基于GIS和RS的沂河上游重点地区土壤侵蚀监测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤侵蚀是人类发展过程中所面临的重大环境问题,已经危及到人类的生存,越来越受到世界各国政府及科技工作者的关注。土壤侵蚀的研究,与人类自身的生存、发展息息相关,已经成为21世纪国际土壤学、农业科学及环境科学界共同关注的热点问题,开展土壤侵蚀的研究具有极其重要的意义。
     沂河发源于山东省淄博市沂源县,是山东省第二大河。沂源县地处沂河上游地区,是水利部确定的全国水土流失重点治理县。本研究以刘宝元等建立的中国土壤流失方程(China Soil Loss Equation)为基础,利用2009年4月份SPOT 10m分辨率多波段影像和2.5m分辨率全色影像为基础遥感数据,ASTER GDEM 30m分辨率DEM数据为地形数据来源,山东省1:50万土壤图为土壤数据来源,另外结合其它调查统计资料,在GIS软件和遥感图像处理软件的支持下,将所有基础数据,经过几何校正和投影变换等操作后,转换为相同的参考基准,便于进行数据的叠加分析。
     本研究利用水利部推广的网格抽样调查法,对沂源县整个研究区域进行4级网格划分,其中第三级网格为5km×5km网格,4级网格为将3级网格进行5×5划分,位于三级网格中心的1km×1km的网格称为基本抽样单元。通过对基本抽样单元的野外调查,利用1m×1m样方,获取样方的坐标,植被覆盖度,植被类型、耕作措施、水土保持措施等数据,在内业时根据野外调查的数据,对照遥感影像图,建立解译标志。分别从降雨侵蚀力、土壤可蚀性、坡长、坡度、植被覆盖度、工程措施和耕作措施等几个方面对影响土壤侵蚀的因子进行定量分析,找出其中的规律,进而计算出沂源县土壤侵蚀模数,最后将网格抽样调查法所获得的结果与传统计算方法取得的结果进行对比分析,对研究区内整体土壤侵蚀分布规律作出分析,并提出相应的水土保持治理建议。
     经过计算分析,研究区平均土壤侵蚀模数为2361 t/km~2 a,年流失量总量为346.42万t。其中轻度及以下侵蚀面积为1015.45 km~2,占研究区总面积的69.20%;中度侵蚀面积230.58km~2,占研究区总面积的15.71%,分布面积和比重相对较大;强烈侵蚀面积89.81 km~2,占研究区总面积的6.12%;极强烈侵蚀面积61.57 km~2,占研究区总面积的4.20%;剧烈侵蚀面积31.15 km~2,占研究区总面积的2.12%,是研究区中分布面积和比重最小的。中度及以上土壤侵蚀主要分布在海拔200 800m的丘陵、低山地带,该地区海拔相对较高,地势起伏较大是土壤流失的重点地区,该地区植被类型主要为人工植被,多为农作物,受人为因素干扰较重,因此土壤流失严重。
     将网格抽样调查法获得的结果与传统的土壤侵蚀计算方法获得的结果进行比较发现,利用网格抽样调查法计算得出抽样单元平局土壤侵蚀模数为2330 t/km~2 a;而采用传统计算方法得出的研究区平均土壤侵蚀模数为2361 t/km~2 a,两者相差仅31 t/km~2 a,说明完全可以采用网格抽样调查法来取代传统的计算方法对研究区进行监测,从而大大节省人力、物力和财力,并且可以收到比较好的效果。
     通过对三种不同网格抽样法的比较发现,规则网格抽样法获得的平均土壤侵蚀模数是最接近研究区整体计算结果的,为2330 t/km~2 a,而考察点抽样单元平均土壤侵蚀模数为1822 t/km~2 a,综合抽样单元的平均土壤侵蚀模数为2018 t/km~2 a。因此采用规则抽样单元比采用其它的抽样单元计算结果更接近真实值。
Soil erosion is the major environmental problem human face in the process of developments,which has threatened the survival of the human race and attracted more and more attentions fromthe government, scientists and technologists in global world. Study on the soil erosion is closelyrelated to human survival and development, which has become the international issue soilscience, agricultural science and environmental science concern in the 21th century. It is of greatsignificance to carry out research on the soil erosion.
     Yihe River in Shandong province Zibo city Yiyuan County is the second great river. YiyuanCounty is located in the Yi River upstream regions, which is the key soil erosion control countythe ministry of water resources identified. The study is based on Chinese soil loss equationestablished by Liu Baoyuan The paper takes SPOT 10m resolution multispectral image and 2.5mresolution panchromatic images in the April of 2009 as the remote sensing data, ASTER GDEM30m resolution DEM data as terrain data sources and 1:500000 soil map in the Shandongprovince as soil data sources, combining the other survey data. It deals with all basic datathrough geometric correction and projection transformation operation, and then converts the datato the same reference to facilitate data overlay analysis.
