Pt-TiO_2薄膜的制备、结构分析及光催化活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球环境污染和能源危机的日益严重,人们越来越关注环境和能源问题,迫切需要开发高效、低能耗、使用范围广的功能材料。TiO_2光催化氧化技术作为一种新的污染治理技术,因其具有能耗低、反应条件温和、催化活性高等优点引起了各国研究者的广泛关注。但是TiO_2作为一种宽禁带半导体(Eg=3.2eV),只有在能量较高的紫外光照射下才能表现出光催化活性,而占太阳光大部分的可见光却不能被有效利用,同时产生的光生电子与空穴的再复合率高,量子产率低,TiO_2的上述缺陷极大地限制了该技术在实际中的应用。
     掺杂贵金属Pt制备改性纳米TiO_2光催化剂的思路引起了众多学者的关注:铂掺杂后,在Pt-TiO_2界面会形成能捕获电子的浅势阱—Schottky势垒,进一步抑制光生电子-空穴的复合;同时可以改变TiO_2的表面状态、对其表面活性基团的增减产生重要的作用。因此了解Pt掺杂对TiO_2表面性质和光催化活性的影响,有助于深入了解TiO_2光催化机理和指导高催化活性光催化剂的制备。
     本文另辟蹊径,通过传统的溶胶-凝胶法结合蒸涂法制备了纯TiO_2薄膜及掺杂铂改性的TiO_2薄膜。实验结果表明,500℃热处理后的TiO_2均为锐钛矿型。本文的实验结果如下:
     (1)薄膜的UV-VIS结果表明,喷铂不同时间后的改性TiO_2薄膜都具有不同程度的可见光响应性,其光吸收曲线都有一定程度的红移。尤其是TPT-180s薄膜的光吸收曲线红移了30nm,在λ<670nm的可见光范围内都有吸收。而且除位于紫外光区的本征吸收边外,还出现了一个新的吸收边650nm,对应带隙为1.91eV,而相同制备工艺下制得的其它薄膜仅显示出TiO_2半导体的本征吸收。
     (2) SEM结果表明各种薄膜中TiO_2颗粒形貌有所差异,纯TiO_2薄膜中颗粒的平均大小在40~80nm之间,呈多面体树叶状;而在TPT-180s复合薄膜中,颗粒尺寸较均匀,平均大小在20~40nm之间,TTP-180s薄膜表面出现龟裂现象,而PTT-180s薄膜中部分颗粒为多面体状,部分为球状,一些颗粒长大现象较严重。
     (3) TPT-180s薄膜的横截面图像表明该薄膜总厚度约为160nm,里外两层TiO_2层的厚度分别约为60nm和70nm,而位于中间的铂层厚度约为30nm,该层厚度与铂的蒸涂时间成正比关系。
     (4) TPT-180s薄膜的TEM结果表明,与基体尺寸相当的铂团簇(20~40 nm)弥散分布在TiO_2基体中;同时在Pt-TiO_2界面存在金属与基体的接触区。SADP表明,夹层式复合薄膜TPT-180s由金属铂和锐钛矿型TiO_2构成。
     (5) XPS结果表明,在TPT-180s薄膜表面,铂钛原子比Pt:Ti≈2.5%; TTP-180s薄膜表面,铂钛原子比为无穷大;而在T薄膜和PTT-180s薄膜表面,铂钛原子比为零。在TPT-180s薄膜表面,钛元素为Ti4+,氧元素为O2-,而铂元素为Pt0,即铂以铂单质的形式存在,表层的这部分铂原子是在热处理过程中由中间层扩散至薄膜表面的。
     (6)可见光照射下降解不同初始浓度的甲基蓝溶液的实验表明,TPT-180s薄膜的光催化活性明显优于纯TiO_2薄膜、TTP-180s和PTT-180s薄膜,TPT-180s薄膜对甲基蓝溶液的最佳降解工艺为:甲基蓝初始浓度为30mg/L,体积为100ml;在此工艺条件下,纯TiO_2薄膜对甲基蓝溶液的降解率为76.6%,TPT-180s的最终降解率为83.4%。
     (7)实验室条件下制备的TiO_2薄膜较稳定,反复进行6次降解实验后,纯TiO_2薄膜和TPT-180s薄膜对甲基蓝溶液的降解率分别仅下降了5%和3%,再继续进行降解实验,薄膜的光催化活性保持稳定。
Since the appearance of global environment pollution and energy crisis, environment and energy problems have been the focus of people,s research all over the world. People have been cried for developing high efficiency, low energy consume, wide-use function materials. The photocatalytic oxidation technique of TiO_2 has been paid more and more attention for many advantages, such as low energy consumption, mild reaction condition,easy operation and so on. However, TiO_2 as a wide-gap semiconductor(Eg=3.2eV), it shows photocatalytic activities only when illuminated by light with wavelength< 387nm, meanwhile, induced electron-hole pairs recombine easily, low quanta efficiency, which largely confine its application in practice.
