神经肽S在大鼠中枢神经系统中的表达及其对睡眠/觉醒和认知功能影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
睡眠是人类不可缺少的生理过程。睡眠不仅可以维持个体生存及正常的生理功能,还具有促进生长发育、易化学习、形成记忆的功能。睡眠和觉醒是一个包括复杂的神经环路和多种神经化学成分的行为反应。神经递质在此过程中发挥了极其重要的作用。神经肽S (neuropeptide S, NPS)是在2004年最新研究发现的一种与睡眠和觉醒相关的神经肽,其相应的G蛋白偶联受体即为神经肽S受体(neuropeptide S receptor, NPSR)。最早的研究发现,神经肽S广泛分布在脊椎动物(人、小鼠、大鼠、鸡、猩猩、牛)中,在成年大鼠的脑组织、甲状腺、唾液腺和乳腺中都较高表达。神经肽S与其特异性受体结合发挥其生理作用,能够调节睡眠觉醒、减少惊恐发作、影响摄食行为、调节炎性反应及变态反应等。而其中尤以它与睡眠/觉醒方面的作用最为突出和明确。由于神经肽S发现时间较晚,目前对于神经肽S在中枢神经系统中的分布及功能研究很少,仅有少数研究报道。
     为进一步深入对神经肽S功能的认识,本研究首先系统研究了神经肽S在大鼠中枢神经系统中的表达和分布特点,为深入研究其功能打下基础。在此实验中,我们对大鼠脑组织和脊髓做连续切片,首次全面研究神经肽S在大鼠整个神经系统中的表达分布情况。其次,鉴于神经肽S已被发现的最主要的作用——调节睡眠/觉醒的作用,首次研究了不同时程REM期睡眠剥夺后大鼠下丘脑内神经肽S的表达变化,以期进一步研究神经肽S与睡眠觉醒的关系。最后,首次研究了中枢给予神经肽S是否可以改善REM睡眠剥夺导致的大鼠认知功能损害,并探索其可能的分子机制。
     本研究使用免疫组织化学、原位杂交技术研究神经肽S蛋白和mRNA在大鼠中枢神经系统中的表达和分布特点。实验结果显示,神经肽S广泛分布于大鼠中枢神经系统中,且免疫组织化学结果和原位杂交结果具有高度一致性。在嗅球、初级嗅皮质区域,神经肽S均呈阳性染色,阳性染色主要集中在细胞胞体,证实神经肽S可能参与中枢嗅觉系统的兴奋传递过程。神经肽S强阳性染色集中在大脑运动皮质区、躯体感觉皮质区、梨状皮质和嗅皮质,尤其是在运动皮质区、躯体感觉皮质区第Ⅴ层存在致密染色,提示神经肽S可能参与神经局部环路的构建。在海马中,在CA1-CA3区锥体细胞的胞体和轴突均呈现不同程度的神经肽S阳性染色,提示神经肽可能参与海马的兴奋性神经递质传递,也可能与认知功能有关。在丘脑的很多神经核团中,尤其是前腹侧核、前内侧核、前背侧核和腹外侧核中发现神经肽S广泛表达;在下丘脑的室旁核和背内侧核也有神经肽S阳性神经元表达。神经肽S在这些部位的分布提示它可能参与机体多种生理活动,包括调节体温、水盐代谢、活动能力、饮食、睡眠/觉醒和激素分泌等。在脑干中,神经肽S受体强阳性染色分布在蓝斑、外侧臂旁核、三叉神经中脑核、三叉神经运动核。在小脑皮质中,浦肯野细胞中神经肽S阳性染色最强,几乎所有的浦肯野细胞均为阳性染色。致密染色集中在细胞胞体和轴突上。在脊髓颈部、胸部、腰部、骶部灰质区均有神经肽S阳性细胞分布,在背角染色较强。
     其次,使用免疫组织化学、原位杂交、RT-PCR等技术观察不同时程REM睡眠剥夺对大鼠下丘脑神经肽S蛋白及mRNA表达量的影响。将成年雄性SD大鼠随机分为正常对照组(CC)、环境对照组(TC)、REM睡眠剥夺组(SD),每组又分为1天、3天、5天组。采用改良多平台水环境睡眠剥夺法(MMPM)建立大鼠的REM睡眠剥夺模型,完成相应时间的REM睡眠剥夺后,测定大鼠下丘脑神经肽S表达量的变化。免疫组织化学及原位杂交结果显示:在REM期睡眠剥夺后,下丘脑的背内侧核和室旁核的NPS蛋白和mRNA表达发生改变。在这两个核团,CC组和TC组的NPS表达较少,散在分布于核团中。而REM期睡眠剥夺1天后,大鼠背内侧核和室旁核NPS蛋白和mRNA阳性细胞数仍较少。到REM期睡眠剥夺的第3天,可以观察到大鼠背内侧核和室旁核NPS蛋白和mRNA阳性细胞数量均增多,在REM期睡眠剥夺的第5天,仍呈现这样的趋势。RT-PCR结果显示,CC组和TC组下丘脑内NPSmRNA的表达量很少,在REM期睡眠剥夺1天后,大鼠下丘脑的NPSmRNA的表达也较少。而在REM期睡眠剥夺3天和5天组,大鼠下丘脑中NPSmRNA的表达量较CC组,TC组和SD1天组明显升高。
     最后,我们研究了中枢给予神经肽S对REM睡眠剥夺导致的大鼠认知功能损害是否有改善作用,并探索其可能的分子机制。SD大鼠随机分为正常对照组(CC)、环境对照组(TC)、REM睡眠剥夺组(SD),其中每组又分为神经肽S侧脑室给药组(NPS)和人工脑脊液对照组(aCSF)。总共分为六组:CC-aCSF组,TC-aCSF组,SD-aCSF组,CC-NPS组,TC-NPS组和SD-NPS组。睡眠剥夺时间为72小时。各组大鼠侧脑室置管,恢复后采用改良多平台水环境睡眠剥夺法(MMPM)建立大鼠的REM睡眠剥夺模型,同时侧脑室给予神经肽S或人工脑脊液。选用Morris水迷宫的定位航行实验对所有大鼠进行空间认知学习能力的测定,72小时的REM睡眠剥夺结束后,利用Morris水迷宫的空间探索实验测定大鼠的空间记忆能力。迷宫测试完毕,运用免疫组织化学和蛋白质免疫印迹(Western-blot)等方法测定大鼠海马磷酸化的CREB(p-CREB)表达的变化。实验结果表明:72小时REM期睡眠剥夺后,大鼠的空间学习和记忆能力与正常对照和环境对照组的大鼠相比明显减退;正常对照组与环境对照组大鼠的空间记忆能力无明显差异(p>0.05);CC—NPS组大鼠和TC—NPS组大鼠的空间记忆能力比CC—aCSF组和TC—aCSF组有所提高,而空间学习能力无差别;SD—NPS组大鼠的空间记忆能力较SD—aCSF组明显增强,空间学习能力也有所提高;72小时REM期睡眠剥夺后,大鼠海马的p-CREB表达下降,SD—NPS组大鼠海马的p-CREB表达量较SD-aCSF组增高。
     本课题联合使用免疫组织化学和原位杂交技术,首次系统研究了神经肽S蛋白和mRNA在大鼠中枢神经系统中的表达和分布特点,发现该神经肽广泛分布于中枢神经系统的神经元中,在皮质、杏仁核、海马、丘脑、下丘脑、脑干、脊髓、嗅球都有分散表达。提示神经肽S可能参与多种神经生理活动。首次研究了REM期睡眠剥夺后,大鼠下丘脑内NPS蛋白和mRNA的表达变化情况,发现在持续REM期睡眠剥夺状态下,下丘脑内的NPS表达增加,证实了NPS与觉醒的相互关系,在受到外因刺激无法正常睡眠时,机体会自身调节,分泌足量的NPS来维持觉醒。我们还发现,REM睡眠剥夺对大鼠空间学习记忆能力有损害作用,神经肽S可以缓解REM期睡眠剥夺造成的认知功能损伤,REM期睡眠剥夺后,海马的p-CREB表达下调,NPS可以部分逆转睡眠剥夺引起的p-CREB表达下调。提示神经肽S可能通过调节p-CREB的表达来改善REM睡眠剥夺造成的认知功能损伤。
Sleep plays important roles during physiological and pathophysiological processes. It is well known that sleep plays a key role in learning and memory.Neuropeptide, a member of a class of protein-like molecules made in the brain, are tightly related with sleep and wakefulness. Neuropeptide S (NPS) and its receptor (NPSR) form a newly discovered neuropeptide system. The 20 residue peptide NPS, is the endogenous ligand of the NPSR, a former orphan G-protein-coupled receptor. NPS can be found in all vertebrate species (human, rat, rat, chick, chimpanzee and cattle), mainly distributing in brain, glandula thyreoidea, salivary gland and mammary gland. NPS/NPSR system modulates many physiological functions, such as wakefulness and sleep, motoring, anxiety, pain, food intake and oxidative damage. The most important one is modulating wakefulness and sleep. However, as a newly discovered neuropeptide, controversy exists about the expression and functions of neuropeptide S in the central nervous system (CNS).
