葡萄籽原花青素对糖尿病大鼠海马的保护机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     到2010年,全球糖尿病(Diabetes Mellitus,DM)患者总数将增加到2.2亿。在25-74岁的人口中,中国DM患者每年增加754,000人,21世纪将仅位于印度之后成为DM第二大国。在糖尿病中枢神经系统并发症中,对糖尿病引起的昏迷、糖尿病脑血管病变研究较多,而对糖尿病引起的认知功能障碍即糖尿病脑病认识不足。糖尿病脑病是慢性进展性疾病,是一种中枢神经系统退行性变。糖尿病可通过非酶蛋白糖基化、氧化应激、多元醇旁路和蛋白激酶C激活多种途径对中枢神经系统产生影响,具体机制不明,更缺乏特异性的治疗。近年来的研究表明,晚期糖基化终末产物(advanced glycation end-products,AGEs)、晚期糖基化终末产物受体(receptor for advanced glycation end-products,RAGE)和转录核因子-kappa B(nuclear factor-kappa B,NF-κB)在糖尿病并发症的发生、发展中具有重要意义,但对其在糖尿病中枢神经病变,特别是在糖尿病脑病发病机制中的作用研究较少。葡萄籽原花青素(grape seed proanthocyanidin extracts,GSPE)具有抗氧化、抑制糖尿病非酶性糖基化、减少氧化应激反应和细胞修复等作用,有望成为治疗糖尿病并发症的新药。本研究利用链脲佐菌素(streptozotocin,STZ)所致糖尿病大鼠模型,试图从高血糖诱发的AGEs/RAGE/NF-κB信号转导途径入手,探讨糖尿病脑病-主要是糖尿病大鼠海马退行性变的发病机制,以及GSPE改善糖尿病海马神经元细胞、胶质星行细胞退行性变的可能机制,为预防、治疗糖尿病脑病寻找新的方向。
     材料与方法:
     健康雄性Wistar大鼠60只,体重180-220g。实验动物饲以标准颗粒饲料,分笼喂养,饮食自由,自然昼夜光线照明,实验室内通风良好,温度保持在18-25℃,相对湿度为40-70%。实验前动物测定随机血糖、称重。按空腹体重编号,随机选出10只作为正常对照组(C1组),10只为正常对照加GSPE治疗组(C2组,予以GSPE 250mg/kg/日灌胃)。余40只大鼠适应性喂养7天后,禁食12h。以0.1mol/L、PH4.2的柠檬酸盐缓冲液溶解STZ,配成新鲜的2%的STZ溶液,经滤菌器除菌。实验组按55mg/Kg一次性尾静脉注射,正常对照组注射同等剂量的柠檬酸盐缓冲液。注射后每天后取鼠尾微量血测定血糖(采用强生公司One-Touch Ultra血糖仪),尿糖试纸检测定性尿糖。尿糖在+++以上,血糖>16.7mmol/L者定为糖尿病大鼠。成模后每周测定一次定性尿糖,每周测定一次血糖和体重。成模糖尿病大鼠30只,平衡一周后,随机分为2组:15只作为糖尿病组(DM1组),15只为正常对照并GSPE治疗组(DM2组,予以GSPE 250mg/kg/日灌胃)。每周检测空腹血糖、体重,标准饲养24周后取血测定血清AGEs和糖化血红蛋白,大鼠断头取脑并分离海马,利用HE染色、神经生长因子和胶质原纤维酸性蛋白(glial fibrillary acid protein,GFAP)免疫组织化学染色观察海马形态,逆转录一聚合酶链式反应检测AGEs/RAGE和NF-κB mRNA表达,免疫组织化学和Western Blot方法研究海马神经元AGEs/RAGE和NF-κB蛋白表达。统计学分析:所有数据均以均数±标准差(x±SD)表示,用SPSS13.0软件进行分析。样本间均数的比较采用t检验或方差分析。P<0.05表示有统计学意义。
     结果:
     1.一般观察
     糖尿病大鼠污秽无泽,生长缓慢,血糖波动在较高水平(>20mmol/L),其中多只因严重感染而死亡,未纳入最后统计。GSPE治疗组糖尿病大鼠上述表现减轻,血糖降低,但仍高于正常对照组大鼠。正常对照组大鼠无糖尿病症状,生长及营养状况良好。
     2.血糖、糖化血红蛋白及体重的比较
     实验前4组大鼠的血糖、体重均无统计学差异(p>0.05)。实验终止时,糖尿病大鼠体重明显低于正常对照组大鼠同期体重(t=16.791,P<0.001),而血糖和HbA_(1C)则显著高于对照组(P<0.05);DM2组大鼠与DM1相比,体重有增长但无显著差异(p>0.05),血糖控制好转但无显著差异(p>0.05)。糖尿病组FPG、HbA_(1C)和体重与正常组比较均有显著性差异,说明糖尿病模型动物是可靠的。C1和C2组肝、肾功均正常,无差异(p>0.05),说明GSPE干预剂量适当,未产生毒副作用。
     3.海马神经元形态学观察
     糖尿病大鼠海马神经元发生退形性改变:神经元细胞层不完整,其中许多细胞胞体缩小,胞浆呈淡红色,胞核固缩深染,排列亦疏散不规则。正常对照组海马神经元较大,形态完整,排列规则且密集,层次清晰。
     糖尿病组海马CA区神经元较对照组减少(t=3.672,P=0.002),GSPE干预后DM2组DM1组相比神经元数目增加(t=-2.702,p=0.015)。这种改变提示:糖尿病大鼠脑内存在海马及皮层神经元退行性改变,造成神经元数目减少,GSPE可以改善、修复被损伤的神经元,对海马有保护作用。
     4.海马星形细胞增生性改变
     实验结束时,免疫组织化学结果显示:与对照组相比,糖尿病组海马星形细胞GFAP染色灰度值减少(t=3.065,p=0.007),GFAP阳性细胞个数增多(t=-3.524,p=0.005),表明GFAP蛋白表达增加。GSPE治疗后DM2和DM1组相比海马星形细胞GFAP染色灰度值增加(t=-2.360,p=0.030),GFAP阳性细胞个数减少(t=2.981,p=0.013),表明GFAP蛋白表达减少。糖尿病大鼠海马CA区GFAP表达增加,提示糖尿病组存在脑损伤的激活和胶质星形细胞增生,GSPE对胶质星形细胞增生有改善作用。
     5.GSPE对STZ致糖尿病大鼠RAGE/AGEs和NF-κB表达的影响
     5.1海马RAGE mRNA表达
     与对照组相比,糖尿病组大鼠海马内RAGE mRNA表达增加(t=-3.795,P=0.002),经GSPE治疗后,DM2组和DM1组相比海马RAGEmRNA表达降低,差别均有统计学意义(t=2.588,P=0.019)。
     5.2海马NF-κB mRNA表达
     与对照组相比,糖尿病组大鼠海马内NF-κBmRNA表达增加(t=-3.972,P=0.002),经GSPE治疗后,DM2组和DM1组相比大鼠海马NF-κB mRNA表达降低,差别均有统计学意义(t=3.480,P=0.003)。
     5.3海马RAGE蛋白表达
     免疫组化染色显示,实验结束时,糖尿病组大鼠海马CA区神经元细胞上RAGE阳性染色颗粒丰富,而DM2组较DM1组RAGE阳性染色颗粒明显减少。糖尿病组较对照组海马RAGE灰度值减少(t=2.482,p=0.027),阳性细胞数增加(t=-5.218,p<0.001),表明蛋白表达增加;GSPE治疗后DM2和DM1组相比海马RAGE灰度值增加(t=-2.437,p=0.026),阳性细胞数减少(t=3.609,p=0.003),表明RAGE蛋白表达减少。
     5.4海马NF-κB蛋白表达
     免疫组化染色显示,糖尿病组大鼠海马CA区神经元细胞NF-κB阳性染色颗粒丰富,而DM2组较DM1组RAGE阳性染色颗粒明显减少。实验结束时,糖尿病组较对照组海马NF-κB灰度值减少(t=2.747,p=0.019),阳性细胞数增加(t=-3.720,p=0.002),表明蛋白表达增加;GSPE治疗后DM2和DM1组相比海马NF-κB灰度值增加(t=-2.859,p=0.017),阳性细胞数减少(t=4.302,p=0.001),表明蛋白表达减少。
     5.5 Pearson相关分析表明,糖尿病大鼠海马CA区NF-κB、RAGE表达和血清AGEs水平呈正相关。
     结论:
     1、糖尿病组大鼠海马与非糖尿病组相比神经元细胞数目减少,发生明显退行性改变,经GSPE干预后神经元形态改善,数目增加。
     2、糖尿病组大鼠血清AGEs水平增高,海马CA区RAGE mRNA表达与正常对照组相比明显增加,经GSPE治疗后其表达降低。
     3、糖尿病组大鼠海马CA区NF-κB mRNA表达与正常对照组相比明显增加,经GSPE治疗后其表达降低。
     4、糖尿病组大鼠海马CA区RAGE蛋白表达与正常对照组相比明显增加,经GSPE治疗后其表达降低。
     5、糖尿病组大鼠海马CA区NF-κB蛋白表达与正常对照组相比明显增加,经GSPE治疗后其表达降低。
     6、糖尿病大鼠海马CA区RAGE、NF-κB表达与血清AGEs水平呈正相关。
     AGEs/RAGE和NF-κB在糖尿病脑病的发生中起了重要的作用。GSPE通过阻断AGEs/RAGE的结合效应,使海马CA区NF-κB表达减少,使神经元数目增多,星行细胞增生减少,退行性变程度降低,对糖尿病大鼠脑病有治疗、改善作用。
     以上研究结果提示慢性高血糖能引起大鼠海马AGEs/RAGE和NF-κB表达增加,糖尿病大鼠海马CA区RAGEmRNA、NF-κB蛋白表达含量与血清AGEs呈正相关,长期高血糖通过激活AGEs/RAGE和NF-κB通路使神经元细胞结构和功能产生退行性改变。GSPE治疗后,海马CA区RAGE和NF-κB表达均降低,神经元退行性变得到改善,GSPE通过阻断AGEs/RAGE/NF-κB信号转导通路对糖尿病大鼠脑病起保护作用,可望成为治疗糖尿病脑病的新药。
Aims/hypothesis:
     The association between long-term hyperglycemia and chronic complications of diabetes mellitus has been reported in both type 1 and type 2 diabetes. Mechanisms involved including excess sorbitol-aldose reductase pathway flux, hyperactivity of protein kinase C (PKC) isoforms, increased oxidative stress and microangiopathic changes leading to ischemia. Advanced glycation end-products (AGEs) are unstable, reactive and toxic compounds that alter the extracellular matrix and exacerbate oxidative stress which has been known as the major factors that contribute to the pathogenesis of diabetic complications. AGEs interactions with the receptor for AGEs (RAGE) modify proinflammatory cytokine expression, increase free radical production via quenching of nitric oxide contributing to defective vasodilatation. induce irreversible crosslinks in extracellular matrix structural proteins and transform intracellular signaling pathways in part through nuclear factor-kappa B (NF-κB). Whereas kidney, retina, blood vessels and peripheral nerves are the primary targets of long-term diabetes, brain damage was previously considered secondary to vascular disease. With the increased understanding of diabetes, it has been disclosed that humans with long-term, particularly poorly controlled diabetes, however, develop cognitive dysfunction and an increased risk for dementia and cerebral atrophy, which is now an accepted concept as encephalopathy that still needs a defination. To prevent the development of this disease and to improve advanced brain injury, effective therapies directed toward the key molecular target are required. Grape seed proanthocyanidin extracts (GSPE), an antioxidant derived from grape seeds have been reported to possess a variety of potent properties may have therapeutic potential in the prevention and treatment of complications in patients with diabetes. In this study, we examined whether GSPE could attenuate the degeneration changes in the diabetic brain by modulating the AGEs/RAGE and NF-κB pathway.
