乙酰胆碱酯酶在细胞凋亡中的作用及G418诱导细胞凋亡的分子机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
哺乳动物的多种细胞在多种条件诱导凋亡过程中会表达乙酰胆碱酯酶
    (acetylcholinesterase,AChE),用反义核酸抑制 AChE 的表达可以抑制一部分细
    胞的凋亡,但 AChE 在凋亡中的功能仍不清楚。为研究其可能的功能,我们通过
    转基因方法在 NRK(Normal Rat Kidney)细胞中过表达 AChE。正常 NRK 细胞
    中检测不到 AChE 的酯酶活性,但用 Western blot 方法可检测到 AChE 蛋白的存
    在。在多种细胞凋亡诱导因子刺激下,凋亡的 NRK 细胞中出现了 AChE 酯酶活
    性,并且 AChE 的 mRNA 和蛋白也随着增加。在 NRK 细胞中过表达 AChE 蛋白
    没有诱导细胞凋亡,并且我们得到了稳定表达的细胞株,但这种细胞株的生长明
    显延缓了,而用稳定表达 AChE 反义核酸抑制 AChE 蛋白的表达却能促进细胞的
    生长。在无血清诱导下,MTT 实验结果显示 AChE 表达株的残留细胞活性比对
    照的低,而 AChE 反义核酸表达株的残留细胞活性比对照的高。这些结果说明在
    凋亡过程中 AChE 有两个作用,先是增加的 AChE 抑制细胞的生长,然后是促进
    细胞凋亡的进程。为检测 NRK 细胞中的无酯酶活性 AChE 在凋亡中可能的功能,
    我们用一种蛋白合成的抑制剂 G418 来诱导细胞凋亡。G418 诱导的凋亡 NRK 细
    胞中有非常明显的 AChE 酯酶活性,而这种 AChE 酯酶活性不依赖于新蛋白的合
    成和 caspases 的活性。用共聚焦显微镜观察 AChE 的细胞定位,观察到正常 NRK
    细胞中 AChE 定位于内质网上,而在凋亡的细胞中 AChE 分布于整个细胞。用透
    射电镜观察 AChE 酯酶活性的产物分布,发现产物主要定位在细胞核中,并有一
    
    
    部分位于胞质和一些囊泡的外膜上。缺失内质网定位信号肽的 AChE 表达质粒使
    在胞质直接表达的 AChE 不能诱导细胞凋亡。但长时间培养后,在胞质中表达
    AChE 细胞的凋亡比例明显比在内质网中表达 AChE 细胞的高。有趣的是在胞质
    中表达 AChE 蛋白的 C 末端肽片段也有促进细胞凋亡的功能。根据上述结果我
    们提出一个假设:在 NRK 细胞中无酯酶活性的 AChE 在内质网中比较稳定地存
    在,当受到凋亡诱导因子刺激后以某种机制从内质网转移到胞质并部分转到细胞
    核内,在胞质和核中其 C 末端肽段同其它的凋亡因子相互作用并促进细胞凋亡,
    同时 AChE 本身的构象也发生改变,成为有酯酶活性的形式。为进一步分析无酯
    酶活性 AChE 蛋白,我们制备了 AChE 抗体亲和层析柱,分离出总的 AChE 蛋白。
    我们还制备了以 AChE 抑制剂(tacrine)为配体的亲和层析柱,分离有酯酶活性的
    AChE。这两个方法为在蛋白水平上比较无酯酶活性和有酯酶活性 AChE 之间的
    差异奠定了基础。
Acetylcholinesterase (AChE) is expressed in a number of cell lines upon
    induction of apoptosis by various stimuli, and inhibiting expression of AChE by
    AChE antisense prevents part of the cells from apoptosis. However, the function of
    AChE in apoptosis is still elusive. We made AChE overexpresse in Normal Rat
    Kidney (NRK) cells to investigate its possible function. AChE activity was not
    presented in living NRK cells, but the AChE protein existed. Upon induction of
    apoptosis, apoptotic NRK cells presented AChE activity, and AChE mRNA and
    protein also increased. Overexpression of AChE in NRK cells did not induce
    apoptosis. However, the proliferation of cell lines expressing AChE was retarded, and
    the effect was reversed in cell lines overexpressing AChE antisene, in which AChE
    expression decreased. Under induction by serum deprivation, the residual cell activity
    of cells overexpressing AChE was lower than control, and the effect was reversed in
    cell lines expressing AChE antisense. It suggested that AChE had two functions in the
    process of apoptosis: increased AChE protein first inhibited cell proliferation, and
    then promoted apoptosis. To detect the possible function of inactive AChE during
    apoptosis, NRK cells were induced apoptosis by G418, which is an inhibitor of
    protein synthesis. Apoptotic NRK cells induced by G418 exhibited strong AChE
    activity, which was independent of new protein synthesis and capases activity. In
    living NRK cells, AChE protein located in ER, and in apoptotic cells, AChE
    distributed over the whole cell. The products of AChE enzymatic reaction observed
    under electron microscope were located in nuclei, cytosole, and on the membrane of
    some vacuoles. Expression of AChE without ER location signal (ERLS) did not
    