     As the complete expression pattern and the distribution of NPS and NPS mRNA in the in the rat central nervous system has not been described in detail so far, we planed to investigate the expression of NPS in CNS to lay foundation for future functional researches. We describe in this paper a comprehensive anatomical mapping of NPS in rat CNS using immunohistochemistry and in situ hybridization together. We investigated the effects of different durations of rapid eye movement (REM) sleep deprivation on the expression of NPS and NPSmRNA in rat hypothalamus. We also discussed the connection between cognition disorder and hippocampal p-CREB changes caused by REM sleep deprivation and studied the role of NPS in modulating hippocampus-dependent spatial learning and memory by the MWM, determined whether NPS could affect spatial learning and memory impairments induced by REMSD and examined the change of p-CREB expression in the rat hippocampus in the NPS treated group after 72h REMSD.
     The present study investigates the NPS expression pattern in the rat CNS using immunohistochemistry and in situ hybridization histochemistry. We found that NPS were widely distributed in rat CNS, and the distribution patterns and levels of NPS immunolabeling of native protein had significant correlation with its mRNA counterpart. The main olfactory bulb showed NPS immunostaining. The immunostaining was observed mainly in the dendrites and cell bodies. Heavy NPS immunostaining was observed in the motor, somatosensory, piriform and entorhinal cortex. Dense immuno labeling in layers V, suggests a role for NPS in interconnection of local cortical areas. In the hippocampus, the cell body and distal dendrites of CA1-4 pyramidal cells had different levels of NPS immunostaining, suggesting that NPS may contribute to hippocampal excitatory neurotransmission or modulation in learning and memory. NPS was expressed extensively in most subnuclei of the thalamus, particularly heavy immunostaining was observed in the anteroventral, anteromedial, anterodorsal and ventral-lateral thalamic nuclei. In different regions of the hypothalamus, NPS immunostaining neurons and fibers were widely. NPS immunostaining was widely distributed in the rat brain stem, heavy NPS immunostaining was detected in the locus caeruleus, parabrachial nucle, mesencephalic trigeminal nucleus, motor trigeminal nucleus. The study showed heavy immunostaining for NPS in the Purkinje cell.NPS immunostaining was observed at the cervical, thoracic, lumbar and sacral levels. The most prominent staining was seen in the dorsal horn.
     Adult male Sprague-Dawley rats were randomly divided into cage control group (CC), tank contral group (TC), REM sleep deprivation group (SD).Each group were divided into three duration groups:1d,3d and 5d. The rats were deprived of REM sleep for different durations by the modified multiple platform method (MMPM). Immunohistochemistry, in situ hybridization histochemistry and RT-PCR were used to test the expression of neuropeptide S in rat hypothalamus. Resluts show that:1. There was no significant difference between CC and TC in the expression of neuropeptide S in rats hypothalamus; 2. The expression of neuropeptide S in rats hypothalamus of SD1 were not significantly different compared to that of CC and TC3; 3. The expression of neuropeptide S in rats hypothalamus of SD3 and SD5 were significantly higher than that of SD1,CC and TC.
     At last, we used the Morris water maze (MWM) to determine the effects of NPS on spatial learning and memory following intracerebroventricular (i.c.v.) injection in rats after 72 h REMSD. We also investigated the changes of phosphorylation of cAMP-response element binding protein (CREB) in the rat hippocampus in the NPS treated group after 72h REMSD. Adult male Sprague-Dawley rats were randomly divided into rats were randomly divided into six groups (CC-aCSF group, TC-aCSF group, SD-aCSF group, CC-NPS group, TC-NPS group and SD-NPS group). Rats were deprived of REM sleep by the modified multiple platform method (MMPM) for 72h while NPS or aCSF was injected every day. The Morris water maze task was performed to test the spatial learning and memory. After certain duration of REM sleep deprivation, hippocampal CREB phosphorylation level and quantity were analyzed by immunohistochemistry and Western-blot. Results show that 1.72h REMSD impaired spatial learning in rats and NPS mitigated the deficit.2.72h REMSD impaired hippocampus-dependent spatial memory, and NPS mitigated spatial memory impairment induced by REMSD in rats.3. By immunostaining, There were p-CREB-ir cells in CC-aCSF group, TC-aCSF group, CC-NPS group and TC-NPS group in CA1 and DG, fewer positive cells were observed in SD-aCSF group and positive cells increased in the SD-NPS group.4. After 72h REM sleep deprivation, the expression of p-CREB in the hippocampus significantly decreased, while the expression of p-CREB increased in the SD-NPS group compared to the SD-aCSF group.
     Firstly, this is the first extensive study undertaken to investigate the combined distribution of NPS protein and mRNA in the rat CNS using immunohistochemistry and in situ hybridization histochemistry together. The distribution of NPS shown here considerably extends previous studies which reported NPS exists in limited populations of neurons and may show the directions for explore the new function of NPS.
     Secondly, we first found that after 72h REM sleep deprivation, the expression of NPS and NPS mRNA increased in rat hypothalamus. This convinced the relationship between sleep and NPS. NPS may be participates in the body self-regulation after REM sleep deprivation.
     Lastly, in summary, our findings demonstrate that neuropetide S plays an important role in REM sleep deprivation-induced memory impairment, and imply that NPS/NPSR system may be a potential target for treatment of spatial memory impairment caused by REM sleep deprivation. The protective effect of NPS on spatial memory impairment in REMSD rats may be mediated by increasing the p-CREB expression in the hippocampus.
引文
[1]Walker MP, Stickgold R. Sleep-dependent learning and memory consolidation. Neuron,2004; 44: 121-133.
    [2]Y.L. Xu, R.K. Reinscheid, S. Huitron-Resendiz, S.D. Clark, Z. Wang, S.H. Lin, F.A. Brucher, J. Zeng, N.K. Ly, S.J. Henriksen, L. de Lecea, O. Civelli, Neuropeptide S:a neuropeptide promoting arousal and anxiolytic-like effects, Neuron,2004; 43:487-497.
    [3]R. Lage, C. Dieguez, M. Lopez, Caffeine treatment regulates neuropeptide S system expression in the rat brain, Neurosci. Lett,2006; 410:47-51.