     Methods:
     Male Wistar rats weighting 180-220 g were purchased from the Animal Centre of Shandong University. Animals were kept in individual cages on a 12-h light-dark cycle with an ambient temperature of 22±1℃, with free access to food and water. 40 randomly selected rats were divided into 2 groups: Control group 1(C1) and control group treated with GSPE (C2, administrated with GSPE with a dosage of 250mg/kg).Streptozotocin ( STZ) induced diabetic rats received a single dose of STZ (55 mg/kg, injected into tail veins) freshly dissolved in 0.1 M sodium citrate buffer (pH 4.5 ) after a 12 hours' overnight fasting. Control animals received a single tail vein injection of 0.1M citrate buffer only. Glucose concentration from fasting animals was measured daily, in a blood sample obtained from the tail by pinprick, with a glucose oxidase-impregnated test strip and a reflectance meter (One Touch II, Lifescan, USA). Hippocampus of the brains were immunohistochemically stained for RAGE and for the detection of mRNA of RAGE and NF-κB by reverse transcriptase coupled to polymerase chain reaction (RT-PCR). For morphological observations, hippocampus of the brains were stained by immunohistochemistry for neuron growth factor (NGF) and glial fibrillary acidic protein (GFAP).
     Results:
     1、At the end of this study, the weight of diabetic rats was lower than that of the controls . Mouse glycated hemoglobin, fasting plasma glucose and AGEs were increased in diabetic mice relative to controls. After treated with GSPE, the serum AGEs decreased in DM2 group than that of DM1, while there were no differences in their weights and FPG (21.35±3.59 vs 19.04±3.24mmol/L, t=1.494, P=0.153).
     2、It was found that the number of neurons of hippocampus in STZ induced rats decreased (t=3.672,P=0.002) and had degenerative changes: the layers of neurons were not intact, the nuclei of neurons were shrinked and in irregular orders, the cytoplasma of neurons turned into pink-colored. After treated with GSPE, the above changes were improved, and the number of neurons in DM2 group increased comparing to DM1 group (t=-2.702,p=0.015) .
     3、By GFAP immunochemistry, it was found that the grey value of astrocytes in CA region of hippocampus in STZ induced rats decreased comparing to the non-diabetic controls (t=3.065, p=0.007) , while the number of GFAP positive cells increased (t=-3.524, p=0.005); After treated with GSPE, the grey value of astrocytes in CA region of hippocampus in STZ induced rats increased comapring to DM1 group(t=-2.360, p=0.030) , while the number of GFAP positive cells decreased (t=2.981, p=0.013). Recent evidence suggests that the upregulation of GFAP, an astrocyte-specific intermediate filament component, is a biological marker of neurotoxicity after cerebral injury. It is suggested that there is proliferation of astrocytes in the hippocampus of diabetic rats, and GSPE can decrease the proliferation of astrocytes.
     4、By RT-PCR, it was found that the expression of RAGE mRNA in CA region of hippocampus of STZ induced rats increased comparing to the non-diabetic controls(t=-3.795,P=0.002); After treated with GSPE, the expression of RAGE mRNA in CA region of hippocampus decreased comapring to DM1 group(t=2.588,P=0.019).
     5、By RT-PCR, it was found that the expression of NF-κB mRNA in CA region of hippocampus of STZ induced rats increased comparing to the non-diabetic controls(t=-3.972,P=0.001); After treated with GSPE, the expression of NF-κB mRNA in CA region of hippocampus in STZ induced rats decreased comapring to DM1 group(t=3.480,P=0.003).
     6、By immunochemistry, it was found that the grey value of RAGE in CA region of hippocampus of STZ induced rats decreased comparing to the non-diabetic controls (t=2.482,P=0.027) while the number of RAGE positive cells increased (t=-5.218, p<0.001); After treated with GSPE, the grey value of RAGE in CA region of hippocampus in STZ induced rats increased comapring to DM1 group(t=-2.437, P=0.026), while the number of RAGE positive cells decreased (t=3.609, p=0.003).
     7、By immunochemistry, it was found that the grey value of NF-κB in CA region of hippocampus of STZ induced rats decreased comparing to the non-diabetic controls (t=2.747,P=0.019), while the number of NF-κB positive cells increased (t=-3.720, p=0.002); After treated with GSPE, the grey value of NF-κB in CA region of hippocampus in STZ induced rats increased comapring to DM1 group(t=-2.859, P=0.017), while the number of NF-κB positive cells decreased (t=4.302, p=0.001).
     8、By Pearson's relationship test, it was found that the expression of RAGE and NF-κB was realted to serum AGEs, respectively.
     Conclusions:
     1、Long term chronic hyperglycemia can cause degenerative changes in CA region of hippocampus in STZ induced diabetic rats, including the decrease of neuron numbers and the proliferation of glial astrocytes.
     2、At both mRNA and protein levels, long term chronic hyperglycemia can cause the overexpression of RAGE and NF-κB in CA region of hippocampus in STZ induced diabetic rats. The serum AGEs increased and was related to the the expression of RAGE and NF-κB, which suggusted that the signal transdcution pathway of AGEs/RAGE/NF-κB plays an important role in the pathogenesis of diabetic encepholopathy.
     3、Comparing with the controls, in STZ induced diabetic rats , after treated with GSPE, the number of neurons increased, the serum AGEs decreased, the degeneration in CA regions of hippocampus were improved , while the expression of RAGE and NF-κB also decreased in both mRNA and protien levels , which suggests that GSPE can improve and protect diabetic encepholopathy while modulating the AGEs/RAGE/NF-κB pathway.
     In summary, long term chronic hyperglycemia can cause the over-expression of AGEs/RAGE and NF-κB in CA region of hippocampus in STZ induced diabetic rats, hyperglycemia induced activation of AGEs/RAGE/NF-κB pathway takes an important role in the pathogenesis of the degenerative changes of diabetic hippocampus. GSPE improves some changes including neuron degeneration and the proliferation of astrocytes compared with non-treated diabetic rats, via decreasing the expression of AGEs/RAGE and NF-κB in the CA region of hippocampus in diabetic rats at a daily oral dosage of 250mg/kg and act as an antagonist to RAGE, which suggests that GSPE be a useful remedy in the treatment of diabetic encephalopathy.