     This study uses grid sampling survey method the Ministry of water resources promoted toconvert the study area of Yiyuan County in 4 levels. The third level is 5km×5km grid and thefourth level divides in 5×5 on the basis of the third level. Basic sampling unit is located on thecenter grid in the third level. Based on the field investigation in the basic sampling unit, thepaper makes use of 1m×1m quadrat to obtain the plot coordinates, vegetation coverage,vegetation types, tillage, soil and water conservation measures and other data. In order toestablish the interpretation signs, it is necessary to compare the remote sensing image with thefield survey data in the indoor room. It analysts quantitatively the rainfall erosion force, soilerodibility, slope length, slope, vegetation coverage, engineering measures, cultivation measuresand many other aspects that affect soil erosion to find the law. And then calculate the modulus ofsoil erosion in Yiyuan County. Finally, through comparing the grid sampling method results withthe results obtained from the traditional calculation method, it makes an analysis the overalldistribution of soil erosion law and puts forward the corresponding suggestions of soil and waterconservation management.
     From the studies, we know that the average soil erosion modulus is 2361t/km~2·a and the lossamount of the year is up to 3.4642 million ton. The mild and even worse erosion area is about1015.45 km~2, accounting for 69.2% of the total area of the study area. Moderate erosion area isabout 230.58 km~2, accounting for 15.71% and it has large distribution area and proportion. Strong soil erosion area is 89.81 km~2, accounting for 6.12%. Extreme intense erosion area is61.57 km~2, accounting for 4.20%. Severe erosion area is about 31.15 km~2, accounting for 2.12%and it has the smallest area and proportion. Moderate and above soil erosion areas are mainly inthe hills of an altitude of 200-800m and many low mountain regions, which are relatively highaltitude. The area full of low and high is the main district of soil erosion. Vegetation in the regionis main types of artificial vegetation, which are mostly crops and affected by human factorheavily. So the soil erosion is serious.
     Comparing grid sampling results with the traditional calculation results, it is shown that thesoil erosion modulus obtained from grid sampling investigation method is 2330 t/km~2·a. Theaverage soil erosion modulus acquired through the traditional calculation method is 2361 t/km~2·a.The difference between the two methods is 31 t/ km~2·a. This can monitor the study area throughgrid sampling method instead of traditional calculation method, which can save manpower,material and financial resources and can receive good results.
     By comparing the three different grid sampling methods, we can see that average modulusof soil erosion obtained from the regular grid sampling method is the most close to the calculatedresults of the overall study area, which is about 2330 t/km~2·a. But the average soil erosionmodulus in the inspected sampling unit is about 1822 t/km~2·a and the average soil erosion in theintegrated sampling unit is 2018 t/km~2·a. Therefore the calculated results in the use of regularsampling unit than the other sampling unit are closer to the true value.
引文
[1]杨勤科,李锐.中国水土流失和水土保持定量研究进展[D]., 1998.
    [2] Alfy Morcos Fanos. The inpact of human activities on the erosion and accretion of the Nile Delta Coast[J].Journal of Coastal Reseach, 1995,11(3):821-833.
    [3] Chakrapani G J, Subramanian V. Factors controlling sediment discharge in the Mahanadi River Basin, India[J].Journal of Hydrology, 1990,117(1-4):169-185.
    [4] De ROO A P J, Wesseling C G. LISEM:A Single-vent Physically Based Hydrological and Soil Erosion Modelfor Drainage Basins.I:Theory,Input and Output[J]. Hydrological Sciences Journal, 1996(04):107-118.
    [5] De ROO A P J, Wesseling C G. LISEM:A Single-vent Physically Based Hydrological and Soil Erosion Modelfor Drainage Basins.Ⅱ:Sensitivity and Application[J]. Hydrological Processes, 1996(4).
    [6] Laffen J M, Lwonard J L, Foster G T. WEEP a new generation of erosion prediction technology[J]. Journal ofSoil and Water Conservation, 1991,46(1):34-38.
    [7] Renard K G, Foster G R, Weesies G A, et al. Predicting Soil Erosion by Water: A Guide to ConservationPlanning with the Revised Universal Soil Loss Equation (RUSLE)[J]. Handbook NO. 703, 1997.
    [8]杨勤科.区域水土流失快速调查研究与实践[J].水土保持研究(增刊), 2000,7(1):53-57.
    [9]李瑞,杨勤科,赵永安.水士流失动态监测与评价研究现状与问题[J].中国水土保持, 1999(11):31-33.