     Considering the problems above, the method of doping Pt has been presented because it can form Schottky barrier to trap electrons and change the characters of surface of photocatalysts, promote induced electron-hole pairs to apart, change the quantity of active function groups, which much affect the efficiency of multi-phase reaction.
     Different Pt-modified TiO_2 thin films were prepared by traditional sol-gel method together with arc discharging. All Titania thin films turned into anatase when calcined at 500℃. Main results were shown as follows:
     (1) Absorbance properties of all films were examined by UV-vis spectrometer. Compared with pure TiO_2 film, all systems show some kinds of visible light response when Pt layer lies between two TiO_2 coatings. Especially, the absorbance curve of TPT-180s composite film has redshifted by 30 nm and expanded even up to 650nm, its corresponding bandgap energy is 1.91eV. whereas, other films made under the same conditions only show their characteristic absorbance in region of wavelength<400nm.
     (2) The SEM results show that morphologies and sizes of granules in all systems are different: In pure TiO_2 thin film, the average sizes are in the range of 40~80nm and polyhedral-like, while in TPT-180s composite film, the average sizes are in the range of 20~40nm, particles in TTP-180s film seemed to be aggregating, while in PTT-180s, some particles even grow heavily.
     (3) The cross-section morphology results show that the whole thickness of TPT-180s composite film is 160nm, the outer and inner TiO_2 coatings are 60nm and 70nm, respectively, while Pt layer between them are about 30nm, which may come from the middle layer to surface by diffusion.
     (4) The TEM bright-field results of TPT-180s film show that the deposited Pt granules aggregate into Pt clusters (20~40nm). The selected-area electron diffraction analysis approves that TiO_2 is in the form of anatase phase in TPT-180s composite thin film after heat treatment.
     (5) XPS results show that Ti element is in the form of Ti4+, O in the form of O2- and Pt element in the form of Pt0 on surface of TPT-180s composite film. The atomic ratio of Pt to Ti element is about 2.5%, while for PTT-180s thin film and T (or PTT-180s film), the value is infinite and zero, respectively.
     (6) The photocatalytic activities of all systems have been tested by photobleaching different concentrations of methyl blue solution. The results show that the activities of TPT-180s film excel that of other references. The prime bleaching techniques are: the beginning concentration of MB solution-30mg/L,100mL, the illuminating time 2h. The ultimate degradation rate of pure TiO_2 is 76.6%, while the degradation rate of TPT-180s is 83.4%.
     (7) The prepared films are stable that after using six times, the photocatalying rate of pure TiO_2 film and TPT-180s only decrease by 5% and 3% respectively.
引文
[1] Fujishima A, Hashimoto K, Watanabe T. TiO_2 photocatalysis, Fundamentals and Applications[J]. BKC, Inc., 1999.
    [2] Carey J H, Lawrence J, Tosine H M. Photodechlorination of PCB’S in the presence of titanium dioxide in aqueous suspensions [J], Bulletin of environment contaminant and toxicology, 1976, 16: 697-701.
    [3] Pruden A L, David F O. Photoassisted heterogenous catalysis: the degradation of trichloroethylene in water [J]. Journal of catalysis, 82(2): 404-417.
    [4]郭慧琳,赵晓鹏.纳米二氧化钛半导体的光催化特性及其应用[J].硅酸盐通报,2003(3):53-56.
    [5] Gratzel M. Heterogeneous photochemical electron transfer [M]. Baton Rouge, FL: CRC Press, 1988.
    [6] Hoffmann M R, Martin S T, Choi W Y, etc., Environmental Applications of Semiconductor Photocatalysis [J]. Chemistry Review, 1995, 95(1): 69-96.