引文
1. Zimmet P: Globalization, coca-colonization and the chronic disease epidemic: can the Doomsday scenario be averted? J Intern Med 247:301-310, 2000
    2. Lee FT, Cao Z, Long DM, Panagiotopoulos S, Jerums G, Cooper ME, Forbes JM: Interactions between angiotensin Ⅱ and NF-kappaB-dependent pathways in modulating macrophage infiltration in experimental diabetic nephropathy. J Am Soc Nephrol 15:2139-2151, 2004
    3. Bella A J, Lin G, Garcia MM, Tantiwongse K, Brant WO, Lin CS, Lue TF: Upregulation of Penile Brain-Derived Neurotrophic Factor (BDNF) and Activation of the JAK/STAT Signalling Pathway in the Major Pelvic Ganglion of the Rat After Cavernous Nerve Transection. Eur Urol, 2006
    4. Brands AM, Henselmans JM, de Haan EH, Biessels GJ: [Diabetic encephalopathy: an underexposed complication of diabetes mellitus]. Ned Tijdschr Geneeskd 147:11-14, 2003
    5. Mijnhout GS, Scheltens P, Diamant M, Biessels GJ, Wessels AM, Simsek S, Snoek FJ, Heine RJ: Diabetic encephalopathy: A concept in need of a definition. Diabetologia 49:1447-1448, 2006
    6. Hanukoglu A, Mizrachi A, Dalal I, Admoni O, Rakover Y, Bistritzer Z, Levine A, Somekh E, Lehmann D, Tuval M, Boaz M, Golander A: Extrapancreatic autoimmune manifestations in type 1 diabetes patients and their first-degree relatives: a multicenter study. Diabetes Care 26:1235-1240, 2003
    7. Kameyama M, Fushimi H, Udaka F: Diabetes mellitus and cerebral vascular disease. Diabetes Res Clin Pract 24 Suppl:S205-208, 1994
    8. Kissela BM, Khoury J, Kleindorfer D, Woo D, Schneider A, Alwell K, Miller R, Ewing I, Moomaw CJ, Szaflarski JP, Gebel J, Shukla R, Broderick JP: Epidemiology of ischemic stroke in patients with diabetes: the greater Cincinnati/Northern Kentucky Stroke Study. Diabetes Care 28:355-359, 2005
    9. Wessels AM, Rombouts SA, Simsek S, Kuijer JP, Kostense PJ, Barkhof F, Scheltens P, Snoek FJ, Heine RJ: Microvascular disease in type 1 diabetes alters brain activation: a functional magnetic resonance imaging study. Diabetes 55:334-340, 2006
    10. Novak V, Last D, Alsop DC, Abduljalil AM, Hu K, Lepicovsky L, Cavallerano J, Lipsitz LA: Cerebral blood flow velocity and periventricular white matter hyperintensities in type 2 diabetes. Diabetes Care 29:1529-1534, 2006
    11. Baydas G, Nedzvetskii VS, Nerush PA, Kirichenko SV, Yoldas T: Altered expression of NCAM in hippocampus and cortex may underlie memory and learning deficits in rats with streptozotocin-induced diabetes mellitus. Life Sci 73:1907-1916, 2003
    12. Muranyi M, Ding C, He Q, Lin Y, Li PA: Streptozotocin-induced diabetes causes astrocyte death after ischemia and reperfusion injury. Diabetes 55:349-355, 2006
    13. Muranyi M, Fujioka M, He Q, Han A, Yong G, Csiszar K, Li PA: Diabetes activates cell death pathway after transient focal cerebral ischemia. Diabetes 52:481-486, 2003
    14. Muranyi M, Lacza Z: [Influence of diabetes mellitus on cerebral ischemia and reperfusion injury]. Orv Hetil 147:1885-1889, 2006
    15. Horani MH, Mooradian AD: Effect of diabetes on the blood brain barrier. Curr Pharm Des 9:833-840, 2003
    16. Starr JM, Wardlaw J, Ferguson K, MacLullich A, Deary IJ, Marshall Ⅰ: Increased blood-brain barrier permeability in type Ⅱ diabetes demonstrated by gadolinium magnetic resonance imaging. J Neurol Neurosurg Psychiatry 74:70-76, 2003
    17. Bowler JV: Blood-brain barrier permeability in type Ⅱ diabetes. J Neurol Neurosurg Psychiatry 74:6, 2003
    18. Hovsepyan MR, Haas MJ, Boyajyan AS, Guevorkyan AA, Mamikonyan AA, Myers SE, Mooradian AD: Astrocytic and neuronal biochemical markers in the sera of subjects with diabetes mellitus. Neurosci Lett 369:224-227, 2004
    19. Huber JD, VanGilder RL, Houser KA: Streptozotocin-induced diabetes progressively increases blood-brain barrier permeability in specific brain regions in rats. Am J Physiol Heart Circ Physiol 291: H2660-2668, 2006
    20. Hawkins BT, Lundeen TF, Norwood KM, Brooks HL, Egleton RD: Increased blood-brain barrier permeability and altered tight junctions'in experimental diabetes in the rat: contribution of hyperglycaemia and matrix metalloproteinases. Diabetologia, 2006
    21. Hagino N, Kobayashi S, Tsutsumi T, Horiuchi S, Nagai R, Setalo G, Dettrich E: Vascular change of hippocampal capillary is associated with vascular change of retinal capillary in aging. Brain Res Bull 62:537-547, 2004
    22. Kumagai AK: Glucose transport in brain and retina: implications in the management and complications of diabetes. Diabetes Metab Res Rev 15:261-273, 1999
    23. Kapalla M, Yeghiazaryan K, Hricova M, Moenkemann H, Pirek A, Schild HH, Golubnitschaja O: Combined analysis of biochemical parameters in serum and differential gene expression in circulating leukocytes may serve as an ex vivo monitoring system to estimate risk factors for complications in Diabetes mellitus. Amino Acids 28:221-227, 2005
    24. van Harten B, Oosterman JM, Potter van Loon BJ, Scheltens P, Weinstein HC: Brain Lesions on MRI in Elderly Patients with Type 2 Diabetes Mellitus. Eur Neurol 57:70-74, 2006
    25. Korf ES, White LR, Scheltens P, Launer L J: Brain aging in very old men with type 2 diabetes: the Honolulu-Asia Aging Study. Diabetes Care 29:2268-2274, 2006
    26. Brands AM, Kessels RP, Hoogma RP, Henselmans JM, van der Beck Boter JW, Kappelle LJ, de Haan EH, Biessels GJ: Cognitive performance, psychological well-being, and brain magnetic resonance imaging in older patients with type 1 diabetes. Diabetes 55:1800-1806, 2006
    27. Biessels GJ, De Leeuw FE, Lindeboom J, Barkhof F, Scheltens P: Increased cortical atrophy in patients with Alzheimer's disease and type 2 diabetes mellitus. J Neurol Neurosurg Psychiatry 77:304-307, 2006
    28. den Heijer T, Vermeer SE, van Dijk EJ, Prins ND, Koudstaal PJ, Hofman A, Breteler MM: Type 2 diabetes and atrophy of medial temporal lobe structures on brain MRI. Diabetologia 46:1604-1610, 2003
    29. Revsin Y, Saravia F, Roig P, Lima A, de Kloet ER, Homo-Delarche F, De Nicola AF: Neuronal and astroglial alterations in the hippocampus of a mouse model for type 1 diabetes. Brain Res 1038:22-31, 2005
    30. Klein RM, Mann R J, Walling AD: A thematic approach to enhance clinical content in a cell and tissue biology course. Acad Med 77:1173-1174, 2002
    31. Waltereit.: Signaling from cAMP/PICA to MAPK and synaptic.. Mol Neurobiol 27:99-106, 2003
    32. Trudeaua F GS, Massiocottle G.: Hippocampal synaptic plasticity and glutamate receptor regulation:influence of diabetes mellitus.. Eur J Phamacol 490:177-186, 2004
    33. Paulsen O ST: Natural patterns of activity adn long term synaptic plasticity. Curr Opin Neurobiol 10:172-179, 2000
    34.罗焕敏.海马结构-从形态、功能到可塑性、衰老性变化.神经解剖学杂志,12:177-184.1996
    35.张松筠,张庆九,宋学琴,等.2型糖尿病小鼠海马锥体细胞及毛细血管电镜观察.中国糖尿病杂志,9:296-297,2001
    36. van den Berg E, de Craen AJ, Biessels GJ, Gussekloo J, Westendorp RG: The impact of diabetes mellitus on cognitive decline in the oldest of the old: a prospective population-based study. Diabetologia 49:2015-2023, 2006
    37.马学毅,盛树力,胡景胜,等.糖尿病大鼠认知功能障碍与脑形态学改变关系的研究.中国糖尿病杂志,7:150-153,1999
    38. Li ZG ZW, Sima AA.: The role of impaired insulin/IGF action in primary diabetic encephalopathy. Brain Res 1037:12-24, 2005
    39. Kimura T, Ota K, Shoji M, Funyu T, Ohta M, Sato" K, Yamamoto T, Mori T, Sahata T, Sugimura K, et al.: Chlorpropamide-induced ADH release, hyponatremia and central pontine myelinolysis in diabetes mellitus. Tohoku J Exp Med 177:303-313, 1995
    40. Singh P, Jain A, Kaur G: Impact of hypoglycemia and diabetes on CNS: correlation of mitochondrial oxidative stress with DNA damage. Mol Cell Biochem 260:153-159, 2004
    41. Perros P, Frier BM: The long-term sequelae of severe hypoglycemia on the brain in insulin-dependent diabetes mellitus. Horm Metab Res 29:197-202, 1997
    42. Somfai GM, Knippel B, Ruzicska E, Stadler K, Toth M, Salacz G, Magyar K, Somogyi A: Soluble semicarbazide-sensitive amine oxidase (SSAO) activity is related to oxidative stress and subchronic inflammation in streptozotocin-induced diabetic rats. Neurochem Int 48:746-752, 2006
    43. Jiang JM, Wang Z, Li DD: Effects of AGEs on oxidation stress and antioxidation abilities in cultured astrocytes. Biomed Environ Sci 17:79-86, 2004
    44. Harashima A, Yamamoto Y, Cheng C, Tsuneyama K, Myint KM, Takeuchi A, Yoshimura K, Li H, Watanabe T, Takasawa S, Okamoto H,Yonekura H, Yamamoto H: Identification of mouse orthologue of endogenous secretory receptor for advanced glycation end-products: structure, function and expression. Biochem J 396:109-115, 2006
    45. Pamplona R, Dalfo E, Ayala V, Bellmunt M J, Prat J, Ferrer I, Portero-Otin M: Proteins in human brain cortex are modified by oxidation, glycoxidation, and lipoxidation. Effects of Alzheimer disease and identification of lipoxidation targets. J Biol Chem 280:21522-21530, 2005
