WY, Liu XG, Yang YZ et al. Y-branched nano carbon material synthesized from deoiled asphalt by CVD [C]. 2007 Beijing International Materials Conference. Beijing. 2007: A35.
    [35] Xu BS, Zhang CY, Yang YZ et al. FeCl3-catalyzed growth of vaper-grown carbon fibers from deoiled asphalt [J]. New Carbon Mater, 2007, 22(3): 1-6.
    [36] Xu BS, Guo JJ, Jia HS et al. Electrocatalytic properties of platinum on hard carbon spherules derived from deoiled asphalt for methanol oxidation [J]. Catal Today, 2007, 125(3-4): 169-172.
    [37] Yang YZ, Liu XG, Xu BS. Fe-encapsulating carbon nano onion-like fullerenes from heavy oil residue [J]. J Mater Res, 2008, 23(5): 1393-1397.
    [38]杨永珍.重油残渣定向转化新型碳功能材料的研究[D].太原:太原理工大学, 2007.
    [39]董敏,苗鸿雁,谈国强.溶剂热合成纳米材料技术及其进展[J].材料导报, 2005,19(F05): 27-29.
    [40]朱永春,钱逸泰.溶剂热法合成碳纳米材料[J].无机化学学报, 2008, 24(4): 499-504.
    [41] Jiang Y, Wu Y, Zhang SY, et al. A Catalytic-assembly solvothermal route to multiwall carbon nanotubes at a moderate temperature [J]. J Am Chem Soc, 2000, 122(49): 12383-12384.
    [42] Liu JW, Shao MW, Chen XY, et al. Large scale synthesis of carbon nanotubes by an ethanol thermal reduction process [J]. J Am Chem Soc, 2003, 125(49): 8088-8089.
    [43] Liu J W, Shao M W, Xie Q, et al. Single-source precursor route to carbon nanotubes at mild temperature [J]. Carbon, 2003, 41(11): 2101-2104.
    [44] Shen JM, Huang Z, Li JG, et al. Synthesis of multi-walled carbon nanotubes at low temperature through anhydrous AlCl3-assisted ethylene tetrachloride dechlorination: A new dechlorination pathway [J]. Carbon, 2005, 43(13): 2823-2827.
    [45] Luo T, Chen LY, Bao KY, et al. Solvothermal preparation of amorphous carbon nanotubes and Fe/C coaxial nanocables from sulfur, ferrocene, and benzene [J]. Carbon, 2006, 44(13): 2844-2848.
    [46] Xiong YJ, Xie Y , Li XX, et al. Production of novel amorphous carbon nanostructures from ferrocene in low-temperature solution [J]. Carbon, 2004, 42(8-9): 1447-1453.
    [47] Xu LQ, Zhang WQ, Yang Q, et al. A novel route to hollow and solid carbon spheres [J]. Carbon, 2005, 43(5): 1090-1092.
    [48] Shen JM, Li JY, Huang Z, et al. A simple route for the synthesis of coral-like accretion of hollow carbon microspheres with thin walls [J]. Carbon, 2006, 44(11): 2171-2177.
    [49] Luo T, Gao LS, Qian YT, et al. Olivary particles: unique carbon microstructure synthesized by catalytic pyrolysis of acetone [J]. J Phys Chem B, 2005, 109(32): 15272-15277.
    [50] Yan Y, Yang HF, Zhang FQ, et al. Low-temperature solution synthesis of carbon nanoparticles, onions and nanoropes by the assembly of aromatic molecules [J]. Carbon, 2007, 45(11):2209–2216.
    [51] Zhang WQ, Tang KB, Liu YK, et al. Synthesis at 250℃of submicron hydrogenated amorphous carbon‘‘test tubes’’[J]. Carbon, 2007, 45(7): 1571-1577.
    [52] Xu LQ, Liu JW, Du J, et al. A self-assembly template approach to form hollow hexapod-like, flower-like and tube-like carbon materials [J]. Carbon, 2005, 43(7): 1560-1562.
    [53] Yuan DS, Xu CW, Liu YL, et al. Synthesis of coin-like hollow carbon and performance as Pd catalyst support for methanol electrooxidation [J]. Electrochem Commun, 2007, 9(10): 2473-2478.
    [54] Xiao Y, Liu YL, Cheng LQ, et al. Flower-like carbon materials prepared via a simple solvothermal route [J]. Carbon, 2006, 44(8):1589-1591.
    [55] Liu JW, Lin WJ, Qian YT, et al. Fabrication of hollow carbon cones [J]. Carbon, 2004, 42(3):669-671.
    [56] Zou GF, Lu J, Qian YT, et al. High-yield carbonnanorods obtained by a catalytic copyrolysis process [J]. Inorg Chem, 2004, 43(17): 5432-5435.
    [57] Xi GC, Zhang M, Qian YT, et al. Controlled synthesis of carbon nanocables and branched-nanobelts [J]. Carbon, 2006, 44(4):734-741.