    [7] Fujishima A, Rao T N, Tryk D A. Titanium dioxide Photocatalysis [J]. Journal of Photochemistry and Photobiology, C: Photochem. Reviews, 2000, 1: 1-21.
    [8]尹衍升,关凯书,赵虹. SiO2添加量对TiO_2薄膜表面特性及亲水性的影响[J].中国有色金属学报, 2003, 13(2): 437-441.
    [9]邓南圣,吴峰.环境光化学[M].北京:化学工业出版社, 2003: 328-330.
    [10] Diebold U,The surface science of titanium dioxide, Surface Science Reports, 2003, 48: 53-229.
    [11] Skmen M, Alien D W, Akas F, etc., Photo-Degradation of Some Dyes Using Ag-Loaded Titanium Dioxide [J]. Water, Air, and Soil Pollution, 2001, 132: 153-163.
    [12]周芝俊,宁崇德编,钛的性质及其应用,高等教育出版社,1993.
    [13]黄艳娥,贾静娴.纳米TiO_2的晶型、粒径与光催化活性[J].河北工业科技,2001,18(3):6-9.
    [14]何建波,张鑫. TiO_2薄膜晶相组成对苯胺光催化降解的影响[J].应用化学,1999,16(5): 57-60.
    [15] Schlafani A, Hermann J M. Comparison of the Photoelectronic and Photocatalytic Activities of Varlous Anatase and Rutile Forms of Titania in Pure Liquid Organic Prase in Aqueous Solutions [J]. Journal of Physical Chemistry, 1996, 100: 13655-13661.
    [16]刘守新,刘鸿.光催化及光电化学催化基础与应用[M].北京:化学工业出版社,2006,1-350.
    [17]赵青南,余家国,赵修建.玻璃基TiO_2膜的孔径尺寸对其光催化性能的影响[J].玻璃,27(3):1-3.
    [18] Sanchez E, Lopex T. Synthesis and Characterization of Sol-Gel Pt/TiO_2 Catalyst [J]. Journal of Solid State Chemistry, 1996, 122: 309-314.
    [19] Micic O I, Zhang Y, Keith R, etc. Trapped Holes on TiO_2 Colloids Studied by Electron Paramagnetic Resonance [J]. Journal of Physical Chemistry, 1993, 97: 7177-7183.
    [20]张永彬,赵景畅,莫威等. TiO_2薄膜的制备及光催化性能的研究[J].功能材料,2001, 32(3): 310-314.
    [21] Samari Jahromi H, Taghdisian S, Afshar S, etc. Effects of pH and polyethylene glycol on surface morphology of TiO_2 thin film[J]. Surface & Coatings Technology, 2009, 20 (3): 1991–1996.
    [22] Meng F M, Song X P, Sun Z Q. Photocatalytic Activity of TiO_2 Thin Films Deposited by RF Magnetron Sputtering [J]. Vacuum, In Press, Accepted Manuscript, Available online 4 March 2009.
    [23] Eiamchai P, Chindaudom P, Pokaipisit A, etc. A spectroscopic ellipsometry study of TiO_2 thin films prepared by ion-assisted electron-beam evaporation[J]. Current Applied Physics, 2009 (9): 707–712.
    [24] Lin Z, Liu K, Zhang Y C, etc., The microstructure and wettability of the TiOx films synthesized by reactive DC magnetron sputtering [J].Materials Science and Engineering B, 2009, 1569:79–83.
    [25]王世敏,许祖勋,傅晶.纳米材料制备技术[M].北京:化学化工出版社,2002: 7~59.
    [26]宋继鑫.国外光学薄膜的应用和真空镀膜工艺[J].光学技术, 1994, 1, 32~38.
    [27]姜海波,李春忠,丛德滋.气相燃烧合成二氧化钛纳米颗粒[J].中国粉体技术,2001, 7(2): 28-32.
    [28] Yu J G, Zhao X J, Zhao Q N. Effect of surface structure on photocatalytic activity of thin film prepared by sol-gel method [J]. Thin Solid Films, 2000, 7(14): 7-11.
    [29]朱永法,李巍,何俣等.不锈钢金属丝网上TiO_2纳米薄膜光催化剂的研究[J].高等学校化学学报。2003, 24(3): 465-468.
    [30]陈建华,赵翠华,龚竹青等.不同载体表面负载TiO_2薄膜的离子掺杂研究[J].工业催化. 2005, 13(12):52-57.