    [4]D.J. Gottlieb, G.T. O'Connor, J.B. Wilk,Genome-wide association of sleep and circadian phenotypes, BMC Med. Genet.2007; 8 (Suppl):S9.
    [5]R.K. Reinscheid, Neuropeptide S:anatomy, pharmacology, genetics and physiological functions, Results Probl. Cell Differ.2008; 46:145-158.
    [6]A. Rizzi, R. Vergura, G. Marzola, C. Ruzza, R. Guerrini, S. Salvadori, D. Regoli, G. Calo, Neuropeptide S is a stimulatory anxiolytic agent:a behavioural study in mice, Br. J. Pharmacol.2008; 154:471-479.
    [7]K. Jungling, T. Seidenbecher, L. Sosulina, J. Lesting, S. Sangha, S.D. Clark, N. Okamura, D.M. Duangdao, Y.L. Xu, R.K. Reinscheid, H.C. Pape, Neuropeptide S-mediated control of fear expression and extinction:role of intercalated GABAergic neurons in the amygdale, Neuron.2008; 59:298-310.
    [8]W. Li, M. Chang, Y.L. Peng, Y.H. Gao, J.N. Zhang, R.W. Han, R. Wang, Neuropeptide S produces antinociceptive effects at the supraspinal level in mice, Regul. Pept.2009; 156:90-95.
    [9]M. Niimi, Centrally administered neuropeptide S activates orexin-containing neurons in the hypothalamus and stimulates feeding in rats, Endocrine.2006; 30:75-79.
    [10]K.L. Smith, M. Patterson, W.S. Dhillo, S.R. Patel, N.M. Semjonous, J.V. Gardiner, M.A. Ghatei, S.R. Bloom, Neuropeptide S stimulates the hypothalamo-pituitary-adrenal axis and inhibits food intake, Endocrinology.2006; 147:3510-3518.
    [11]A.A. Castro, M. Moretti, T.S. Casagrande, C. Martinello, F. Petronilho, A.V.Steckert, R. Guerrini, G. Calo', F. Dal Pizzol, J. Quevedo, E.C. Gavioli, Neuropeptide S produces hyperlocomotion and prevents oxidative stress damage in the mouse brain:a comparative study with amphetamine and diazepam, Pharmacol Biochem Behav.2009;91:636-42.
    [12]Stickgold R. Sleep:off-line memory reprocessing. Trends Cognit. Science,1998; 2:484-489.
    [13]Smith C. Sleep states, memory processes and synaptic plasticity. Behav Brain Res,1996; 78: 49-56.
    [14]McGaugh JL. Memory-a century of consolidation. Science,2000; 287:248-251.
    [15]Abel T, Lattal KM. Molecular mechanisms of memory acquisition, consolidation and retrieval. Curr. Opin. Neurobiol,2001; 11:180-187.
    [16]De Koninck J, Lorrain D, Christ G, et al. Intensive language learning and increases in rapid eye movement sleep:evidence of a performance factor. Int J Psychophysiol.1989; 8(1):43-47.
    [17]Smith C, Rose GM. Posttraining paradoxical sleep in rats is increased after spatial learning in the Morris water maze. Behav Neurosci,1997; 111:1197-1204.
    [18]Smith C, Rose GM. Evidence for a paradoxical sleep window for place learning in the Morris water maze. Physiol Behav,1996; 59:93-97.
    [19]R.W. Han, X.Q. Yin, M. Chang, Y.L. Peng, W. Li, R. Wang, Neuropeptide S facilitates spatial memory and mitigates spatial memory impairment induced by N-methyl-D-aspartate receptor antagonist in mice, Neurosci. Lett,2009; 455:74-77.
    [20]D.M. Duangdao, J. Najera, I.N. Okamura, R.K. Reinscheid, Analysis of emotional and cognitive behavior phenotypes in NPS receptor-deficient mice, Program No.193.1/UU16.2008, Neuroscience Meeting Planner, Society for Neuroscience, Washington, DC,2008 (Online).
    [21]N. Okamura, D.M. Duangdao, R.K. Reinscheid, Neuropeptide S enhances longterm memory formation, Program No.193.2/UU17,2008 Neuroscience Meeting Planner, Society for Neuroscience, Washington, DC,2008 (Online).
    [22]Stickgold R, James L, Hobson JA. Visual discrimination learning requires sleep after training, Nat Neurosci,2000; 3:1237-1238.
    [23]Graves LA, Heller EA, Pack AI, et al. Sleep deprivation selectively impairs memory consolidation for contextual fear conditioning. Learn Mem,2003; 10(3):168-176.
    [24]Bliss TV, Collingridge GL. A synaptic model of memory:long-term potentiation in the hippocampus. Nature,1993; 361(6407):31-39.
    [25]S. Li, Y. Tian, Y. Ding, X. Jin, C. Yan, X. Shen, The effects of rapid eye movement sleep deprivation and recovery on spatial reference memory of young rats, Learn. Behav,2009;37:246-253.
    [26]Z. Guan, X. Peng, J. Fang, Sleep deprivation impairs spatial memory and decreases extracellular signal-regulated kinase phosphorylation in the hippocampus, Brain Res,2004; 1018: 38-47
    [27]R.H. Yang, S.J. Hu, Y. Wang, W.B. Zhang, W.J. Luo, J.Y. Chen, Paradoxical sleep deprivation impairs spatial learning and affects membrane excitability and mitochondrial protein in the hippocampus, Brain Res,2008; 1230:224-232.
    [28]G.P. Wang, L.Q. Huang, H.J. Wu, L. Zhang, Z.D. You, Z.X. Zhao,Calcineurin contributes to spatial memory impairment induced by rapid eye movement sleep deprivation, Neuroreport, 2009;20:1172-1176.
    [29]Cirelli C, Gutierrez CM, Tononi G. Extensive and divergent effects of sleep and wakefulness on brain gene expression. Neuron,2004; 41:35-43.
    [30]Genoux D, Haditsch U, Knobloch M, et al. Protein phosphatase 1 is a molecular constraint on learning and memory. Nature,2002; 418(6901):970-975.
    [31]Sweatt JD. Mitogen-activated protein kinases in synaptic plasticity and memory. Curr Opin Neurobiol,2004; 14:311-317.
    [32]Miyamoto E. Molecular mechanism of neuronal plasticity:induction and maintenance of long-term potentiation in the hippocampus. J Pharmacol Sci,2006; 100 (5):433-442.
    [33]Guan Z, Peng X, Fang J. Sleep deprivation impairs spatial memory and decreases extracellular signal-regulated kinase phosphorylation in the hippocampus. Brain Res,2004; 1018 (1):38-47.
    [34]T.E. Meyer, G. Waeber, J. Lin, W. Beckmann, J.F. Habener, The promoter of the gene encoding 3',5'-cyclic adenosine monophosphate (cAMP) response element binding protein contains cAMP response elements:evidence for positive autoregulation of gene transcription, Endocrinology,1993;132: 770-780.
    [35]A.J. Silva, J.H. Kogan, P.W. Frankland, S. Kida, CREB and memory, Annu. Rev. Neurosci.1998; 21:127-148.
    [36]J. Ulloor, S. Datta, Spatio-temporal activation of cyclic AMP response element-binding protein, activity-regulated cytoskeletal-associated protein and brain-derived nerve growth factor:a mechanism for pontine-wave generator activation-dependent two-way active-avoidance memory processing in the rat,J. Neurochem,2005;95:418-428.
    [37]M. Mizuno, K. Yamada, N. Maekawa, K. Saito, M. Seishima, T. Nabeshima, CREB phosphorylation as a molecular marker of memory processing in the hippocampus for spatial learning, Behav. Brain Res,2002;133:135-141.