    
    induce apoptosis. However, the percentage of apoptotic cells in NRK cells transfected
    with AChE without ERLS was higher than that in NRK cells transfected with intact
    AChE. Interestingly, cells expressed C-terminal of AChE had the same effect with
    cells expressed AChE without ERLS, and moreover, AChE directly expressed in
    cytosole had no activity. Base on these experiments, we brought forward a hypothesis
    on AChE in apoptosis: in the process of apoptosis, inactive AChE, which stably stood
    in ER in NRK cells, was translocated into cytosole and nuclei, where the C-terminal
    of AChE interacted with some apoptotic factors and promoted apoptosis, and at the
    same time, inactive AChE was transformed into active AChE. To further analyse the
    inactive AChE protein, we prepared antibody affinity chromatography to isolate the
    total AChE. This method with tacrine affinity chromatography which was to isolate
    active AChE provided precondition for analysis of the difference between inactive and
    active AChE at the protein level.
引文
1. Massoulie J. and Bon S. (1982) The molecular forms of cholinesterase and
     acetylcholinesterase in vertebrates. Annu Rev Neurosci 5: 57-106
    2. Massoulie J., Pezzementi L., Bon S., Krejci E. and Vallette F. M. (1993)
     Molecular and cellular biology of cholinesterases. Prog Neurobiol 41: 31-91
    3. Li Y., Camp S., Rachinsky T. L., Getman D. and Taylor P. (1991) Gene
     structure of mammalian acetylcholinesterase. Alternative exons dictate
     tissue-specific expression. J Biol Chem 266: 23083-23090
    4. Li Y., Camp S. and Taylor P. (1993) Tissue-specific expression and alternative
     mRNA processing of the mammalian acetylcholinesterase gene. J Biol Chem
     268: 5790-5797
    5. Rosenberry T. L., Toutant J. P., Haas R. and Roberts W. L. (1989)
     Identification and analysis of glycoinositol phospholipid anchors in membrane
     proteins. Methods Cell Biol 32: 231-255
    6. Ferguson M. A. and Williams A. F. (1988) Cell-surface anchoring of proteins
     via glycosyl-phosphatidylinositol structures. Annu Rev Biochem 57: 285-320
    7. Krejci E., Thomine S., Boschetti N., Legay C., Sketelj J. and Massoulie J.
     (1997) The mammalian gene of acetylcholinesterase-associated collagen. J
     Biol Chem 272: 22840-22847
    8. Perrier A. L., Massoulie J. and Krejci E. (2002) PRiMA: the membrane anchor
     of acetylcholinesterase in the brain. Neuron 33: 275-285
    9. Kronman C., Chitlaru T., Elhanany E., Velan B. and Shafferman A. (2000)
     Hierarchy of post-translational modifications involved in the circulatory
     longevity of glycoproteins. Demonstration of concerted contributions of
     glycan sialylation and subunit assembly to the pharmacokinetic behavior of
     bovine acetylcholinesterase. J Biol Chem 275: 29488-29502
    10. Legay C., Huchet M., Massoulie J. and Changeux J. P. (1995) Developmental
    