    [58] Pankhurst QA, Connolly J, Jones SK, et al. Application of magnetic nanoparticles in biomedicine [J]. J Phys D: Appl Pgys, 2003, 36: R167-R181.
    [59] Xu ZP, Zeng QH, Lu GQ, et al. Inorganic nanoparticles as carriers for efficient cellular delivery [J]. Chem Eng Sci, 2006, 61(3): 1027-1040.
    [60] Levy L, Sahoo Y, Ki MKS, et al. Nanochemistry: synthesis and characterization of multifunctional nanoclinics for biological applications [J]. Chem Mater, 2002, 14(9): 3715-3721.
    [61] Zhou W, Gao PT, Shao L, et al. Drug-loaded, magnetic, hollow silica nanocomposites for nanomedicine [J]. Nanom edicine: Nanotechnol, Bio, and Med, 2005, 1(3): 233-237.
    [62]雷中兴,刘静,李轩科等. CVD法制备的碳包覆( Fe , Co)纳米粒子的结构及电磁特性[J].磁性材料及器件, 2003, 34(03): 4-6.
    [63] Bonard J M, Seraphin S, Wegrowe J E, et al. Varying the size and magnetic properties of carbon-encapsulated cobalt particles [J]. Chem Phys Lett, 2001, 343(3-4): 251-257.
    [64]张海燕,何艳阳,薛新民等.碳弧法中形成的碳包铁及其化合物纳米晶[J].物理学报, 2000, 49(2): 361-364.
    [65] Gui XC, Wei JQ, Wang KL, et al. Improved filling rate and enhanced magnetic properties of Fe-filled carbon nanotubes by annealing and magnetic separation [J]. Mater Res Bull, 2008, 43(12): 3441-3446.
    [66] Terrones H, López-Urías F, Mu?oz-Sandoval E, et al. Magnetism in Fe-based and carbon nanostructures: Theory and applications [J]. Solid State Sci, 2006, 8(3-4): 303-320.
    [67] Jorge J, Flahaut E, Gonzalez-Jimeneza F, et al. Preparation and characterization of a-Fenanowires located inside double wall carbon nanotubes [J]. Chem Phys Lett, 2008, 457(4-6): 347-351.
    [68] Parkanskya N, Alterkopa B, Boxmana RL, et al. Magnetic properties of carbon nano-particles produced by a pulsed arc submerged in ethanol [J]. Carbon, 2008, 46(2): 215-219.
    [69] Chen CP, Chang TH, Wang TF. Synthesis of magnetic nano-composite particles [J]. Ceram Int, 2002, 28(8): 925-930.
    [70] Song HH, Chen XH, Chen XG, et al. Influence of ferrocene addition on the morphology and structureof carbon from petroleum residue [J]. Carbon, 2003, 41(15): 3037-3046.
    [71] Wu WZ, Zhu ZP, Liu ZY. A study of the explosion of Fe-C hybrid xerogels and the solid products [J]. Carbon, 2003, 41(2): 309-315.
    [72] Gadd GE, Collela M, Balckford M, et al. The encapsulation of Ni in graphitic layers using C60 as a precursor [J]. Carbon, 2001, 39(12): 1769-1787.
    [73]吉卫云.沥青基碳材料制备与性能研究[D].太原:太原理工大学, 2008.
    [74]王晓敏.纳米洋葱状富勒烯的大量制备和性能研究[D].太原:太原理工大学, 2005.
    [75]陈学刚,宋怀河,陈晓红等.萘和二茂铁共炭化制备纳米Fe/C材料的研究[J].新型炭材料, 2000, 15(4): 5-8.
    [76]张坤,陈明清,刘晓亚.嵌段共聚物的胶束化[J].化学通报, 2003, 66(9): 1-7.
    [77]赵剑曦. Pluronic嵌段共聚物胶束化行为及其胶束增溶[J].精细化工, 2001, 18(12): 720-730.
    [78] Poyraz AS, Albayrak C, Dag ?. The effect of cationic surfactant and some organic/inorganic additives on the morphology of mesostructured silica templated by pluronics [J]. Microporous Mesoporous Mater, 2008, 115(3): 548-555.
    [79] Liu XG, Ji WY, Zhang Y, et al. The morphology and electrical resistance of long oriented vapor-grown carbon fibers synthesized from coal pitch [J]. Carbon, 2008, 46(1): 154-158.
    [80]刘旭光,吉卫云,杨永珍等.碳材料的湍层结构判别标准[C].第七届海峡两岸新型炭材料学术研讨会论文集,太原, 2008: 68-73.
    [81] Yoon YJ, Baik HK. Catalytic growth mechanism of carbon nanofibers through chemicalvapor deposition [J]. Diam Relat Mater, 2001, 10(3-7): 1214-1217.
    [82] Wang BN, Chen XY, Qian YT. One-pot catalytic solvothermal approach for carbon nanofibers preparation [J]. Chin J Inorg Chem, 24(9): 1424-1427.
    [83]罗涛.微尺度碳材料的制备和结构、性能表征[D].合肥:中国科学技术大学, 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700