    [38]R. Bourtchuladze, B. Frenguelli, J. Blendy, D. Cioffi, G. Schutz, A.J. Silva, Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein, Cell, 1994;79:59-68.
    [39]M. Rapanelli, L.R. Frick, B.S. Zanutto, Differential gene expression in the rat hippocampus during learning of an operant conditioning task, Neuroscience,2009;163:1031-1038.
    [40]C.G. Vecsey, G.S. Baillie, D. Jaganath, R. Havekes, A. Daniels, M. Wimmer, T. Huang, K.M. Brown, X.Y. Li, G. Descalzi, S.S. Kim, T. Chen, Y.Z. Shang, M. Zhuo, M.D. Houslay, T. Abel, Sleep deprivation impairs cAMP signalling in the hippocampus, Nature,2009;461:1122-1125.
    [1]S. Sato, Y. Shintani, N. Miyajima. Novel G protein-coupled receptor protein and DNA thereof. World Patent Application (2002)WO 02/31145 A1.
    [2]Y. L. Xu, R. K. Reinscheid, S. Huitron-Resendiz, S. D. Clark, Z. Wang, S. H. Lin, F. A. Brucher, J. Zeng, N. K. Ly, S. J. Henriksen, L. de Lecea, O. Civelli. Neuropeptide S:a neuropeptide promoting arousal and anxiolytic-like effects. Neuron.2004;43(4):487-497.
    [3]R. Lage, C. Dieguez, M. Lopez. Caffeine treatment regulates neuropeptide S system expression in the rat brain. Neurosci Lett.2006;410(1):47-51.
    [4]A. L. Roth, E. Marzola, A. Rizzi, M. Arduin, C. Trapella, C. Corti, R. Vergura, P. Martinelli, S. Salvadori, D. Regoli, M. Corsi, P. Cavanni, G. Calo, R. Guerrini. Structure-activity studies on neuropeptide S:identification of the amino acid residues crucial for receptor activation. J Biol Chem. 2006;281(30):20809-20816.
    [5]V. Camarda, C. Trapella, G. Calo, R. Guerrini, A. Rizzi, C. Ruzza, S. Fiorini, E. Marzola, R. K. Reinscheid, D. Regoli, S. Salvadori. Synthesis and biological activity of human neuropeptide S analogues modified in position 2. J Med Chem.2008;51(3):655-658.
    [6]T. Tancredi, R. Guerrini, E. Marzola, C. Trapella, G. Calo, D. Regoli, R. K. Reinscheid, V. Camarda, S. Salvadori, P. A. Temussi. Conformation-activity relationship of neuropeptide S and some structural mutants:helicity affects their interaction with the receptor. J Med Chem. 2007;50(18):4501-4508.
    [7]Y. Yao, X. Lin, J. Su, G. Yang, Y. Hou, Z. Lei. Cloning and distribution of neuropeptide S and its receptor in the pig. Neuropeptides.2009;43(6):465-481.
    [8]C. Ruzza, A. Rizzi, C. Trapella, M. Pela, V. Camarda, V. Ruggieri, M. Filaferro, C. Cifani, R. K. Reinscheid, G. Vitale, R. Ciccocioppo, S. Salvadori, R. Guerrini, G. Calo. Further studies on the pharmacological profile of the neuropeptide S receptor antagonist SHA 68. Peptides.2010.
    [9]Y. L. Xu, C. M. Gall, V. R. Jackson, O. Civelli, R. K. Reinscheid. Distribution of neuropeptide S receptor mRNA and neurochemical characteristics of neuropeptide S-expressing neurons in the rat brain. J Comp Neurol.2007;500(1):84-102.
    [10]R. K. Reinscheid. Neuropeptide S:anatomy, pharmacology, genetics and physiological functions. Results Probl Cell Differ.2008;46:145-158.
    [11]R. K. Reinscheid, Y. L. Xu. Neuropeptide S and its receptor:a newly deorphanized G protein-coupled receptor system. Neuroscientist.2005; 11(6):532-538.
    [12]H. C. Pape, K. Jungling, T. Seidenbecher, J. Lesting, R. K. Reinscheid. Neuropeptide S:a transmitter system in the brain regulating fear and anxiety. Neuropharmacology.2010;58(1):29-34.
    [13]N. Okamura, S. A. Habay, J. Zeng, A. R. Chamberlin, R. K. Reinscheid. Synthesis and pharmacological in vitro and in vivo profile of 3-oxo-1,1-diphenyl-tetrahydro-oxazolo[3,4-a]pyrazine-7-carboxylic acid 4-fluoro-benzylamide (SHA 68), a selective antagonist of the neuropeptide S receptor. J Pharmacol Exp Ther. 2008;325(3):893-901.
    [14]L. de Lecea, P. Bourgin. Neuropeptide interactions and REM sleep:a role for Urotensin Ⅱ? Peptides.2008;29(5):845-851.
    [15]A. Toth, T. Hajnik, L. Zaborszky, L. Detari. Effect of basal forebrain neuropeptide Y administration on sleep and spontaneous behavior in freely moving rats. Brain Res Bull. 2007;72(4-6):293-301.
    [16]J. Schilling, F. Nurnberger. Dynamic changes in the immunoreactivity of neuropeptide systems of the suprachiasmatic nuclei in golden hamsters during the sleep-wake cycle. Cell Tissue Res. 1998;294(2):233-241.
    [17]D. C. Piper, N. Upton, M. I. Smith, A. J. Hunter. The novel brain neuropeptide, orexin-A, modulates the sleep-wake cycle of rats. Eur J Neurosci.2000;12(2):726-730.
    [18]P. Naveilhan, J. M. Canals, A. Valjakka, J. Vartiainen, E. Arenas, P. Ernfors. Neuropeptide Y alters sedation through a hypothalamic Y1-mediated mechanism. Eur J Neurosci. 2001;13(12):2241-2246.
    [19]K. Lieb, K. Ahlvers, K. Dancker, S. Strohbusch, M. Reincke, B. Feige, M. Berger, D. Riemann, U. Voderholzer. Effects of the neuropeptide substance P on sleep, mood, and neuroendocrine measures in healthy young men. Neuropsychopharmacology.2002;27(6):1041-1049.
    [20]T. E. Thiele, D. R. Sparta, J. R. Fee, M. Navarro, I. Cubero. Central neuropeptide Y alters ethanol-induced sedation, but not ethanol intake, in C57BL/6 mice. Alcohol.2003;31(3):155-160.
    [21]H. Murck, K. Held, M. Ziegenbein, H. Kunzel, F. Holsboer, A. Steiger. Intravenous administration of the neuropeptide galanin has fast antidepressant efficacy and affects the sleep EEG. Psychoneuroendocrinology.2004;29(9):1205-1211.
    [22]D. M. Duangdao, S. D. Clark, N. Okamura, R. K. Reinscheid. Behavioral phenotyping of neuropeptide S receptor knockout mice. Behav Brain Res.2009;205(1):1-9.
    [23]A. A. Castro, T. S. Casagrande, M. Moretti, L. Constantino, F. Petronilho, G. C. Guerra, G. Calo, R. Guerrini, F. Dal-Pizzol, J. Quevedo, E. C. Gavioli. Lithium attenuates behavioral and biochemical effects of neuropeptide S in mice. Peptides.2009;30(10):1914-1920.
    [24]D. Dal Ben, I. Antonini, M. Buccioni, C. Lambertucci, G. Marucci, S. Vittori, R. Volpini, G. Cristalli. Molecular modeling studies on the human neuropeptide S receptor and its antagonists. ChemMedChem.2010;5(3):371-383.
    [25]R. K. Reinscheid, Y. L. Xu. Neuropeptide S as a novel arousal promoting peptide transmitter. FEBS J.2005;272(22):5689-5693.