    
    regulation of acetylcholinesterase transcripts in the mouse diaphragm:
     alternative splicing and focalization. Eur J Neurosci 7: 1803-1809
    11. Kaufer D., Friedman A., Seidman S. and Soreq H. (1998) Acute stress
     facilitates long-lasting changes in cholinergic gene expression. Nature 393:
     373-377
    12. Meshorer E., Erb C., Gazit R., Pavlovsky L., Kaufer D., Friedman A., et al.
     (2002) Alternative splicing and neuritic mRNA translocation under long-term
     neuronal hypersensitivity. Science 295: 508-512
    13. Soreq H. and Seidman S. (2001) Acetylcholinesterase--new roles for an old
     actor. Nat Rev Neurosci 2: 294-302
    14. Layer P. G., Weikert T. and Alber R. (1993) Cholinesterases regulate neurite
     growth of chick nerve cells in vitro by means of a non-enzymatic mechanism.
     Cell Tissue Res 273: 219-226
    15. Small D. H., Reed G., Whitefield B. and Nurcombe V. (1995) Cholinergic
     regulation of neurite outgrowth from isolated chick sympathetic neurons in
     culture. J Neurosci 15: 144-151
    16. Koenigsberger C., Chiappa S. and Brimijoin S. (1997) Neurite differentiation
     is modulated in neuroblastoma cells engineered for altered
     acetylcholinesterase expression. J Neurochem 69: 1389-1397
    17. Grifman M., Galyam N., Seidman S. and Soreq H. (1998) Functional
     redundancy of acetylcholinesterase and neuroligin in mammalian
     neuritogenesis. Proc Natl Acad Sci U S A 95: 13935-13940
    18. Darboux I., Barthalay Y., Piovant M. and Hipeau-Jacquotte R. (1996) The
     structure-function relationships in Drosophila neurotactin show that
     cholinesterasic domains may have adhesive properties. Embo J 15: 4835-4843
    19. Llinas R. R. and Greenfield S. A. (1987) On-line visualization of dendritic
     release of acetylcholinesterase from mammalian substantia nigra neurons.
     Proc Natl Acad Sci U S A 84: 3047-3050
    20. Holmes C., Jones S. A., Budd T. C. and Greenfield S. A. (1997)
     Non-cholinergic, trophic action of recombinant acetylcholinesterase on
    
    
    mid-brain dopaminergic neurons. J Neurosci Res 49: 207-218
    21. Inestrosa N. C., Alvarez A., Perez C. A., Moreno R. D., Vicente M., Linker C.,
     et al. (1996) Acetylcholinesterase accelerates assembly of
     amyloid-beta-peptides into Alzheimer's fibrils: possible role of the peripheral
     site of the enzyme. Neuron 16: 881-891
    22. Wright C. I., Geula C. and Mesulam M. M. (1993) Neurological
     cholinesterases in the normal brain and in Alzheimer's disease: relationship to
     plaques, tangles, and patterns of selective vulnerability. Ann Neurol 34:
     373-384
    23. Lev-Lehman E., Deutsch V., Eldor A. and Soreq H. (1997) Immature human
     megakaryocytes produce nuclear-associated acetylcholinesterase. Blood 89:
     3644-3653
    24. Kawashima K. and Fujii T. (2000) Extraneuronal cholinergic system in
     lymphocytes. Pharmacol Ther 86: 29-48
    25. Soreq H., Patinkin D., Lev-Lehman E., Grifman M., Ginzberg D., Eckstein F.,
     et al. (1994) Antisense oligonucleotide inhibition of acetylcholinesterase gene
     expression induces progenitor cell expansion and suppresses hematopoietic
     apoptosis ex vivo. Proc Natl Acad Sci U S A 91: 7907-7911
    26. Robitzki A., Mack A., Hoppe U., Chatonnet A. and Layer P. G. (1998)
     Butyrylcholinesterase antisense transfection increases apoptosis in
     differentiating retinal reaggregates of the chick embryo. J Neurochem 71:
     p413-420
    27. Lev-Lehman E., Ginzberg D., Hornreich G., Ehrlich G., Meshorer A., Eckstein
     F., et al. (1994) Antisense inhibition of acetylcholinesterase gene expression
     causes transient hematopoietic alterations in vivo. Gene Ther 1: 127-135
    28. Ehrlich G., Viegas-Pequignot E., Ginzberg D., Sindel L., Soreq H. and Zakut
     H. (1992) Mapping the human acetylcholinesterase gene to chromosome 7q22
     by fluorescent in situ hybridization coupled with selective PCR amplification
     from a somatic hybrid cell panel and chromosome-sorted DNA libraries.
     Genomics 13: 1192-1197
    