    [10] Seubert C E, Baumgardner M F, Weismiller R A, et al. Mapping and Estimating Areal Extent of SeverelyEroded Soils of Selected Sites in Northern Indiana[J]. Laboratory for Applications of Remote Sensing,1979:234-239.
    [11] Pickup G, Nelson D J. Use of Landsat radiance parameters to distinguish soil erosion,stability and depositionin arid central Australia[J]. Remote Sensing of Environment, 1984,16(3):195-209.
    [12] Stephens P R, MacMillan J K, Daigle J L, et al. Estimating universal soil loss equation factor values with aerialphotography[J]. Journal of Soil and Water Conservation, 1985,40(3):293-296.
    [13] Connors K F, Gardner T W, Petersen G W. Digital analysis of the hydrologic components of watersheds usingsimulated SPOT imagery[J]. In: Proc. Workshop on Hydrologic Applications of Space Technology,1986:355-365.
    [14] Frazier B E, Cheng Y. Remote Sensing of soils in the Eastern Palouse region with Landsat The matic[J].Mapper Remote Sens-ing of Environment, 1989,28:317-325.
    [15] John C. Panuska, Ian D. Moore, Larry A. Kramer. Terrain analysis: Integration into the agricultural nonpointsource (AGNPS) pollution model[J]. Journal Of Soil And Water Conservation, 1991,46(1):59-64.
    [16] Jürgens C, Fander M. Soil erosion assessment by means of LANDSAT-TM and ancillary digital data inrelation to water quality[J]. Soil Technology, 1993,6(3):215-223.
    [17] Tim U S, Jolly R. Evaluating agricultural nonpoint-source pollution using integrated geographic informationsystems and hydrologic/water quality model[J]. Journal of Environmental Quality, 1994,23(1):25-35.
    [18] Savabi M R, Savabi M R, Flanagan D C, et al. Application of WEPP and GIS-GRASS to a small watershed inIndiana[J]. Journal of Soil and Water Conservation, 1995,50(5):477-483.
    [19] LARRY A. COSTICK. Indexing current watershed conditions using remote sensing and GIS[R].Sierra NevadaEcosystem Project: Final report to Congress.
    [20] Krishoa Pahari, Jean-Pierre Delsol, Shunji Murai. Remote sensing and GIS for sustainable watershedmanagement a study from NEPAL: The 4th International Symposium on High Mountain Remote SensingCartography, Karlstad - Kiruna - Troms, 1996[C].
    [21] M. H. Mohamed Rinos, S. P. Aggarwal, Ranjith Premalal De Silva. Application of Remote Sensing and GIS onsoil erosion assessment at Bata River Basin, India[Z].
    [22] Manzul Kumar Hazarika, Kiyoshi Honda. Estimation of soil erosion using Remote Sensing and GIS, itsvaluation and economic implications on agricultural Production[J]. 2001(1):1090-1093.
    [23]赵永安,李锐,杨勤科.水土流失动态监测与评价研究现状与问题[J].中国水土保持, 1999(11).
    [24]黄秉维.编制黄河中游流域土壤侵蚀分区图的经验教训[J].科学通报, 1955(12):15-21.
    [25]黄土高原地区资源与环境遥感系列图编委会.黄土高原地区资源与环境遥感调查和系列制图研究[M].北京:地震出版社, 1992.
    [26]杨艳生.区域性土壤流失预测方程的初步研究[J].土壤学报, 1990(01):73-79.
    [27]刘耀林,罗志军.基于GIS的小流域水土流失遥感定量监测研究[J].武汉大学学报(信息科学版),2006,31(01):35-38.
    [28]徐国礼,周佩华,王文龙,等.沟道侵蚀与地面遥感监测研究[J].水土保持学报, 1991,5(02):22-24.
    [29]沈云良,邱沛炯,王天有,等.利用TM图象监测水土流失变化及对策分析[J].中国水土保持,1993(04):45-47.
    [30]郭学军,郭立民.应用不同时期的航片分析土壤侵蚀量的动态变化[J].中国水土保持, 1994(02):40-43.
    [31]洪双旌,高兆蔚.利用森林资源连续清查体系进行水土流失动态监测的探讨[J].福建水土保持,1994(03):24-26.
    [32]卜兆宏,孙金庄,周伏建,等.水土流失定量遥感方法及其应用的研究[J].土壤学报,1997,34(03):235-245.
    [33]牟金泽,孟庆枚.降雨侵蚀土壤流失预报方程的初步研究[J].中国水土保持, 1983(6):25-29.
    [34]龚时旸,蒋德麒.黄河中游黄土丘陵沟壑区沟道小流域的水土流失及治理[J].中国科学,1978(06):671-678.
    [35]张宪奎,许靖华,卢秀琴,等.黑龙江省土壤流失方程的研究[J].水土保持通报, 1992,12(04):1-9.