    [26]K. L. Smith, M. Patterson, W. S. Dhillo, S. R. Patel, N. M. Semjonous, J. V. Gardiner, M. A. Ghatei, S. R. Bloom. Neuropeptide S stimulates the hypothalamo-pituitary-adrenal axis and inhibits food intake. Endocrinology.2006;147(7):3510-3518.
    [27]R. K. Reinscheid, Y. L. Xu, O. Civelli. Neuropeptide S:a new player in the modulation of arousal and anxiety. Mol Interv.2005;5(1):42-46.
    [28]N. Okamura, R. K. Reinscheid. Neuropeptide S:a novel modulator of stress and arousal. Stress. 2007;10(3):221-226.
    [29]R. Lage, C. R. Gonzalez, C. Dieguez, M. Lopez. Nicotine treatment regulates neuropeptide S system expression in the rat brain. Neurotoxicology.2007;28(6):1129-1135.
    [30]J. Vendelin, S. Bruce, P. Holopainen, V. Pulkkinen, P. Rytila, A. Pirskanen, M. Rehn, T. Laitinen, L. A. Laitinen, T. Haahtela, U. Saarialho-Kere, A. Laitinen, J. Kere. Downstream target genes of the neuropeptide S-NPSR1 pathway. Hum Mol Genet.2006;15(19):2923-2935.
    [31]T. Mochizuki, J. Kim, K. Sasaki. Microinjection of neuropeptide S into the rat ventral tegmental area induces hyperactivity and increases extracellular levels of dopamine metabolites in the nucleus accumbens shell. Peptides.2010.
    [32]R. K. Reinscheid, Y. L. Xu, N. Okamura, J. Zeng, S. Chung, R. Pai, Z. Wang, O. Civelli. Pharmacological characterization of human and murine neuropeptide s receptor variants. J Pharmacol Exp Ther.2005;315(3):1338-1345.
    [33]V. Camarda, C. Trapella, G. Calo, R. Guerrini, A. Rizzi, C. Ruzza, S. Fiorini, E. Marzola, R. K. Reinscheid, D. Regoli, S. Salvadori. Structure-activity study at positions 3 and 4 of human neuropeptide S. Bioorg Med Chem.2008;16(19):8841-8845.
    [34]M. Toledo-Rodriguez, P. Goodman, M. Illic, C. Wu, H. Markram. Neuropeptide and calcium-binding protein gene expression profiles predict neuronal anatomical type in the juvenile rat. J Physiol.2005;567(Pt 2):401-413.
    [35]L. Raiteri, E. Luccini, C. Romei, S. Salvadori, G. Calo. Neuropeptide S selectively inhibits the release of 5-HT and noradrenaline from mouse frontal cortex nerve endings. Br J Pharmacol. 2009;157(3):474-481.
    [36]M. Niimi. Centrally administered neuropeptide S activates orexin-containing neurons in the hypothalamus and stimulates feeding in rats. Endocrine.2006;30(1):75-79.
    [37]B. Ruggeri, S. Braconi, N. Cannella, M. Kallupi, L. Soverchia, R. Ciccocioppo, M. Ubaldi. Neuropeptide s receptor gene expression in alcohol withdrawal and protracted abstinence in postdependent rats. Alcohol Clin Exp Res.2010;34(1):90-97.
    [38]C. Paneda, S. Huitron-Resendiz, L. M. Frago, J. A. Chowen, R. Picetti, L. de Lecea, A. J. Roberts. Neuropeptide S reinstates cocaine-seeking behavior and increases locomotor activity through corticotropin-releasing factor receptor 1 in mice. J Neurosci.2009;29(13):4155-4161.
    [39]N. Okamura, R. K. Reinscheid, S. Ohgake, M. Iyo, K. Hashimoto. Neuropeptide S attenuates neuropathological, neurochemical and behavioral changes induced by the NMDA receptor antagonist MK-801. Neuropharmacology.2010;58(l):166-172.
    [40]R. W. Han, X. Q. Yin, M. Chang, Y. L. Peng, W. Li, R. Wang. Neuropeptide S facilitates spatial memory and mitigates spatial memory impairment induced by N-methyl-D-aspartate receptor antagonist in mice. Neurosci Lett.2009;455(1):74-77.
    [41]W. Li, M. Chang, Y. L. Peng, Y. H. Gao, J. N. Zhang, R. W. Han, R. Wang. Neuropeptide S produces antinociceptive effects at the supraspinal level in mice. Regul Pept.2009;156(13):90-95.
    [1]C. B. Saper, T. E. Scammell, J. Lu. Hypothalamic regulation of sleep and circadian rhythms. Nature.2005;437(7063):1257-1263.
    [2]R. Huber, M. F. Ghilardi, M. Massimini, G. Tononi. Local sleep and learning. Nature. 2004;430(6995):78-81.
    [3]I. S. Hairston, R. T. Knight. Neurobiology:sleep on it. Nature.2004;430(6995):27-28.
    [4]G. Miller. Neuroscience. Hunting for meaning after midnight. Science. 2007;315(5817):1360-1363.
    [5]E. Szentirmai, J. M. Krueger. Central administration of neuropeptide Y induces wakefulness in rats. Am J Physiol Regul Integr Comp Physiol.2006;291(2):R473-480.
    [6]L. de Lecea, P. Bourgin. Neuropeptide interactions and REM sleep:a role for Urotensin Ⅱ? Peptides.2008;29(5):845-851.
    [7]D. C. Piper, N. Upton, M. I. Smith, A. J. Hunter. The novel brain neuropeptide, orexin-A, modulates the sleep-wake cycle of rats. Eur J Neurosci.2000;12(2):726-730.
    [8]N. Tsujino, T. Sakurai. Orexin/hypocretin:a neuropeptide at the interface of sleep, energy homeostasis, and reward system. Pharmacol Rev.2009;61(2).162-176.
    [9]Y. L. Xu, C. M. Gall, V. R. Jackson, O. Civelli, R. K. Reinscheid. Distribution of neuropeptide S receptor mRNA and neurochemical characteristics of neuropeptide S-expressing neurons in the rat brain. J Comp Neurol.2007;500(1):84-102.
    [10]R. Lage, C. Dieguez, M. Lopez. Caffeine treatment regulates neuropeptide S system expression in the rat brain. Neurosci Lett.2006;410(1):47-51.
    [11]V. Camarda, C. Trapella, G. Calo, R. Guerrini, A. Rizzi, C. Ruzza, S. Fiorini, E. Marzola, R. K. Reinscheid, D. Regoli, S. Salvadori. Structure-activity study at positions 3 and 4 of human neuropeptide S. Bioorg Med Chem.2008;16(19):8841-8845.
    [12]V. Bernier, R. Stocco, M. J. Bogusky, J. G. Joyce, C. Parachoniak, K. Grenier, M. Arget, M. C. Mathieu, G. P. O'Neill, D. Slipetz, M. A. Crackower, C. M. Tan, A. G. Therien. Structure-function relationships in the neuropeptide S receptor:molecular consequences of the asthma-associated mutation N107I. J Biol Chem.2006;281(34):24704-24712.
    [13]J. R. Gerstner, L. C. Lyons, K. P. Wright, Jr., D. H. Loh,O. Rawashdeh, K. L. Eckel-Mahan, G. W. Roman. Cycling behavior and memory formation. J Neurosci.2009;29(41):12824-12830.
    [14]I. Capellini, P. McNamara, B. T. Preston, C. L. Nunn, R. A. Barton. Does sleep play a role in memory consolidation? A comparative test. PLoS One.2009;4(2):e4609.
    [15]B. R. Sheth, N. Nguyen, D. Janvelyan. Does sleep really influence face recognition memory? PLoS One.2009;4(5):e5496.