    46. Yamagishi S, Takeuchi M, Matsui T, Nakamura K, Imaizumi T, Inoue H: Angiotensin Ⅱ augments advanced glycation end product-induced pericyte apoptosis through RAGE overexpression. FEBS Lett 579:4265-4270, 2005
    47. Gasic-Milenkovic J, Loske C, Munch G: Advanced glycation endproducts cause lipid peroxidation in the human neuronal cell line SH-SY5Y. J Alzheimers Dis. 5:25-30, 2003
    48. Deane R, Du Yan S, Submamaryan RK, LaRue B, Jovanovic S, Hogg E, Welch D, Manness L, Lin C, Yu J, Zhu H, Ghiso J, Frangione B, Stern A, Schmidt AM, Armstrong DL, Arnold B, Liliensiek B, Nawroth P, Hofman F, Kindy M, Stern D, Zlokovic B: RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain. Nat Med 9:907-913, 2003
    49. Miura J, Yamagishi S, Uchigata Y, Takeuchi M, Yamamoto H, Makita Z, Iwamoto Y: Serum levels of non-carboxymethyllysine advanced glycation endproducts are correlated to severity of microvascular complications in patients with Type 1 diabetes. J Diabetes Complications 17:16-21, 2003
    50. Rudenski AS, Hadden DR, Atkinson AB, Kennedy L, Matthews DR, Merrett JD, Pockaj B, Turner RC: Natural history of pancreatic islet B-cell function in type 2 diabetes mellitus studied over six years by homeostasis model assessment. Diabet Med 5:36-41, 1988
    51. Kwee IL, Igarashi H, Nakada T: Aldose reductase and sorbitol dehydrogenase activities in diabetic brain: in vivo kinetic studies using 19F 3-FDG NMR in rats. Neuroreport 7:726-728, 1996
    52. Knudsen GM, Jakobsen J, Barry DI, Compton AM, Tomlinson DR: Myo-inositol normalizes decreased sodium permeability of the blood-brain barrier in streptozotocin diabetes. Neuroscience 29:773-777, 1989
    53. Ramakrishnan R, Sheeladevi R, Suthanthirarajan N: PKC-alpha mediated alterations of indoleamine contents in diabetic rat brain. Brain Res Bull 64:189-194, 2004
    54. Corder R, Warburton RC, Khan NQ, Brown RE, Wood EG, Lees DM: The procyanidin-induced pseudo laminar shear stress response: a new concept for the reversal of endothelial dysfunction. Clin Sci (Lond) 107:513-517, 2004
    55. Selvatici R, Melloni E, Ferrati M, Piubello C, Marincola FC, Gandini E: Adaptative value of a PKC-PKI55 feedback loop of inhibition that prevents the kinase's deregulation. J Mol Evol 57:131-139, 2003
    56. Ventura F, Rosa JL, Ambrosio S, Gil J, Bartrons, R: 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase in rat brain. Biochem J 276 (Pt 2):455-460, 1991
    57. Toth C, Schmidt AM, Tuor UI, Francis G, Foniok T, Brussee V, Kaur J, Yan SF, Martinez JA, Barber PA, Buchan A, Zochodne DW: Diabetes, leukoencephalopathy and rage. Neurobiol Dis 23:445-461, 2006
    58. Aragno M, Mastrocola R, Medana C, Catalano MG, Vercellinatto I, Danni O, Boccuzzi G: Oxidative stress-dependent impairment of cardiac-specific transcription factors in experimental diabetes. Endocrinology 147:5967-5974, 2006
    59. Schmidt RE, Dorsey DA, Beaudet LN, Plurad SB, Parvin CA, Ohara S: Effect of IGF-Ⅰ and neurotrophin-3 on gracile neuroaxonal dystrophy in diabetic and aging rats. Brain Res 876:88-94, 2000
    60. Duarte AI, Proenca T, Oliveira CR, Santos MS, Rego AC: Insulin restores metabolic function in cultured cortical neurons subjected to oxidative stress. Diabetes 55:2863-2870, 2006
    61. Moreira PI, Rolo AP, Sena C, Seica R, Oliveira CR, Santos MS: Insulin attenuates diabetes-related mitochondrial alterations: a comparative study. Med Chem 2:299-308, 2006
    62. Wahba ZZ, Soliman KF: Effect of diabetes on the enzymes of the cholinergic system of the rat brain. Experientia 44:742-746, 1988
    63. Sarac K, Akinci A, Alkan A, Asian M, Baysal T, Ozcan C: Brain metabolite changes on proton magnetic resonance spectroscopy in children with poorly controlled type 1 diabetes mellitus. Neuroradiology 47:562-565, 2005
    64. Shalev H, Romanovsky I, Knoers NV, Lupa S, Landau D: Bladder function impairment in aquaporin-2 defective nephrogenic diabetes insipidus. Nephrol Dial Transplant 19:608-613, 2004
    65. Geissler A, Frund R, Scholmerich J, Feuerbach S, Zietz B: Alterations of cerebral metabolism in patients with diabetes mellitus studied by proton magnetic resonance spectroscopy. Exp Clin Endocrinol Diabetes 111:421-427, 2003
    66. Mooradian AD: Blood-brain barrier choline transport is reduced in diabetic rats. Diabetes 36:1094-1097, 1987
    67. JZ T: Subregion and cell-type restricted gene knockout in mouse brain. Cell 87:1317-1326, 1996
    68. Tank YP SE, Dube GR et al: Genetic enhancement of learning and memory in mice. Nature 401:63-69, 1999
    69. Kosenko EA, Kaminskii A, Kaminskii Iu G: [Activity of antioxidant enzymes in liver and brain is decreased in the early stage of diabetes, and this decrease depends on the function of NMDA-receptors]. Vopr Med Khim 45:304-308, 1999
    70. Nathan B, Floor E, Kuo CY, Wu JY: Synaptic vesicle-associated glutamate decarboxylase: identification and relationship to insulin-dependent diabetes mellitus. J Neurosci Res 40:134-137, 1995
    71. Biessels GJ, ter Laak MP, Hamers FP, Gispen WH: Neuronal Ca2+ disregulation in diabetes mellitus. Eur J Pharmacol 447:201-209, 2002
    72. Oner P, Kocak H, Oztas B: Effects of streptozotocin-induced diabetes and pentylenetetrazol-induced seizure on brain cortex (Ca2+)ATPase activity in rats. Int J Neurosci 103:33-40, 2000
    73. Dogru Pekiner B, Das Evcimen N, Nebioglu S: Diabetes-induced decrease in rat brain microsomal Ca2+-ATPase activity. Cell Biochem Funct 23:239-243, 2005
    74. Nitta A, Murai R, Suzuki N, Ito H, Nomoto H, Katoh G, Furukawa Y, Furukawa S: Diabetic neuropathies in brain are induced by deficiency of BDNF. Neurotoxicol Teratol 24:695-701, 2002
    75. Krabbe KS, Nielsen AR, Krogh-Madsen R, Plomgaard P, Rasmussen P, Erikstrup C, Fischer CP, Lindegaard B, Petersen AM, Taudorf S, Secher NH, Pilegaard H, Bruunsgaard H, Pedersen BK: Brain-derived neurotrophic factor (BDNF) and type 2 diabetes. Diabetologia, 2006
    76.阮奕文,王传恩,徐杰等.NCG/GDNF基因修饰神经干细胞移植对AD模型鼠前脑胆碱能神经元的保护作用.解剖学报,33:126-129,2002
    77. Gloaguen I, Costa P, Demartis A, Lazzaro D, Di Marco A, Graziani R, Paonessa G, Chen F, Rosenblum CI, Van der Ploeg LH, Cortese R, Ciliberto. G, Laufer R: Ciliary neurotrophic factor corrects obesity and diabetes associated with leptin deficiency and resistance. Proc Natl Acad Sci U S A 94:6456-6461, 1997
    78. Diemel LT, Brewster WJ, Femyhough P, Tomlinson DR: Expression of neuropeptides in experimental diabetes; effects of treatment with nerve growth factor or brain-derived neurotrophic factor. Brain Res Mol Brain Res 21:171-175, 1994
    79. Suwa M, Kishimoto H, Nofuji Y, Nakano H, Sasaki H, Radak Z, Kumagai S: Serum brain-derived neurotrophic factor level is increased and associated with obesity in newly diagnosed female patients with type 2 diabetes mellitus. Metabolism 55:852-857, 2006
    80. Geroldi D, Minoretti P, Emanuele E: Brain-derived neurotrophic factor and the metabolic syndrome: more than just a hypothesis. Med Hypotheses 67:195-196, 2006
    81. Hristova M, Aloe L: Metabolic syndrome-neurotrophic hypothesis. Med Hypotheses 66:545-549, 2006
    82. Cole GM, Frautschy SA: The role of insulin and neurotrophic factor signaling in brain aging and Alzheimer's Disease. Exp Gerontol 42:10-21, 2007
    83. Bouhamidi R, Prevost V, Nouvelot A: High protection by grape seed proanthocyanidins (GSPC) of polyunsaturated fatty acids against UV-C induced peroxidation. C R Acad Sci Ⅲ 321:31-38, 1998
    84. James SK, Lindahl B, Timmer JR, Ottervanger JR Siegbahn A, Stridsberg M, Armstrong P, Califf R, Wallentin L, Simoons ML: Usefulness of biomarkers for predicting long-term mortality in patients with diabetes mellitus and non-ST-elevation acute coronary syndromes (a GUSTO Ⅳ substudy). Am J Cardiol 97:167-172, 2006
    85. Lupien SB, Bluhm EJ, Ishii DN: Systemic insulin-like growth factor-Ⅰ administration prevents cognitive impairment in diabetic rats, and brain IGF regulates learning/memory in normal adult rats. J Neurosci Res 74:512-523, 2003
    86. Wuarin L, Namdev R, Bums JG, Fei ZJ, Ishii DN: Brain insulin-like growth factor-Ⅱ mRNA content is reduced in insulin-dependent and non-insulin-dependent diabetes mellitus. J Neurochem 67:742-751, 1996
    87. Li JH, Huang XR, Zhu H J, Oldfield M, Cooper M, Truong LD, Johnson RJ, Lan HY: Advanced glycation end products activate Smad signaling via TGF-beta-dependent and independent mechanisms: implications for diabetic renal and vascular disease. Faseb J 18:176-178, 2004
    88. Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR, Tavares R, Xu XJ, Wands JR, de la Monte SM: Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer's disease—is this type 3 diabetes? J Alzheimers Dis 7:63-80, 2005