    [31]周磊,刘昌,赵文宽等.液相沉积法制备光催化活性掺铁TiO_2薄膜[J].催化学报, 2003, 24(5): 359-363.
    [32]刘红艳,高濂.湿化学法原位合成硫掺杂的纳米金红石TiO_2可见光催化剂[J].无机材料学报, 2005, 20(2): 470-474.
    [33] Gopidas K R, Bohorquez M, Kamat P V. Photophysical and photochemical aspects of coupled semiconductors: charge-transfer process in colloidal cadmium sulfide-titania and cadmium sulfide-silver(I) iodide systems [J]. Journal of Physics and Chemistry, 1990, 94(16): 6435-6440.
    [34] Vlachopoulos N, Liska P, Augustynski J, etc., Very efficient visible light energy harvesting and conversion by spectral sensitization of high surface area polycrystalline titanium dioxide films [J]. Journal of American Chemistry Societies, 1998, 110(4): 1216-1220.
    [35] Xu W B, Dong S R, Wang D M, etc., Investigation of microstructure evolution in Pt-doped TiO_2 thin films deposited by rf magnetron sputtering [J]. Physica B, 403(2008): 2698–2701.
    [36] N. Seshu Babu, N. Lingaiah, Nayeem Pasha etc. Influence of particle size and nature of Pd species on the hydrodechlorination of chloroaromatics: Studies on Pd/TiO_2 catalysts in chlorobenzene conversion [J]. Catalysis Today, 141 (2009) 120–124.
    [37]刘守新,曲振平,韩秀文等.担载Ag对TiO_2光催化活性的影响[J].催化学报,2004,25(2):133-137.
    [38]杨建军,李东旭,李庆霖等。甲醛光催化氧化的反应机理[J]。物理化学学报,2001,17(3):278-281.
    [39]张金龙,安保正一.贵金属负载光催化剂在丙炔光催化水解反应中的研究[J].高等学校化学学报,2004,25(4):733.
    [40] Folkesson B, Larsson R, Rebenstort B. An XPS and FTIR spectroscopic investigation of surface adsorbates on a Pt/TiO_2 catalyst in the reaction of methanol formaldehyde and formic acid with vanadyl sulfate [J]. Journal of Electroanalytical Chemistry, 1989, 272(1-2): 231-240.
    [41] Sclafani A, Mozzanega M N, Pichat P. Effect of silver deposits on the photocatalytic activity of titanium dioxide samples for the dehydrogenation or oxidation of 2-propanol [J]. Journal of Photochemistry and Photobiology, A: chemistry, 1991, 59: 181-189.
    [42] Chen J, David F, Ollisetal. Water Research.1999, 33(3):661-668.
    [43]王幼平,余家国,赵修建等.掺铅TiO_2薄膜的制备及其光催化性能的研究[J].中国环境科学, 1998, 18(3): 244-247.
    [44]荆晶,王连军.过度金属离子掺杂改性的光催化性能研究进展[J].污染防治技术, 1999, 12(2): 114-117.
    [45]吴海宝,董晓.过度金属离子对阳离子蓝X-GRRL染料污水脱色率的影响[J].中国环境科学, 1997, 17(1): 92-96.
    [46] Kumar S, Allen P. Water Environ. Res. 1997, 69, 1238-1245.
    [47] Sato S. Photocatalytic of NOx-doped TiO_2 in the visible light region[J]. Chemical Physics Letters, 1986, 123(1-2): 126-128.
    [48] Asahi R, Morikawa T, Ohwakl T, etc., Visible-Light Photocatalyst in Nitrogen-Doped Titanium Oxides [J]. Science, 2001, 293: 269-271.
    [49] Umebayashi T, Yamaki T, Itoh H etc., Band gap narrowing of titanium dioxide by sulfur doping [J]. Applied Physics Letters, 2002, 81: 454-456.
    [50]贺翔,熊予莹.具有可见光活性的纳米掺氮TiO_2制备和表征[J].功能材料与器件学报, 2005, 11, 223-227.
    [51] Zhao W, Ma W H, Chen C C etc., Efficient degradation of toxic organic pollutans with Ni2O3/TiO_2-xBx under visible irradiation [J]. Journal of the American Chemical Society, 2004, 126: 4782-4783.