    
    29. Stephenson J., Czepulkowski B., Hirst W. and Mufti G. J. (1996) Deletion of
     the acetylcholinesterase locus at 7q22 associated with myelodysplastic
     syndromes (MDS) and acute myeloid leukaemia (AML). Leuk Res 20:
     235-241
    30. Zhang X. J., Yang L., Zhao Q., Caen J. P., He H. Y., Jin Q. H., et al. (2002)
     Induction of acetylcholinesterase expression during apoptosis in various cell
     types. Cell Death Differ 9: 790-800
    31. Li Y., Camp S., Rachinsky T. L., Bongiorno C. and Taylor P. (1993) Promoter
     elements and transcriptional control of the mouse acetylcholinesterase gene. J
     Biol Chem 268: 3563-3572
    32. Atanasova E., Chiappa S., Wieben E. and Brimijoin S. (1999) Novel
     messenger RNA and alternative promoter for murine acetylcholinesterase. J
     Biol Chem 274: 21078-21084
    33. Shapira M., Tur-Kaspa I., Bosgraaf L., Livni N., Grant A. D., Grisaru D., et al.
     (2000) A transcription-activating polymorphism in the ACHE promoter
     associated with acute sensitivity to anti-acetylcholinesterases. Hum Mol Genet
     9: 1273-1281
    34. Chan R. Y., Boudreau-Lariviere C., Angus L. M., Mankal F. A. and Jasmin B.
     J. (1999) An intronic enhancer containing an N-box motif is required for
     synapse- and tissue-specific expression of the acetylcholinesterase gene in
     skeletal muscle fibers. Proc Natl Acad Sci U S A 96: 4627-4632
    35. Plageman L. R., Pauletti G. M. and Skau K. A. (2002) Characterization of
     acetylcholinesterase in Caco-2 cells. Exp Biol Med (Maywood) 227: 480-486
    36. Coleman B. A. and Taylor P. (1996) Regulation of acetylcholinesterase
     expression during neuronal differentiation. J Biol Chem 271: 4410-4416
    37. Grisaru D., Lev-Lehman E., Shapira M., Chaikin E., Lessing J. B., Eldor A., et
     al. (1999) Human osteogenesis involves differentiation-dependent increases in
     the morphogenically active 3' alternative splicing variant of
     acetylcholinesterase. Mol Cell Biol 19: 788-795
    38. Lapidot-Lifson Y., Prody C. A., Ginzberg D., Meytes D., Zakut H. and Soreq
    
    
    H. (1989) Coamplification of human acetylcholinesterase and
     butyrylcholinesterase genes in blood cells: correlation with various leukemias
     and abnormal megakaryocytopoiesis. Proc Natl Acad Sci U S A 86: 4715-4719
    39. Galyam N., Grisaru D., Grifman M., Melamed-Book N., Eckstein F., Seidman
     S., et al. (2001) Complex host cell responses to antisense suppression of
     ACHE gene expression. Antisense Nucleic Acid Drug Dev 11: 51-57
    40. Fuentes M. E. and Taylor P. (1993) Control of acetylcholinesterase gene
     expression during myogenesis. Neuron 10: 679-687
    41. Chan R. Y., Adatia F. A., Krupa A. M. and Jasmin B. J. (1998) Increased
     expression of acetylcholinesterase T and R transcripts during hematopoietic
     differentiation is accompanied by parallel elevations in the levels of their
     respective molecular forms. J Biol Chem 273: 9727-9733
    42. Rotundo R. L. (1988) Biogenesis of acetylcholinesterase molecular forms in
     muscle. Evidence for a rapidly turning over, catalytically inactive precursor
     pool. J Biol Chem 263: 19398-19406
    43. Brockman S. K., Usiak M. F. and Younkin S. G. (1986) Assembly of
     monomeric acetylcholinesterase into tetrameric and asymmetric forms. J Biol
     Chem 261: 1201-1207
    44. Chatel J. M., Grassi J., Frobert Y., Massoulie J. and Vallette F. M. (1993)
     Existence of an inactive pool of acetylcholinesterase in chicken brain. Proc
     Natl Acad Sci U S A 90: 2476-2480
    45. Eichler J. and Silman I. (1995) The activity of an endoplasmic
     reticulum-localized pool of acetylcholinesterase is modulated by heat shock. J
     Biol Chem 270: 4466-4472
    46. Torriglia A., Negri C., Chaudun E., Prosperi E., Courtois Y., Counis M. F., et
     al. (1999) Differential involvement of DNases in HeLa cell apoptosis induced
     by etoposide and long term-culture. Cell Death Differ 6: 234-244
    47. Gong J., Traganos F. and Darzynkiewicz Z. (1994) A selective procedure for
     DNA extraction from apoptotic cells applicable for gel electrophoresis and
     flow cytometry. Anal Biochem 218: 314-319
    