    89. Schmidt AM, Weidman E, Lalla E, Yan SD, Hori O, Cao R, Brett JG, Lamster IB: Advanced glycation endproducts (AGEs) induce oxidant stress in the gingiva: a potential mechanism underlying accelerated periodontal disease associated with diabetes. J Periodontal Res 31:508-515, 1996
    90. Niiya Y, Abumiya T, Shichinohe H, Kuroda S, Kikuchi S, Ieko M, Yamagishi S, Takeuchi M, Sato T, Iwasaki Y: Susceptibility of brain microvascular endothelial cells to advanced glycation end products-induced tissue factor upregulation is associated with intracellular reactive oxygen species. Brain Res 1108:179-187, 2006
    91. Kislinger T, Fu C, Huber B, Qu W, Taguchi A, Du Yah S, Hofmann M, Yan SF, Pischetsrieder M, Stem D, Schmidt AM: N(epsilon)-(carboxymethyl)lysine adducts of proteins are ligands for receptor for advanced glycation end products that activate cell signaling pathways and modulate gene expression. J Biol Chem 274:31740-31749, 1999
    92. Kassberg M, Wynn P: What quality measurements miss. Manag Care 6:22-24, 26-28, 37 passim, 1997
    93. Ogawa S, Takeuchi K, Ito S: Plasma BNP levels in the treatment of type 2 diabetes with pi因glitazone. J Clin Endocrinol Metab 88:3993-3996, 2003
    94. Biessels G J, Kappelle LJ: Increased risk of Alzheimer's disease in Type Ⅱ diabetes: insulin resistance of the brain or insulin-induced amyloid pathology? Biochem Soc Trans 33:1041-1044, 2005
    95. Pasquier F, Boulogne A, Leys D, Fontaine P: Diabetes mellitus and dementia. Diabetes Metab 32:403-414, 2006
    96. Reske-Nielsen E, Harmsen A, Vorre P: Ultrastructure of muscle biopsies in recent, short-term and long-term juvenile diabetes. Acta Neurol Stand 55:345-362, 1977
    97. Peress NS, Kane WC, Aronson SM: Central nervous system findings in a tenth decade autopsy population. Prog Brain Res 40:473-483, 1973
    98. Ito H, Araki A: [Course, prognosis and mortality in Japanese elderly diabetes mellitus—a seven year follow-up study]. Nippon Ronen Igakkai Zasshi 30:277-282, 1993
    99. Li ZG, Britton M, Sima AA, Dunbar JC: Diabetes enhances apoptosis induced by cerebral ischemia. Life Sci 76:249-262, 2004
    100. Saravia FE, Revsin Y, Gonzalez Deniselle MC, Gonzalez SL, Roig P, Lima A, Homo-Delarche F, De Nicola AF: Increased astrocyte reactivity in the hippocampus of murine models of type 1 diabetes: the nonobese diabetic (NOD) and streptozotocin-treated mice. Brain Res 957:345-353, 2002
    101. Saravia FE, Beauquis J, Revsin Y, Homo-Delarche F, de Kloet ER, De Nicola AF: Hippocampal Neuropathology of Diabetes Mellitus is Relieved by Estrogen Treatment. Cell Mol Neurobiol 26:941-955, 2006
    102. Piotrowski P, Wierzbicka K, Smialek M: Neuronal death in the rat hippocampus in experimental diabetes and cerebral ischaemia treated with antioxidants. Folia Neuropathol 39:147-154, 2001
    103. Vlassara H, Brownlee M, Cerami A: Accumulation of diabetic rat peripheral nerve myelin by macrophages increases with the presence of advanced glycosylation endproducts. J Exp Med 160:197-207, 1984
    104. Nawale RB, Mourya VK, Bhise SB: Non-enzymatic glycation of proteins: a cause for complications in diabetes. Indian J Biochem Biophys 43:337-344, 2006
    105. Ramasamy R, Vannucci SJ, Yan SS, Herold K, Yan SF, Schmidt AM: Advanced glycation end products and RAGE: a common thread in aging, diabetes, neurodegeneration, and inflammation. Glycobiology 15:16R-28R, 2005
    106. Geroldi D, Falcone C, Emanuele E: Soluble receptor for advanced glycation end products: from disease marker to potential therapeutic target. Curr Med Chem 13:1971-1978, 2006
    107. Yamagishi S, Nakamura K, Matsui T: Advanced glycation end products (AGEs) and their receptor(RAGE) system in diabetic retinopathy. Curr Drug Discov Technol 3:83-88, 2006
    108. Vaccaro O, Eberly LE, Neaton JD, Yang L, Riccardi G, Starnler J: Impact of diabetes and previous myocardial infarction on long-term survival: 25-year mortality follow-up of primary screenees of the Multiple Risk Factor Intervention Trial. Arch Intern Med 164:1438-1443, 2004
    109. Bohlender JM, Franke S, Stein G, Wolf G: Advanced glycation end products and the kidney. Am J Physiol Renal Physiol 289:F645-659, 2005
    110. Yamamoto Y, Doi T, Kato I, Shinohara H, Sakurai S, Yonekura H, Watanabe T, Myint KM, Harashima A, Takeuchi M, Takasawa S, Okamoto H, Hashimoto N, Asano M, Yamamoto H: Receptor for advanced glycation end products is a promising target of diabetic nephropathy. Ann N Y Acad Sci 1043:562-566, 2005
    111. Rong LL, Gooch C, Szabolcs M, Herold KC, Lalla E, Hays AP, Yan SF, Yan SS, Schmidt AM: RAGE: a journey from the complications of diabetes to disorders of the nervous system-striking a fine balance between injury and repair. Restor Neurol Neurosci 23:355-365, 2005
    112. Friedlander MA, Hricik DE: Optimizing end-stage renal disease therapy for the patient with diabetes mellitus. Semin Nephrol 17:331-345, 1997
    113. Yeh CH, Sturgis L, Haidacher J, Zhang XN, Sherwood S J, Bjercke RJ, Juhasz O, Crow MT, Tilton RG, Denner L: Requirement for p38 and p44/p42 mitogen-activated protein kinases in RAGE-mediated nuclear factor-kappaB transcriptional activation and cytokine secretion. Diabetes 50:1495-1504, 2001
    114. Nagi DK, McCormack LJ, Mohamed-Ali V, Yudldn JS, Knowler WC, Grant PJ: Diabetic retinopathy, promoter (4G/5G) polymorphism of PAI-1 gene, and PAI-1 activity in Pima Indians with type 2 diabetes. Diabetes Care 20:1304-1309, 1997
    115. Yamamoto Y, Kato I, Doi T, Yonekura H, Ohashi S, Takeuchi M, Watanabe T, Yamagishi S, Sakurai S, Takasawa S, Okamoto H, Yamamoto H: Development and prevention of advanced diabetic nephropathy in RAGE-overexpressing mice. J Clin Invest 108:261-268, 2001
    116. Kanazawa M, Tanaka A, Nomoto S, Shirabe S, Hukuda G, Arai K, Notoya Y, Hayashi T, Komeda K, Kanazawa Y: Alterations of insulin.and glucagon secretion from the perfused pancreas before, at the onset and after the development of diabetes in male Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Diabetes Res Clin, Pract 38:161-167, 1997
    117. Suzuki Y, Iizuka T, Kobayashi T, Nishikawa T, Atsumi Y, Kadowaki T, Oka Y, Kadowaki H, Taniyama M, Hosokawa K, Asahina T, Matsuoka K: Diabetes mellitus associated with the 3243 mitochondrial tRNA(Leu)(UUR) mutation: insulin secretion and sensitivity. Metabolism 46:1019-1023, 1997
    118. Agurs-Collins TD, Kumanyika SK, Ten Have TR, Adams-Campbell LL: A randomized controlled trial of weight reduction and exercise for diabetes management in older African-American subjects. Diabetes Care 20:1503-1511, 1997
    119. He CJ, Zheng F, Stitt A, Striker L, Hattori M, Vlassara H: Differential expression of renal AGE-receptor genes in NOD mice: possible role in nonobese diabetic renal disease. Kidney Int 58:1931-1940, 2000
    120. Kern TS, Tang J, Mizutani M, Kowluru RA, Nagaraj RH, Romeo G, Podesta F, Lorenzi M: Response of capillary cell death to aminoguanidine predicts the development of retinopathy: comparison of diabetes and galactosemia. Invest Ophthalmol Vis Sci 41:3972-3978, 2000
    121. Biessels GJ, van der Heide LP, Kamal A, Bleys RL, Gispen WH: Ageing and diabetes: implications for brain function. Eur J Pharmacol 441:1-14, 2002
    122. McCall AL: Diabetes mellitus and the central nervous system. Int Rev Neurobiol 51:415-453, 2002
    123. Manschot SM BG, Cameron NE.: Angiotensin converting enzyme inhibition partially prevents deficits in water maze performance, hippocampal synaptic plasticity and cerebral blood flow in streptozotocin diabetic rats. Brain Res 966:274-282, 2003
    124. Li ZG ZW, Sima AA.: C-peptide prevents hippocampal apoptosis in type Ⅰ diabetes. Int J Exp Diabetes Res 3:241-245, 2002
    125. Tuzcu M, Baydas G: Effect of melatonin and vitamin E on diabetes-induced learning and memory impairment in rats. Eur J Pharmacol 537:106-110, 2006
    126. Alarcon de la Lastra C, Sanchez-Fidalgo S, Villegas I, Motilva V: New pharmacological perspectives and therapeutic potential of PPAR-gamma agonists. Curr Pharm Des 10:3505-3524, 2004
    127. Ding KH, Wang ZZ, Hamrick MW, Deng ZB, Zhou L, Kang B, Yan SL, She JX, Stem DM, Isales CM, Mi QS: Disordered osteoclast formation in RAGE-deficient mouse establishes an essential role for RAGE in diabetes related bone loss. Biochem Biophys Res Commun 340:1091-1097, 2006
    128. Dias AS, Porawski M, Alonso M, Marroni N, Collado PS, Gonzalez-Gallego J: Quercetin decreases oxidative stress, NF-kappaB activation, and iNOS overexpression in liver of streptozotocin-induced diabetic rats. J Nutr 135:2299-2304, 2005
    129. Cameron NE, Gibson TM, Nangle MR, Cotter MA: Inhibitors of advanced glycation end product formation and neurovascular dysfunction in experimental diabetes. Ann N Y Acad Sci 1043:784-792, 2005
    130. Eldor R, Yeffet A, Baum K, Doviner V, Amar D, Ben-Neriah Y, Christofori G, Peled A, Carel JC, Boitard C, Klein T, Serup P, Eizirik DL, Melloul D: Conditional and specific NF-kappaB blockade protects pancreatic beta cells from diabetogenic agents. Proc Natl Acad Sci U S A 103:5072-5077, 2006