    [52] Yuka W S, Obata K, Hashimoto K, etc., Enhancement of visible light-inducedhydrophilicity on nitrogen and sulfur-codoped TiO_2 thin films [J]. Vacuum, 83(2009): 683–687.
    [53] Umebayashi T, Yamaki T, Tanaka S etc., Visible light-induced degradation of methylene blue on S-doped TiO_2 [J]. Chemistry Letters, 2003, 32: 330-331.
    [54] Khan S U, Shahry M A. Efficient photochemical water splitting by a chemically modified n- TiO_2 [J]. Science, 2002, 7: 2243-2245.
    [55] Zhang D D, Qiu R L, Song L, etc., Role of oxygen active species in the photocatalytic degradation of phenol using polymer sensitized TiO_2 under visible light irradiation [J]. Journal of Hazardous Materials, 163(2009): 843–847.
    [56] Lee K M, Suryanarayanan V, Ho K C. Influences of different TiO_2 morphologies and solvents on the photovoltaic performance of dye-sensitized solar cells [J]. Journal of Power Sources, 188(2009): 635–641.
    [57]王承遇,钟萍,姜妍彦.掺杂铈对玻璃表面TiO_2薄膜上油酸的光催化降解的影响[J].催化学报, 2000, 21(50): 443-446.
    [58] Dong Hyun Kim, MarcA Anderson. Environ Sci Technol., 1994, 28: 479-483.
    [59]张素香.二氧化钛光催化环境净化技术的应用及发展动向[J].新疆石油学院学报, 2002, 14(3): 62-66.
    [60]王爱民,曲久辉,姜桂兰.电化学降解酸性红B研究[J].环境科学, 2003, 24(2): 108-111.
    [61] Ge J T, Qu J H. Degradation of azo dye acid red B on manganese dioxide in the absence and pressure of ultrasonic irradiation [J]. Journal of Hazardous Materials B, 2003, 100(X): 197-207.
    [62] Liu H Y, Guo L. Codoped rutile TiO_2 as a new photocatalyst for visible light irradiation [J]. Chemistry Letters, 2004, 33(6): 730-731.
    [63]姚秉华,王理明,杨国农. RuO2/La2O3/TiO_2悬浮体系中直接晒黑G的光催化降解[J].环境污染治理技术与设备, 2005, 6(4): 18-21.
    [64]彭晓春,陈新庚,黄鸽等. N-TiO_2光催化机理及其在环境保护中的应用研究进展[J].环境污染治理技术与设备, 2002, 3(3): 1-6.
    [65]丁子上,翁文剑.溶胶-凝胶技术制备材料进展[J].硅酸盐学报, 1993, 21(5): 443-449.
    [66] Horsley J A. A Molecular Orbital Study of Strong Metal-Support Interaction between Platinum and Titanium Dioxide[J]. Journal of American Chemical Society, 1979, 101(11): 2870-2874.
    [67] Tauster S J, Fung S C, Garten R L J. Strong metal-support interactions: Group 8 noble metals supported on TiO_2 [J]. Journal of American Chemical Society, 1978, 100: 170-175.
    [68] Zhao Z W, Tay B K, Lau S P etc., Optical properties of titania films prepared by off-plane filtered cathodic vacuum arc, Journal of Crystal Growth, 2004, (268): 543~546.
    [69] M. D. Driessen and V. H. Grassian. Photooxidation of Trichloroethylene on Pt/TiO_2[J]. J. Phys. Chem. B 1998, 102, 1418-1423.
    [70] Takeshi Sasaki, Naoto Koshizaki, Jong-Won Yoon. Preparation of Pt/TiO_2 nanocomposite thin films by pulsed laser deposition and their photoelectrochemical behaviors[J]. Journal of Photochemistry and Biology A: Chemistry 145(2001) 11-16.
    [71]任成军. TiO_2薄膜光催化剂的制备及结构与性能研究[D].成都:四川大学,2004.
    [72]郭玉.二氧化钛薄膜的掺杂、复合及其性能研究[D].杭州:浙江大学,2007.
    [73]崔玉民.负载贵金属的TiO_2光催化剂的研究进展[J].贵金属,2007,28(3):62~66.
    [74] Negishi N, Takeuchi K, Ibusuki T. The surface structure of titanium dioxide thin film photocatalyst[J]. Applied Surface Science, 1997, 121-122: 417-420.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700