    [16]N. Axmacher, A. Draguhn, C. E. Elger, J. Fell. Memory processes during sleep:beyond the standard consolidation theory. Cell Mol Life Sci.2009;66(14):2285-2297.
    [17]V. Sterpenich, G. Albouy, A. Darsaud, C. Schmidt, G. Vandewalle, T. T. Dang Vu, M. Desseilles, C. Phillips, C. Degueldre, E. Balteau, F. Collette, A. Luxen, P. Maquet. Sleep promotes the neural reorganization of remote emotional memory. J Neurosci.2009;29(16):5143-5152.
    [18]D. J. Cai, T. Shuman, M. R. Gorman, J. R. Sage, S. G. Anagnostaras. Sleep selectively enhances hippocampus-dependent memory in mice. Behav Neurosci.2009;123(4):713-719.
    [19]J. Born, U. Wagner. Sleep, hormones, and memory. Obstet Gynecol Clin North Am. 2009;36(4):809-829, x.
    [20]S. Li, Y. Tian, Y. Ding, X. Jin, C. Yan, X. Shen. The effects of rapid eye movement sleep deprivation and recovery on spatial reference memory of young rats. Learn Behav. 2009;37(3):246-253.
    [21]M. Nishida, J. Pearsall, R. L. Buckner, M. P. Walker. REM sleep, prefrontal theta, and the consolidation of human emotional memory. Cereb Cortex.2009;19(5):1158-1166.
    [22]L. Genzel, M. Dresler, R. Wehrle, M. Grozinger, A. Steiger. Slow wave sleep and REM sleep awakenings do not affect sleep dependent memory consolidation. Sleep.2009;32(3):302-310.
    [23]M. A. Mograss, F. Guillem, V. Brazzini-Poisson, R. Godbout. The effects of total sleep deprivation on recognition memory processes:a study of event-related potential. Neurobiol Learn Mem.2009;91(4):343-352.
    [24]B. Rasch, J. Pommer, S. Diekelmann, J. Born. Pharmacological REM sleep suppression paradoxically improves rather than impairs skill memory. Nat Neurosci.2009;12(4):396-397.
    [25]J. A. Hobson. Sleep is of the brain, by the brain and for the brain. Nature. 2005;437(7063):1254-1256.
    [26]Waking up to the importance of sleep. Nature.2005;437(7063):1207.
    [27]S. Tian, F. Huang, P. Li, X. Ouyang, Z. Li, H. Deng, Y. Yang. Rapid eye movement sleep deprivation does not affect fear memory reconsolidation in rats. Neurosci Lett.2009;463(1):74-77.
    [28]P. McNamara, S. Auerbach, P. Johnson, E. Harris, G. Doros. Impact of REM sleep on distortions of self-concept, mood and memory in depressed/anxious participants. J Affect Disord.2009.
    [29]R. B. Machado, D. C. Hipolide, A. A. Benedito-Silva, S. Tufik. Sleep deprivation induced by the modified multiple platform technique:quantification of sleep loss and recovery. Brain Res. 2004;1004(1-2):45-51.
    [30]T. Porkka-Heiskanen, S. E. Smith, T. Taira, J. H. Urban, J. E. Levine, F. W. Turek, D. Stenberg. Noradrenergic activity in rat brain during rapid eye movement sleep deprivation and rebound sleep. Am J Physiol.1995;268(6 Pt 2):R1456-1463.
    [31]D. Suchecki, S. Tufik. Social stability attenuates the stress in the modified multiple platform method for paradoxical sleep deprivation in the rat. Physiol Behav.2000;68(3):309-316.
    [32]A. A. Castro, T. S. Casagrande, M. Moretti, L. Constantino, F. Petronilho, G. C. Guerra, G. Calo, R. Guerrini, F. Dal-Pizzol, J. Quevedo, E. C. Gavioli. Lithium attenuates behavioral and biochemical effects of neuropeptide S in mice. Peptides.2009;30(10):1914-1920.
    [33]R. Guerrini, V. Camarda, C. Trapella, G. Calo, A. Rizzi, C. Ruzza, S. Fiorini, E. Marzola, R. K. Reinscheid, D. Regoli, S. Salvadori Synthesis and biological activity of human neuropeptide S analogues modified in position 5:identification of potent and pure neuropeptide S receptor antagonists. J Med Chem.2009;52(2):524-529.
    [34]K. Jungling, T. Seidenbecher, L. Sosulina, J. Lesting, S. Sangha, S. D. Clark, N. Okamura, D. M. Duangdao, Y. L. Xu, R. K. Reinscheid, H. C. Pape. Neuropeptide S-mediated control of fear expression and extinction:role of intercalated GABAergic neurons in the amygdala. Neuron. 2008;59(2):298-310.
    [35]M. A. Cline, B. C. Prall, M. L. Smith, W. A. Calchary, P. B. Siegel. Differential appetite-related responses to central neuropeptide S in lines of chickens divergently selected for low or high body weight. J Neuroendocrinol.2008;20(7):904-908.
    [36]K. L. Smith, M. Patterson, W. S. Dhillo, S. R. Patel, N. M. Semjonous, J. V. Gardiner, M. A. Ghatei, S. R. Bloom. Neuropeptide S stimulates the hypothalamo-pituitary-adrenal axis and inhibits food intake. Endocrinology.2006; 147(7):3510-3518.
    [37]S. D. Clark, H. T. Tran, J. Zeng, R. K. Reinscheid. Importance of extracellular loop one of the neuropeptide S receptor for biogenesis and function. Peptides.2010;31(1):130-138.
    [38]Y. L. Xu, R. K. Reinscheid, S. Huitron-Resendiz, S. D. Clark, Z. Wang, S. H. Lin, F. A. Brucher, J. Zeng, N. K. Ly, S. J. Henriksen, L. de Lecea, O. Civelli. Neuropeptide S:a neuropeptide promoting arousal and anxiolytic-like effects. Neuron.2004;43(4):487-497.
    [39]R. K. Reinscheid. Phylogenetic appearance of neuropeptide S precursor proteins in tetrapods. Peptides.2007;28(4):830-837.
    [40]Z. Peterfi, G. B. Makara, F. Obal, Jr., J. M. Krueger. The anterolateral projections of the medial basal hypothalamus affect sleep. Am J Physiol Regul Integr Comp Physiol.2009;296(4):R1228-1238.
    [41]C. Schmidt, F. Collette, Y. Leclercq, V. Sterpenich, G. Vandewalle, P. Berthomier, C. Berthomier, C. Phillips, G. Tinguely, A. Darsaud, S. Gais, M. Schabus, M. Desseilles, T. T. Dang-Vu, E. Salmon, E. Balteau, C. Degueldre, A. Luxen, P. Maquet, C. Cajochen, P. Peigneux. Homeostatic sleep pressure and responses to sustained attention in the suprachiasmatic area. Science.2009;324(5926):516-519.
    [42]R. Szymusiak, D. McGinty. Hypothalamic regulation of sleep and arousal. Ann N Y Acad Sci. 2008;1129:275-286.
    [43]U. Wagner, J. Born. Memory consolidation during sleep:interactive effects of sleep stages and HPA regulation. Stress.2008;11(1):28-41.
    [44]T. G. Komarova, I. V. Ekimova, Y. F. Pastukhov. Role of the cholinergic mechanisms of the ventrolateral preoptic area of the hypothalamus in regulating the state of sleep and waking in pigeons. Neurosci Behav Physiol.2008;38(3):245-252.
    [45]N. Lortkipanidze, E. Chidjavadze, N. Oniani, N. Darchia, I. Gvilia. Sleep-waking behavior following a lesion in the median preoptic nucleus in the rat. Georgian Med News.2009(174):81-84.