    131. Tan KC, Shiu SW, Chow WS, Leng L, Bucala R, Betteridge DJ: Association between serum levels of soluble receptor for advanced glycation end products and circulating advanced glycation end products in type 2 diabetes. Diabetologia 49:2756-2762, 2006
    132. Wendt T, Bucciarelli L, Qu W, Lu Y, Yan SF, Stern DM, Schmidt AM: Receptor for advanced glycation endproducts (RAGE) and vascular'inflammation: insights into the pathogenesis of macrovascular complications in diabetes. Curr Atheroscler Rep 4:228-237, 2002
    133. Jensen LJ, Denner L, Schrijvers BF, Tilton RG, Rasch R, Flyvbjerg A: Renal effects of a neutralising RAGE-antibody in long-term streptozotocin-diabetic mice. J Endocrinol 188:493-501, 2006
    134. Flyvbjerg A, Denner L, Schrijvers BF, Ti!ton RG, Mogensen TH, Paludan SR, Rasch R: Long-term renal effects of a neutralizing RAGE antibody in obese type 2 diabetic mice. Diabetes 53:166-172, 2004
    135. Chang KC, Hsu KL, Tseng CD, Lin YD, Cho YL, Tseng YZ: Aminoguanidine prevents arterial stiffening and cardiac hypertrophy in streptozotocin-induced diabetes. in rats. Br J Pharmacol 147:944-950, 2006
    136. Coughlan MT, Cooper ME, Forbes JM: Can advanced glycation end product inhibitors modulate more than one pathway to enhance renoprotection in diabetes? Ann N YAcad Sci 1043:750-758, 2005
    137. Piercy V, Toseland CD, Turner NC: Potential benefit of inhibitors of advanced glycation end products in the progression of type Ⅱ diabetes: a study with aminoguanidine in C57/BLKsJ diabetic mice. Metabolism 47:1477-1480, 1998
    138. Gardiner TA, Anderson HR, Stitt AW: Inhibition of advanced glycation end-products protects against retinal capillary basement membrane expansion during long-term diabetes. J Pathol 201:328-333, 2003
    139. Aspirin effects on mortality and morbidity in patients with diabetes mellitus. Early Treatment Diabetic Retinopathy Study report 14. ETDRS Investigators. Jama 268:1292-1300, 1992
    140. Peyroux J, Sternberg M: Advanced glycation endproducts (AGEs): Pharmacological inhibition in diabetes. Pathol Biol (Paris) 54:405-419, 2006
    141. Oksala NK, Lappalainen J, Laaksonen DE, Khanna S, Kaamiranta K, Sen CK, Atalay M: Alpha-Lipoic Acid Modulates Heat Shock Factor-1 Expression in Streptozotocin-Induced Diabetic Rat Kidney. Antioxid Redox Signal 9:497-506, 2007
    142. Hofmann MA, Schiekofer S, Isermann B, Kanitz M, Henkels M, Joswig M, Treusch A, Morcos M, Weiss T, Borcea V, Abdel Khalek AK, Amiral J, Tritschler H, Ritz E, Wahl P, Ziegler R, Bierhaus A, Nawroth PP: Peripheral blood mononuclear cells isolated from patients with diabetic nephropathy show increased activation of the oxidative-stress sensitive transcription factor NF-kappaB. Diabetologia 42:222-232, 1999
    143. Bagchi D, Garg A, Krohn RL, Bagchi M, Tran MX, Stohs SJ: Oxygen free radical scavenging abilities of vitamins C and E, and a grape seed proanthocyanidin extract in vitro. Res Commun Mol Pathol Pharmacol 95:179-189, 1997
    144. Ariga T: The antioxidative function, preventive action on disease and utilization of proanthocyanidins. Biofactors 21:197-201, 2004
    145. Bagchi D, Bagchi M, Stohs SJ, Das DK, Ray SD, Kuszynski CA, Joshi SS, Pruess HG: Free radicals and grape seed proanthocyanidin extract: importance in human health and disease prevention. Toxicology 148:187-197, 2000
    146.马亚兵,高海青.葡萄多酚-防病抗衰植物有效成分.济南,山东科学技术出版社,2006
    147.沈琳,高海青,邱洁等.葡萄籽原花青素对实验性动脉粥样硬化兔基质金属蛋白酶和氧化低密度脂蛋白的影响.中国心血管杂志,5:120-122,2006
    148. Twigg SM, Chen MM, Joly AH, Chakrapani SD, Tsubaki J, Kim HS, Oh Y, Rosenfeld RG: Advanced glycosylation end products up-regulate connective tissue growth factor (insulin-like growth factor-binding protein-related protein 2) in human fibroblasts: a potential mechanism for expansion of extracellular matrix in diabetes mellitus. Endocrinology 142:1760-1769, 2001
    149. Bagchi D, Sen CK, Ray SD, Das DK, Bagchi M, Preuss HG, Vinson JA: Molecular mechanisms of cardioprotection by a novel grape seed proanthocyanidin extract. Mutat Res 523-524:87-97, 2003
    150.由倍安,马亚兵,高海青等.葡萄籽原花青素对实验性高脂血症兔血脂及血浆氧化低密度脂蛋白的影响.中国心血管杂志,8:383-385,2003
    151.由倍安,高海青.葡萄籽原花青素对心血管的保护作用.国外医学.心血管分册,30:362-363,2003
    152. Yoshimura Y, Nakazawa H, Yamaguchi F: Evaluation of the NO scavenging activity of procyanidin in grape seed by use of the TMA-PTIO/NOC 7 ESR system. J Agric Food Chem 51:6409-6412, 2003
    153. Natella F, Belelli F, Gentili V, Ursini F, Scaccini C: Grape seed proanthocyanidins prevent plasma postprandial oxidative stress in humans. J Agric Food Chem 50:7720-7725, 2002
    154. Vigna GB, Costantini F, Aldini G, Carini M, Catapano A, Schena F, Tangerini A, Zanca R, Bombardelli E, Morazzoni P, Mezzetti A, Fellin R, Maffei Facino R: Effect of a standardized grape seed extract on low-density lipoprotein susceptibility to oxidation in heavy smokers. Metabolism 52:1250-1257, 2003
    155.沈琳,高海青,刘相菊等.葡萄籽原花青素对实验性动脉粥样硬化兔基质金属蛋白酶的影响[J].山东大学学报(医学版),2006
    156. Ishida K, Mizuno A, Min Z, Sano T, Shima K: Which is the primary etiologic event in Otsuka Long-Evans Tokushima Fatty rats, a model of spontaneous non-insulin-dependent diabetes mellitus, insulin resistance, or impaired insulin secretion? Metabolism 44:940-945, 1995
    157. Yu Y, Thorpe SR, Jenkins AJ, Shaw JN, Sochaski MA, McGee D, Aston CE, Orchard TJ, Silvers N, Peng YG, McKnight JA, Baynes JW, Lyons TJ: Advanced glycation end-products and methionine sulphoxide in skin collagen of patients with type 1 diabetes. Diabetologia 49:2488-2498, 2006
    158. Pinent M, Blay M, Blade MC, Salvado MJ, Arola L, Ardevol A: Grape seed-derived procyanidins have an antihyperglycemic effect in streptozotocin-induced diabetic rats and insulinomimetic activity in insulin-sensitive cell lines. Endocrinology 145:4985-4990, 2004
    159. Deshane J, Chaves L, Sarikonda KV, Isbell S, Wilson L, Kirk M, Grubbs C, Barnes S, Meleth S, Kim H: Proteomics analysis of rat brain protein modulations by grape seed extract. J Agile Food Chem 52:7872-7883, 2004
    160. Berman Y DL, Carr KD: Effects of Chronic food restriction on prodynorphin-derived peptides in rat brain regions. Brain Res 664:49-53, 1994
    161.周雁,马亚兵,高海青等.葡萄籽多酚抗糖尿病大鼠非酶糖基化实验研究.中华老年医学杂志,24:49-52,2005
    162.周雁,高海青,由倍安等.原花青素提取物对糖尿病大鼠氧化应激的影响.中国老年学杂志,10:1189-1190,2005
    163.陆景红,任明山,李光武等.葡萄籽原花青素对脑缺血再灌注损伤的保护作用.中国临床康复,9:99-101,2005
    164.吴秀香,卢晓梅,杜莉莉等.原花青素对脑缺血再灌注小鼠脑组织细胞因子、一氧化氮合酶和血脑屏障的影响.中国动脉硬化杂志,14:665-668,2006
    165.陈彗敏,谭万赖.葡萄籽原花青素对学习、记忆的影响.中国药理血通报,20:804-807,2004
    1. Intensive diabetes management: implications of the DCCT and UKPDS. Diabetes Educ 28:735-740, 2002
    2. Calkin AC, Allen TJ: Diabetes mellitus-associated atherosclerosis: mechanisms involved and potential for pharmacological invention. Am J Cardiovasc Drugs 6: 15-40, 2006
    3. Rask-Madsen C, King GL: Proatherosclerotic mechanisms involving protein kinase C in diabetes and insulin resistance. Arterioscler Thromb Vasc Bioi 25:487-496, 2005
    4. Groop PH, Forsblom C, Thomas MC: Mechanisms of disease: Pathway-selective insulin resistance and microvascular complications of diabetes. Nat Clin Pract Endocrinol Metab 1: 100-110, 2005
    5. King GL, Kunisaki M, Nishio Y, Inoguchi T, Shiba T, Xia P: Biochemical and molecular mechanisms in the development of diabetic vascular complications. Diabetes 45 Suppl 3:S105-108, 1996
    6. King GL, Brownlee M: The cellular and molecular mechanisms of.diabetic complications. Endocrinol Metab Clin North Am 25:255-270, 1996
    7. Ramasamy R, Yan SF, Schmidt AM: The RAGE axis and endothelial dysfunction: maladaptive roles in the diabetic vasculature and beyond. Trends Cardiovasc Med 15: 237-243, 2005
    8. Ramasamy R, Vannucci S J, Yan SS, Herold K, Yan SF, Schmidt AM: Advanced glycation end products and RAGE: a common thread in aging, diabetes, neurodegeneration, and inflammation. Glycobiology 15:16R-28R, 2005
    9. Bierhaus A, Humpert PM, Morcos M, Wendt T, Chavakis T, Arnold B, Stern DM, Nawroth PP: Understanding RAGE, the receptor for advanced glycation end products. J Mol Med 83:876-886,2005
    10. Bierhaus A, Humpert PM, Stern DM, Arnold B, Nawroth PP: Advanced glycation end product receptor-mediated cellular dysfunction. Ann N Y Acad Sci 1043:676-680, 2005
    11. Haslbeck KM, Schleicher E, Bierhaus A, Nawroth P, Haslbeck M, Neundorfer B, Heuss D: The AGE/RAGE/NF-(kappa) B pathway may contribute to the pathogenesis of polyneuropathy in impaired glucose tolerance (IGT). Exp Clin Endocrinol Diabetes 113:288-291, 2005
    12. Mijnhout GS, Scheltens P, Diamant M, Biessels GJ, Wessels AM, Simsek S, Snoek FJ,Heine RJ: Diabetic encephalopathy: A concept in need of a definition. Diabetologia 49:1447-1448, 2006