    
    48. Karnovsky M. J. and Roots L. (1964) A "Direct-Coloring" Thiocholine
     Method for Cholinesterases. J Histochem Cytochem 12: 219-221
    49. Legay C., Bon S. and Massoulie J. (1993) Expression of a cDNA encoding the
     glycolipid-anchored form of rat acetylcholinesterase. FEBS Lett 315: 163-166
    50. Bar-Nun S., Shneyour Y. and Beckmann J. S. (1983) G-418, an elongation
     inhibitor of 80 S ribosomes. Biochim Biophys Acta 741: 123-127
    51. Carson K. A., Geula C. and Mesulam M. M. (1991) Electron microscopic
     localization of cholinesterase activity in Alzheimer brain tissue. Brain Res 540:
     204-208
    52. Chatel J. M., Eichler J., Vallette F. M., Bon S., Massoulie J. and Grassi J.
     (1994) Two-site immunoradiometric assay of chicken acetylcholinesterase:
     active and inactive molecular forms in brain and muscle. J Neurochem 63:
     1111-1118
    53. Choi R. C., Leung P. W., Dong T. T., Wan D. C. and Tsim K. W. (1996)
     Calcitonin gene-related peptide increases the expression of
     acetylcholinesterase in cultured chick myotubes. Neurosci Lett 217: 165-168
    54. Belbeoc'h S., Massoulie J. and Bon S. (2003) The C-terminal T peptide of
     acetylcholinesterase enhances degradation of unassembled active subunits
     through the ERAD pathway. Embo J 22: 3536-3545
    55. Hu W., Gray N. W. and Brimijoin S. (2003) Amyloid-beta increases
     acetylcholinesterase expression in neuroblastoma cells by reducing enzyme
     degradation. J Neurochem 86: 470-478
    56. Melo J. B., Agostinho P. and Oliveira C. R. (2002) Amyloid beta-peptide
     25-35 reduces [3H]acetylcholine release in retinal neurons. Involvement of
     metabolic dysfunction. Amyloid 9: 221-228
    57. Alvarez A., Alarcon R., Opazo C., Campos E. O., Munoz F. J., Calderon F. H.,
     et al. (1998) Stable complexes involving acetylcholinesterase and
     amyloid-beta peptide change the biochemical properties of the enzyme and
     increase the neurotoxicity of Alzheimer's fibrils. J Neurosci 18: 3213-3223
    58. Bartos E. M. and Glinos A. D. (1976) Properties of growth-related
    
    
    acetylcholinesterase in a cell line of fibroblastic origin. J Cell Biol 69:
     638-646
    59. Park S. E., Kim N. D. and Yoo Y. H. (2004) Acetylcholinesterase plays a
     pivotal role in apoptosome formation. Cancer Res 64: 2652-2655
    60. Giles K. (1997) Interactions underlying subunit association in cholinesterases.
     Protein Eng 10: 677-685
    61. Cottingham M. G., Hollinshead M. S. and Vaux D. J. (2002) Amyloid fibril
     formation by a synthetic peptide from a region of human acetylcholinesterase
     that is homologous to the Alzheimer's amyloid-beta peptide. Biochemistry 41:
     13539-13547
    62. Bon S., Dufourcq J., Leroy J., Cornut I. and Massoulie J. (2004) The
     C-terminal t peptide of acetylcholinesterase forms an alpha helix that supports
     homomeric and heteromeric interactions. Eur J Biochem 271: 33-47
    63. Perry C., Sklan E. H., Birikh K., Shapira M., Trejo L., Eldor A., et al. (2002)
     Complex regulation of acetylcholinesterase gene expression in human brain
     tumors. Oncogene 21: 8428-8441
    64. Breckenridge D. G., Germain M., Mathai J. P., Nguyen M. and Shore G. C.
     (2003) Regulation of apoptosis by endoplasmic reticulum pathways.
     Oncogene 22: 8608-8618
    65. Nutt L. K., Pataer A., Pahler J., Fang B., Roth J., McConkey D. J., et al. (2002)
     Bax and Bak promote apoptosis by modulating endoplasmic reticular and
     mitochondrial Ca2+ stores. J Biol Chem 277: 9219-9225
    66. Grisaru D., Sternfeld M., Eldor A., Glick D. and Soreq H. (1999) Structural
     roles of acetylcholinesterase variants in biology and pathology. Eur J Biochem
     264: 672-686
    67. Day T. and Greenfield S. A. (2003) A peptide derived from
     acetylcholinesterase induces neuronal cell death: characterisation of possible
     mechanisms. Exp Brain Res 153: 334-342
    68. Gomez-Ramos P., Mufson E. J. and Moran M. A. (1992) Ultrastructural
     localization of acetylcholinesterase in neurofibrillary tangles, neuropil threads
    
    and senile plaques in aged and Alzheimer's brain. Brain Res 569: 229-237

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700