    [46]R. V. Rial, M. Akaarir, A. Gamundi, C. Garau, S. Aparicio, S. Tejada, L. Gene, M. C. Nicolau, S. Esteban. Wake and sleep hypothalamic regulation in diurnal and nocturnal chronotypes. J Pineal Res. 2008;45(2):225-226.
    [47]J. W. Tsai, J. Hannibal, G. Hagiwara, D. Colas, E. Ruppert, N. F. Ruby, H. C. Heller, P. Franken, P. Bourgin. Melanopsin as a sleep modulator:circadian gating of the direct effects of light on sleep and altered sleep homeostasis in Opn4(-/-) mice. PLoS Biol.2009;7(6):e1000125.
    [48]M. L. Lee, B. E. Swanson, H. O. de la Iglesia. Circadian timing of REM sleep is coupled to an oscillator within the dorsomedial suprachiasmatic nucleus. Curr Biol.2009;19(10):848-852.
    [49]D. J. Dijk, J. A. Groeger, N. Stanley, S. Deacon. Age-related reduction in daytime sleep propensity and nocturnal slow wave sleep. Sleep.2010;33(2):211-223.
    [50]C. Anderson, A. W. Wales, J. A. Home. PVT lapses differ according to eyes open, closed, or looking away. Sleep.2010;33(2):197-204.
    [51]P. Henny, B. E. Jones. Innervation of orexin/hypocretin neurons by GABAergic, glutamatergic or cholinergic basal forebrain terminals evidenced by immunostaining for presynaptic vesicular transporter and postsynaptic scaffolding proteins. J Comp Neurol.2006;499(4):645-661.
    [52]T. C. Chou, T. E. Scammell, J. J. Gooley, S. E. Gaus, C. B. Saper, J. Lu. Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms. J Neurosci. 2003;23(33):10691-10702.
    [53]S. Deurveilher, K. Semba. Indirect projections from the suprachiasmatic nucleus to major arousal-promoting cell groups in rat:implications for the circadian control of behavioural state. Neuroscience.2005;130(1):165-183.
    [54]S. Deurveilher, K. Semba. Indirect projections from the suprachiasmatic nucleus to the median preoptic nucleus in rat. Brain Res.2003;987(1):100-106.
    [55]N. Cannella, D. Economidou, M. Kallupi, S. Stopponi, M. Heilig, M. Massi, R. Ciccocioppo. Persistent increase of alcohol-seeking evoked by neuropeptide S:an effect mediated by the hypothalamic hypocretin system. Neuropsychopharmacology.2009;34(9):2125-2134.
    [56]A. Fedeli, S. Braconi, D. Economidou, N. Cannella, M. Kallupi, R. Guerrini, G. Calo, C. Cifani, M. Massi, R. Ciccocioppo. The paraventricular nucleus of the hypothalamus is a neuroanatomical substrate for the inhibition of palatable food intake by neuropeptide S. Eur J Neurosci. 2009;30(8):1594-1602.
    [1]McDermott CM, LaHoste GJ, Chen C, et al. Sleep deprivation causes behavioral, synaptic, and membrane excitability alterations in hippocampal neurons. J Neurosci,2003; 23:9687-9695.
    [2]Maquet P. The role of sleep in learning and memory. Science,2001; 294:1048-1052.
    [3]Pace-Schott EF, Hobson JA. The neurobiology of sleep:genetics, cellular physiology and subcortical networks. Nat Rev Neurosci,2002; 3:591-605.
    [4]Abel T, Lattal KM. Molecular mechanisms of memory acquisition, consolidation and retrieval. Curr. Opin. Neurobiol,2001;11:180-187.
    [5]De Koninck J, Lorrain D, Christ G, et al. Intensive language learning and increases in rapid eye movement sleep:evidence of a performance factor. Int. J. Psychophysiol,1989; 8(1):43-47.
    [6]Smith C, Rose GM. Posttraining paradoxical sleep in rats is increased after spatial learning in the Morris water maze. Behav Neurosci,1997; 111:1197-1204.
    [7]Smith C, Rose GM. Evidence for a paradoxical sleep window for place learning in the Morris water maze. Physiol. Behav,1996; 59:93-97.
    [8]Stickgold R, James L, Hobson JA. Visual discrimination learning requires sleep after training. Nat Neurosci,2000; 3:1237-1238.
    [9]R.W. Han, X.Q. Yin, M. Chang, Y.L. Peng, W. Li, R. Wang, Neuropeptide S facilitates spatial memory and mitigates spatial memory impairment induced by N-methyl-D-aspartate receptor antagonist in mice, Neurosci. Lett.455(2009)74-77.
    [10]D.M. Duangdao, J. Najera, I.N. Okamura, R.K. Reinscheid, Analysis of emotional and cognitive behavior phenotypes in NPS receptor-deficient mice, Program No.193.1/UU16.2008, Neuroscience Meeting Planner, Society for Neuroscience, Washington, DC,2008 (Online).
    [11]N. Okamura, D.M. Duangdao, R.K. Reinscheid, Neuropeptide S enhances longterm memory formation, Program No.193.2/UU17,2008 Neuroscience Meeting Planner, Society for Neuroscience, Washington, DC,2008 (Online).
    [12]Stickgold R, James L, Hobson JA. Visual discrimination learning requires sleep after training, Nat Neurosci,2000; 3:1237-1238.
    [13]Graves LA, Heller EA, Pack AI, et al. Sleep deprivation selectively impairs memory consolidation for contextual fear conditioning. Learn Mem,2003; 10(3):168-176.
    [14]Bliss TV, Collingridge GL. A synaptic model of memory:long-term potentiation in the hippocampus. Nature,1993; 361(6407):31-39.
    [15]S. Li, Y. Tian, Y. Ding, X. Jin, C. Yan, X. Shen, The effects of rapid eye movement sleep deprivation and recovery on spatial reference memory of young rats, Learn. Behav.37(2009)246-253.
    [16]Z. Guan, X. Peng, J. Fang, Sleep deprivation impairs spatial memory and decreases extracellular signal-regulated kinase phosphorylation in the hippocampus, Brain Res.1018 (2004) 38-47
    [17]R.H. Yang, S.J. Hu, Y. Wang, W.B. Zhang, W.J. Luo, J.Y. Chen, Paradoxical sleep deprivation impairs spatial learning and affects membrane excitability and mitochondrial protein in the hippocampus, Brain Res.1230(2008)224-232.
    [18]G.P. Wang, L.Q. Huang, H.J. Wu, L. Zhang, Z.D. You, Z.X. Zhao,Calcineurin contributes to spatial memory impairment induced by rapid eye movement sleep deprivation, Neuroreport. 20(2009)1172-1176.
    [19]Cirelli C, Gutierrez CM, Tononi G. Extensive and divergent effects of sleep and wakefulness on brain gene expression. Neuron,2004; 41:35-43.
    [20]Genoux D, Haditsch U, Knobloch M, et al. Protein phosphatase 1 is a molecular constraint on learning and memory. Nature,2002; 418(6901):970-975.
    [21]Sweatt JD. Mitogen-activated protein kinases in synaptic plasticity and memory. Curr Opin Neurobiol,2004; 14:311-317.
    [22]Miyamoto E. Molecular mechanism of neuronal plasticity:induction and maintenance of long-term potentiation in the hippocampus. J Pharmacol Sci,2006; 100(5):433-442.
    [23]Guan Z, Peng X, Fang J. Sleep deprivation impairs spatial memory and decreases extracellular signal-regulated kinase phosphorylation in the hippocampus. Brain Res,2004; 1018 (1):38-47.