    13. Manschot SM, Brands AM, van der GrondJ, Kessels RP, Algra A, Kappelle LJ, Biessels GJ: Brain magnetic resonance imaging correlates of impaired cognition in patients with type 2 diabetes. Diabetes 55:1106-1113, 2006
    14. Toth C, Schrnidt AM, Tuor UI, Francis G, Foniok T, Brussee V, Kaur J, Yan SF, Martinez JA, Barber PA, Buchan A, Aochodne DW: Diabetes, leukoencephalopathy and rage, Neurobiol Dis 23: 445-461, 2006
    15. Preuss HG, Bagchi D, Bagchi M: Protective effects of a novel niacin-bound chromium complex and a grape seed proanthocyanidin extract on advancing age and variuos aspects of syndrome X. Ann N Y Acad Sci 957: 250-259, 2002
    16. Bagchi D, Bagchi M, Stohs S, Ray SD, Sen CK, Preuss HG: Cellular protection with proanthocyanidins derived from grape seeds. Ann N Y Acad Sci 957: 260-270, 2002
    17. Shi J, Yu J, Pohorly JE, Kakuda Y: Polyphenolics in grape seeds-biochemisty and functionality. J Med Food 6:291-299, 2003
    18. Bagchi D, Sen CK, Ray SD, Das DK, Bagchi M, Preuss HG, Vinson JA: Molecular mechanisms of cardioprotection by a novel grape seed proanthocyanidin extract. Mutat Res 523-524:87-97, 2003
    19. Vigna GB, Costantini F, Aldini G, Carini M, Catapano A, Schena F, Tangerini A, Zanca R, Bombardelli E, Morazzoni P, Mezzetti A, Fellin R, Maffei Facino R: Effect of a standardized grape seed extract on low-density lipoprotein susceptibility to oxidation in heavy smokers. Metabolism 52:1250-1257, 2003
    20. Pinent M, Blay M, Blade MC, Salvado MJ, Arola L, Ardevol A: Grape seed-derived procyanidins have an antihyperglycemic effect in streptozotocin- induced diabetic rats and insulinomimetic activity in insulin-sensi ti ve cell lines. Endocrinology 145:4985-4990, 2004
    21. Zhang FL, Gao HQ, Wu]M, Ma YB, You BA, Li BY, Xuan JH: Selective inhibition by grape seed proanthocyanidin extracts of cell adhesion molecule expression induced by advanced glycation end products in endothelial cells. J Cardiovasc Pharmacal 48:47-53, 2006 22. Dejgaard A, Gade A, Larsson H, Balle V, Parving A, Parving HH: Evidence for diabetic encephalopathy. Diabet Ailed 8:162-167, 1991
    23. Biessel s GJ: Cerebral complications of diabetes: clinical findings and pathogenetic mechanisms. Ne th J Med 54:35-45, 1999
    24. Bischoff A, Zimmermann A: Diabetic encephalopathy. Does it exist? Acta Neurol Belg 79:460-468, 1979
    25. Korf ES, White LR, Scheltens P, Launer LJ: Brain aging in very old men with type 2 diabetes: the Honolulu-Asia Aging Study. Diabetes Care 29:2268-2274, 2006
    26. Messier C: Impact of impaired glucose tolerance and type 2 diabetes on cogni ti ve aging. Neurobiol Aging 26 Suppl 1:26-30, 2005
    27. Saravia FE, Beauquis J, Revsin Y, Homo-Delarche F, de Kloet ER, De Nicola AF: Hippocampal Neuropathology of Diabetes Melli tus is Relieved by Estrogen Treatment. Cell Mol Neurobiol 26:941-955, 2006
    28. Akisaki T, Sakurai T, Takata T, Umegaki H, Araki A, Mizuno S, Tanaka S, Ohashi Y, Iguchi A, Y okono K, I to H: Cogni ti ve dysfunction associates with white matter hyperintensities and subcortical atrophy on magnetic resonance imaging of the elderly diabetes melli tus Japanese elderly diabetes intervention trial (J-EDIT). Diabes Me tab Res Rev 22:376-384, 2006
    29. Harati Y: Diabetes and the nervous system. Endocrino Metab Cl in North Am 25: 325-359, 1996
    30. Lalla E, Lamster IB, Drury S, Fu C, Schmidt AM: Hyperglycemia, glycoxidation and receptor for advanced glycation endproducts: potential mechanisms underlying diabetic complications, including diabetes-associated periodontitis. P, Pe riodontol 2000 23: 50-62, 2000
    31. Sano T, Oda E, Yamashita T, Naemura A, Ijiri Y, Yamakoshi J, Yamamoto J: Anti-thrombotic effect of proanthocyanidin, a purified ingredient of grape seed. Thromb Res 115: 115-121, 2005
    32. Kamitani Y, Maki K, Tofani I, Nishikawa Y, Tsukamoto K, Kimura M: Effects of grape seed proanthocyanidins extract on mandibles in developing rats. Oral Dis 10: 27-31, 2004
    33. Mohamed AK, Bierhaus A, Schiekofer S, Tritschler H, Ziegler R, Nawroth PP: The role of oxidative stress and NF-kappaB activation in late diabetic complications. Biofactors 10:157-167, 1999
    34. Schmidt AM, Hori O, Cao R, Yan SD, Brett J, Wautier JL, Ogawa S, Kuwabara K, Matsumoto M, Stern D: RAGE: a novel cellular receptor for advanced glycation end products. Diabetes 45 Suppl 3:S77-80, 1996
    35. Donahue JE, Flaherty SL, Johanson CE, Duncan JA, 3rd, Si 1 verberg GD, Miller MC, Tavares R, Yang W, Wu Q, Sabo E, Hovanesian V, Stopa EG: RAGE, LRP-1, and amyloid-beta protein in Alzheimer's disease. Acta Neuropathol 112:405-415, 2006
    36. Wunderlich RP, Peters EJ, Bosma J, Armstrong DG: Pathophysiology and treatment of painful diabetic neuropathy of the lower extremity. South Med J 91:894-898, 1998
    37. Chaney MO, Stine WB, Kokjohn TA, Kuo YM, Esh C, Rahrnan A, Luehrs DC, Schmidt AM, Stern D, Yan SD, Roher AE: RAGE and amyloid beta interactions: atomic force microscopy and molecular modeling. Biochim Biophys Acta 1741:199-205, 2005
    38. Sasaki N, Toki S, Chowei H, Saito T, Nakano N, Hayashi Y, Takeuchi M, Makita Z: Immunohistochemical distribution of the receptor for advanced glycation end products in neurons and astrocytes in Alzheimer's disease. Brain Res 888:256-262, 2001
    39. Sato T, Shimogaito N, Wu X, Kikuchi S, Yamagishi S, Takeuchi M: Toxic advanced glycation end products (TAGE) theory in Alzheimer's disease. Am J Alzheimers Dis Other Demen 21:197-208, 2006
    40. Kim H, Deshane J, Barnes S, Meleth S: Proteomics analysis of the actions of grape seed extract in rat brain: technological and biological implications for the study of the actions of psychoactive compounds. LiFE Sci 78:2060-2065, 2006
    41. Devi A, Jolitha AB, Ishii N: Grape seed proanthocyanidin extract (GSPE) and antioxidant defense in the brain of adult rats. Med Sci Manit 12:BR124-129, 2006
    42. Roychowdhury S, Wolf G, Keilhoff G, Bagchi D, Horn T: Protection of primary glial cells by grape seed proanthocyanidin extract against nitrosative/oxidative stress. Nitric Oxid θ5:137-149, 2001
    43. Yamakoshi J, Sai to M, Kataoka S, Kikuchi M: Safety evaluation of proanthocyanidin-rich extract from grape seeds. Food Ch em Toxicol 40:599-607, 2002
    1. Muller IS, De Grauw WJC, Van Gerwen WHEM, Bartelink ML, Van Den Hoogen HJM, Rutten GEHM: Foot ulceration and lower limb amputation in type 2 diabetic patients in Dutch primary health care. Diabetes Care 25:570-574, 2002
    2. Boyko EJ, Ahroni JH, Smith DG, Davignon D: Increased mortality associated with diabetic foot ulcer. Diabet Med 13: 967-972, 1996
    3. Moulik PK, Mtonga R, Gill GV: Amputation and mortality in new-onset diabetic foot ulcers stratified by etiology. Diabetes Care 26:491-494, 2003
    4. Diouri A, Slaoui Z, Chadli A, El Ghomari H, Kebbou M, Marouan F, Farouqi A, Ababou MR: Incidence of factors favoring recurrent foot ulcers in diabetic patients. Ann Endocrinol (Paris) 63:491-496, 2002
    5. Boulton AJ: The diabetic foot: from art to science: the 18th Camillo Golgi Lecture. Diabetologia 47:1343-1353, 2004
    6. Edmonds M, Foster A: The use of antibiotics in the diabetic foot. Am J Surg 187: 25S-28S, 2004
    7. Wang YY, Myhre AE, Pettersen SJ, Dahle MK, Foster SJ, Thiemermann C, Bjornland K, Aasen AO, Wang JE: Peptidoglycan of Staphylococcus aureus induces enhanced levels of matrix metalloproteinase-9 in human blood originating from neutrophils. Shock 24:214-218, 2005
    8. Oyibo SO, Jude EB, Tarawneh I, Nguyen Figure 1—The relationship between initial viable bacterial load (CFU) and subsequent rate. HC, Armstrong DG, Harkless LB, Boulton AJ: The effects of ulcer size and site, patient's age, sex and type and duration of diabetes on the outcome of diabetic foot ulcers. Diabet Med 18:133-138, 2001
    9. National Institutes of Health Image: About NIH Image [online]. Available from http://rsb.info.nih.gov/nih-image/Default.html. Accessed February 2005
    10. Sheehan P, Jones P, Caselli A, Giurini JM, Veves A: Percent change in wound area of diabetic foot ulcers over a 4-week period is a robust predictor of complete healing in a 12-week prospective trial. Diabetes Care 26:1879-1882, 2003
    11. Bowler PG, Davies BJ: The microbiology of acute and chronic wounds. Wounds 11: 72-79, 1999
    12. Bowler PG, Duerden BI, Armstrong DG: Wound microbiology and associated approaches to wound management. Clin Microbiol Rev 14:244-269, 2001
    13. Gardner SE, Frantz RA, Saltzman CL, Hillis SL, Park H, Scherubel M: Diagnostic validity of three swab techniques for identifying chronic wound infection. Wound Repair Regen 14:548-557, 2006
    1. Pan XR, Y.W., Liu J, Prevalence of diabetes and its risk factors in China in 1994. National Diabetes Prevention and Control Cooperative Group. Diabetes Care, 1997. 20: p. 1664-1669.