    [36]杨子生.滇东北山区坡耕地土壤流失方程研究[J].水土保持通报, 1999,19(1):1-9.
    [37]孙立达,孙保平,陈禹,等.西吉县黄土丘陵沟壑区小流域土壤流失量预报方程[J].自然资源学报,1988,3(2):141-153.
    [38]金争平,史培军,侯福昌,等.黄河皇甫川流域土壤侵蚀系统模型和治理模式[M].北京:海洋出版社,1992.
    [39]江忠善,郑粉莉,武敏.中国坡面水蚀预报模型研究[J].泥沙研究, 2005(4):1-6.
    [40]沈玉芳,秦清军,吴永红.植被类型对黄土高原土壤侵蚀的影响研究[J].西北农业学报, 2003,12(3):5-8.
    [41]黄杏元,马劲松,汤勤.地理信息系统概论(修订版)[M].北京:高等教育出版社, 2001.
    [42]卜兆宏,杨晓勇,王库,等.水土流失定量监测中的DEM精度评价新方法[J].土壤学报,2004,41(5):661-668.
    [43]王帅.多元遥感影像数据融合研究[J].科技广场, 2011(03):61-63.
    [44]梁音,田刚,潘贤章,等.不同监测方法对土壤侵蚀监测结果的影响——以江西省潋水河流域为例[J].中国水土保持科学, 2008,6(3):18-23.
    [45]刘宝元,张科利,焦菊英.土壤可蚀性及其在侵蚀预报中的应用[J].自然资源学报, 1999,14(4):345.
    [46]吴铁艳.位置服务研究及其在导航中的应用[D].东北大学生物医学工程, 2005.
    [47]莫才健.城市经营地理信息系统研究[D].西南科技大学城市规划与设计, 2007.
    [48]齐实,贺然,王棒.密云水库北京集水区土壤侵蚀预测[J].农业环境科学学报, 2007(S2):579-582.
    [49]袁克勤,倪九派,宫春明,等.基于GIS的土壤侵蚀预测与评价研究进展[J].水土保持应用技术,2009(1):16-20.
    [50]卢喜平.紫色土丘陵区降雨侵蚀力模拟研究[D].西南大学水土保持与荒漠化防治, 2006.
    [51]章文波,谢云,刘宝元.利用日雨量计算降雨侵蚀力的方法研究[J].地理科学, 2002,22(6):705-711.
    [52]朱乾德.平原河网典型区域非点源污染规律与调控模拟研究[D].南京水利科学研究院水文学及水资源,2010.
    [53]张有全,宫辉力,赵文吉.基于遥感与GIS的土壤侵蚀强度快速估测方法[J].生态环境,2007,16(1):102-107.
    [54]周大淜.川中紫色土丘陵区侵蚀性降雨及侵蚀特征研究[D].西南大学水土保持与荒漠化防治, 2010.
    [55] Roose E J. Use of the universal soil loss equation to predict erosion in West Africa[J]. Soil ConservationSociety of America Ankeny, IA, 1977(21):60-74.
    [56]宋阳,刘连友,严平,等.土壤可蚀性研究述评[J].干旱区地理, 2006,29(1):124-131.
    [57]杨克磊,贾永旭.唐山市湿地水土流失控制风险评价[J].水利科技与经济, 2010,16(10):1161-1163, 1166.
    [58]宋满珍,刘琪璟,吴自荣,等.江西省森林土壤有机碳储量研究[J].南京林业大学学报(自然科学版),2010,34(2):6-10.
    [59]王旭,张志,陈昆仑,等.基于RS和GIS的保康县矿区土壤侵蚀定量评价[J].人民长江, 2008,39(5):58-60.
    [60]沈中原,李占斌,杜中,等.大理河流域土壤侵蚀空间分布的地貌特征研究[J].水土保持学报,2008,22(5):78-81.
    [61]洪桢华.基于3S技术闽江流域水土流失动态监测研究[D].福建农林大学森林经理学, 2007.
    [62]孙希华,张代民,姚孝友,等.沂蒙山区不同植被景观类型与土壤侵蚀研究[J].水土保持研究,2008,15(06):6-9.
    [63]潘少奇,李亚婷,赵爽,等.基于RS和GIS的洛宁县土壤侵蚀研究[J].河南大学学报(自然科学版),2010,40(2):156-161.
    [64]瞿瑛,刘素红,谢云.植被覆盖度计算机模拟模型与参数敏感性分析[J].作物学报,2008,34(11):1964-1969.
    [65]张学霞,朱清科,吴根梅,等.数码照相法估算植被盖度[J].北京林业大学学报, 2008,30(1):164-169.
    [66]高振纪,邬伦,马修军.黄土高原水土流失监测指标体系研究[J].水土保持研究, 2005,12(4):53-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700