    2. Hu YH, L.G., Pan XR, Incidence of NIDDM in Daqing and forecasting of DM in China in 21st centrury. (in Chinese). Chin J Intem Med, 1993.32(173-175).
    3. Kanis, J.A. and C.C. Gluer, An update on the diagnosis and assessment of osteoporosis with densitometry. Committee of Scientific Advisors, International Osteoporosis Foundation. Osteoporos Int, 2000. 11 (3): p. 192-202.
    4. Wark, J.D., Osteoporosis: a global perspective. Bull World Health Organ, 1999. 77(5): p. 424-6.
    5. Duan, Y. and E. Seeman, Bone fragility in Asian and Caucasian men. Ann Acad Med Singapore, 2002.31(1): p. 54-66.
    6. Xu, L., et al., Very low rates of hip fracture in Beijing, People's Republic of China the Beijing Osteoporosis Project. Am J Epidemiol, 1996. 144(9): p. 901-7.
    7. Lau, E.M., Epidemiology of osteoporosis in urbanized Asian populations. Osteoporos Int, 1997. 7 Suppl 3: p. S91-5.
    8. Lau, E.M., et al., The determinants of bone mineral density in Chinese men-results from Mr. Os (Hong Kong), the first cohort study on osteoporosis in Asian men. Osteoporos Int, 2005.
    9. Sue A. Brown, J.L.S., Osteoporosis: An Under-appreciated Complication of Diabetes. Clinical Diabetes, 2004. 22(1): p. 10-20.
    10. Chau, D.L., S.V. Edelman, and M. Chandran, Osteoporosis and diabetes. Curr Diab Rep, 2003.3(1): p. 37-42.
    11. de Luis Roman, D.A., et al., Effects of dietary intake and life style on bone density in patients with diabetes mellitus type 2. Ann Nutr Metab, 2004. 48(3): p. 141-5.
    12. Deutschmann, H.A., et al., Search for occult secondary osteoporosis: impact of identified possible risk factors on bone mineral density. J Intem Med, 2002. 252(5): p. 389-97.
    13. el Miedany, Y.M., S. el Gaafary, and M.A. el Baddini, Osteoporosis in older adults with non-insulin-dependent diabetes mellitus: is it sex related? Clin Exp Rheumatol, 1999. 17(5): p. 561-7.
    14. Lenchik, L., et al., Adiponectin as a novel determinant of bone mineral density and visceral fat. Bone, 2003.33(4): p. 646-51.
    15. Seeman, E., Osteoporosis in men: epidemiology, pathophysiology, and treatment possibilities. Am J Med, 1993.95(5A): p. 22S-28S.
    16. Center, J.R., et al., Mortality after all major types of osteoporotic fracture in men and women: an observational study. Lancet, 1999. 353(9156): p. 878-82.
    17. Jackson, S.A., A. Tenenhouse, and L. Robertson, Vertebral fracture definition from population-based data: preliminary results from the Canadian Multicenter Osteoporosis Study (CaMos). Osteoporos Int, 2000. 11(8): p. 680-7.
    18. Burger, H., et al., Vertebral deformities and functional impairment in men and women. J Bone Miner Res, 1997. 12(1): p. 152-7.
    19. Kanis, J.A., Diagnosis of osteoporosis. Osteoporos Int, 1997. 7 Suppl 3: p. S108-16.
    20. Schwartz, A.V., et al., Diabetes and bone loss at the hip in older black and white adults. J Bone Miner Res, 2005.20(4): p. 596-603.
    21. Ross, P.D., Osteoporosis. Frequency, consequences, and risk factors. Arch Intern Med, 1996. 156(13): p. 1399-411.
    22. Eastell, R., Commentary: bone density can be used to assess fracture risk. Bmj, 1999. 318(7187): p. 864-5.
    23. Tenenhouse, A., et al., Estimation of the prevalence of low bone density in Canadian women and men using a population-specific DXA reference standard: the Canadian Multicentre Osteoporosis Study (CaMos). Osteoporos Int, 2000. 11(10): p. 897-904.
    24. Looker, A.C., et al., Prevalence of low femoral bone density in older U.S. adults from NHANES Ⅲ. J Bone Miner Res, 1997. 12(11): p. 1761-8.
    25. Hawker, G.A., The epidemiology of osteoporosis. J Rheumatol Suppl, 1996. 45: p. 2-5.
    26. Szejnfeld, V.L., et al., Bone density in white Brazilian women: rapid loss at the time around the menopause. Calcif Tissue Int, 1995.56(3): p. 186-91.
    27. Evans, W.J., Exercise training guidelines for the elderly. Med Sci Sports Exerc, 1999.31(1): p. 12-7.
    28. Hannan, M.T., et al., Risk factors for longitudinal bone loss in elderly men and women: the Framingham Osteoporosis Study. J Bone Miner Res, 2000. 15(4): p. 710-20.
    29. Camargo, M.B., et al., Bone mineral density and osteoporosis among a predominantly Caucasian elderly population in the city of Sao Paulo, Brazil. Osteoporos Int, 2005.16(11): p. 1451-60.
    30. Schubert, M., et al., Osteoporosis in male hypogonadism: responses to androgen substitution differ among men with primary and secondary hypogonadism. Horm Res, 2003.60(1): p. 21-8.
    31. Mikhail, N., Hypogonadism and osteoporosis in men. Arch Intern Med, 2003. 163(10): p. 1237; author reply 1237-8.
    32. Ross, R.W. and E.J. Small, Osteoporosis in men treated with androgen deprivation therapy for prostate cancer. J Urol, 2002. 167(5): p. 1952-6.
    33. Jin, J.L. and C.G. Tian, [Testosterone and male osteoporosis]. Zhonghua Nan Ke Xue, 2002.8(2): p. 145-7.
    34. Cheung, E.Y., et al., Determinants of bone mineral density in Chinese men. Osteoporos Int, 2005.16(12): p. 1481-6.
    35. Khosla, S., Oestrogen, bones and men: when testosterone just isn't enough. Clin Endocrinol (Oxf), 2002.56(3): p. 291-3.
    36. Moyad, M.A., Complementary therapies for reducing the risk of osteoporosis in patients receiving luteinizing hormone-releasing hormone treatment/orchiectomy for prostate cancer: a review and assessment of the need for more research. Urology, 2002. 59(4 Suppl 1): p. 34-40.
    37. Gholz, R.C., F. Conde, and D.N. Rutledge, Osteop0rosis in men treated with androgen suppression therapy for prostate cancer. Clin J Oncol Nurs, 2002. 6(2): p. 88-93.
    38. Scherr, D., W.R. Pitts, Jr., and E.D. Vaughn, Jr., Diethylstilbesterol revisited: androgen deprivation, osteoporosis and prostate cancer. J Urol, 2002. 167(2 Pt 1): p. 535-8.
    39. Espallargues, M., et al., Identifying bone-mass-related risk factors for fracture to guide bone densitometry measurements: a systematic review of the literature. Osteoporos Int, 2001.12(10): p. 811-22.
    40. Cauley, J.A., et al., Factors associated with the lumbar spine and proximal femur bone mineral density in older men. Osteoporos Int, 2005.16(12): p. 1525-37.
    41. He, H., et al., Diabetes causes decreased osteoclastogenesis, reduced bone formation, and enhanced apoptosis of osteoblastic cells in bacteria stimulated bone loss. Endocrinology, 2004. 145(1): p. 447-52.
    42. Thalassinos, N.C., et al., Calcium metabolism in diabetes mellitus: effect of improved blood glucose control. Diabet Med, 1993.10(4): p. 341-4.
    43. Okazaki, R., et al., Metabolic improvement of poorly controlled noninsulin-dependent diabetes mellitus decreases bone turnover. J Clin Endocrinol Metab, 1997. 82(9): p. 2915-20.
    44. Roe, S.D., et al., Reduced bone mineral density in male renal transplant recipients: evidence for persisting hyperparathyroidism. Osteoporos Int, 2005.16(2): p. 142-8.
    45. Roe, T.F., et al., Vertebral bone density in insulin-dependent diabetic children. Metabolism, 1991.40(9): p. 967-71.
    46. Weinstock, R.S., et al., Bone mineral density in women with type Ⅱ diabetes mellitus. J Bone Miner Res, 1989. 4(1): p. 97-101.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700