    [24]T.E. Meyer, G. Waeber, J. Lin, W. Beckmann, J.F. Habener, The promoter of the gene encoding 3',5'-cyclic adenosine monophosphate (cAMP) response element binding protein contains cAMP response elements:evidence for positive autoregulation of gene transcription, Endocrinology 132(1993)770-780.
    [25]A.J. Silva, J.H. Kogan, P.W. Frankland, S. Kida, CREB and memory, Annu. Rev. Neurosci. 21(1998)127-148.
    [26]J. Ulloor, S. Datta, Spatio-temporal activation of cyclic AMP response element-binding protein, activity-regulated cytoskeletal-associated protein and brain-derived nerve growth factor:a mechanism for pontine-wave generator activation-dependent two-way active-avoidance memory processing in the rat, J. Neurochem.95(2005)418-428.
    [27]M. Mizuno, K. Yamada, N. Maekawa, K. Saito, M. Seishima, T. Nabeshima, CREB phosphorylation as a molecular marker of memory processing in the hippocampus for spatial learning, Behav. Brain Res.133(2002)135-141.
    [28]R. Bourtchuladze, B. Frenguelli, J. Blendy, D. Cioffi, G. Schutz, A.J. Silva, Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein, Cell 79(1994)59-68.
    [29]M. Rapanelli, L.R. Frick, B.S. Zanutto, Differential gene expression in the rat hippocampus during learning of an operant conditioning task, Neuroscience 163(2009)1031-1038.
    [30]C.G. Vecsey, G.S. Baillie, D. Jaganath, R. Havekes, A. Daniels, M. Wimmer, T. Huang, K.M. Brown, X.Y. Li, G. Descalzi, S.S. Kim, T. Chen, Y.Z. Shang, M. Zhuo, M.D. Houslay, T. Abel, Sleep deprivation impairs cAMP signalling in the hippocampus, Nature 461(2009)1122-1125.
    [31]Rechtschaffen A. Current perspectives on the function of sleep. Perspect Biol Med,1998; 41: 359-390.
    [32]Graves L, Pack A, Abel T. Sleep and memory:A molecular perspective. Trends in Neurosciences, 2001; 24:237-243.
    [33]Stickgold R, Hobson JA, Fosse R, et al. Sleep, learning and dreams:Off-line memory reprocessing. Science,2001; 294:1052-1057.
    [34]Stickgold R. Sleep-dependent memory consolidation. Nature,2005; 437:1272-1278.
    [35]Stickgold R, Walker MP. Sleep-dependent memory consolidation and reconsolidation. Sleep Medicine,2007; 8:331-343.
    [36]Stickgold R. Sleep:off-line memory reprocessing. Trends Cognit Sci,1998; 2:484-489.
    [37]Sutherland GR, McNaughton B. Memory trace reactivation in hippocampal and neocortical neuronal ensembles. Curr Opin Neurobiol,2000; 10:180-186.
    [38]Abel T, Lattal KM. Molecular mechanisms of memory acquisition, consolidation and retrieval. Curr. Opin. Neurobiol,2001;11:180-187.
    [39]De Koninck J, Lorrain D, Christ G, et al. Intensive language learning and increases in rapid eye movement sleep:evidence of a performance factor. Int. J. Psychophysiol,1989; 8(1):43-47.
    [40]Smith C, Rose GM. Posttraining paradoxical sleep in rats is increased after spatial learning in the Morris water maze. Behav Neurosci,1997; 111:1197-1204.
    [41]Smith C, Rose GM. Evidence for a paradoxical sleep window for place learning in the Morris water maze. Physiol. Behav,1996; 59:93-97.
    [42]Bliss TV, Collingridge GL. A synaptic model of memory:long-term potentiation in the hippocampus. Nature,1993; 361:31-39.
    [43]Morris RG, Garrud P, Rawlins JN, et al. Place navigation impaired in rats with hippocampal lesions. Nature,1982; 297:681-683.
    [44]Packard MG, McGaugh JL. Double dissociation of fornix and caudate nucleus lesions on acquisition of two water maze tasks:further evidence for multiple memory systems. Behav Neurosci, 1992; 106:439-446.
    [45]Graves L, Pack A, Abel T. Sleep and memory:A molecular perspective. Trends in Neurosciences, 2001; 24:237-243.
    [46]Servillo G, DellaFazia MA, SassoneCorsi P. Coupling cAMP signaling to transcription in the liver: Pivotal role of CBEB and CREM. Exp Cell Res,2002,275(2):143-154
    [47]Antonietta Casu M, Pisu C. Sanna A, et al. Efect of delta 9 tetrahydrocannabinol on phosphorylated CREB in rat cerebellum:An immunohistochemical study. Brain Res,2005,1048(1-2):4147
    [48]Hayward P. Presenilin dysfunction leads to memory and plasticit defects. Lancet Neurol,2004, 3(6):327
    [49]Kandel ER. The molecularbiology of memory storage:a dialogne between"genes and synapses". Science,2001,94(5544):1030-1038
    [50]Yang BH, Son H Kim SH, et al. Phosphorylation of ERK and CREB in cultured hippocampal neurons after and haloperidol risperidone administration. Psych Clin Neurosci,2004,58(3):262-267
    [51]Hinoi E, Balear VJ, Kuramoto N, et al. Nuclear transcription factors in the hippocampus. Prog Neurobiol,2002,68(2):145—165
    [52]Blendy JA. The Role of CREB in depression and antidepressant treatment. Biol Psychiatry,2006, 59(12):1144
    [53]Nakagawa S, Kim J E, Lee R, et al. Regulation of neurogenesis in adult mouse hippocampus by cAMP and the cAMP response element—binding protein. J Neurosci,2002.22(9):3673
    [54]Malberg JE, Blendy JA. Antidepressant action:to the nucleus andbeyond. Trends in Pharmacological Sciences,2005,26(12):631
    1. Mueller A, Pollock MS, Lieblich SE, et al. Sleep deprivation can inhibit adult hippocampal neurogenesis independent of adrenal stress hormones. Am J Physiol Regul Integr Comp Physiol, 2008,294(5):R1693-703.
    2. Voutsinos PB, Bonvento G, Tanaka K, et al. Glial glutamate transporters mediate a functional metabolic croosstalk between neurons and astrocytes in the rat developing cortex. Neuron,2003, 37(2):275-286
    3. Nylen K, Ost M, Csajbok LZ, et al. Increased serum-GFAP in patients with severe traumatic brain injury is related to outcome. J Neurol Sci,2006,240(1-2):85-91
    4. Borges K, McDermott D, Irier H, et al.Degeneration and proliferation of astrocytes in the rat dentate gyrus after pilocarpine-induced status epilepticus. Exp Neurol,2006,201(2):416-27
    5. Gomes FC, Panlin D, Moura NV, et al. Glial fibrillary acidic protein(GFAP):modulation by growth factors and its implication in astrocyte differentiation. Braz J Med Biol Res,1999,32(5):619-631.
    6. Vilhardt F. Micraglia:phagocyte and glia cell. Int J Biochem Cell Biol,2005,37(1):17-21
    7. Hanisch UK. Microglia as a source and target of cytokines. Glia,2002,40(2):140.155
    8. Meerlo P, Sgoifo A, Suchecki D. Restricted and disrupted sleep:Effects on autonomic function, neuroendocrine stress systems and stress responsivity. Sleep Med Rev,2008,12(3):197-210.
    9. Hsu JC, Lee YS, Chang CN, et al. Sleep deprivation inhibits expression of NADPH-d and NOS while activating microglia and astroglia in the rat hippocampus. Cells Tissues Organs,2003,173(4):242-254.
    10.王晓东,宿长军,李柱一,等.睡眠剥夺及睡眠恢复后大鼠中缝核群星形胶质细胞的反应及其与神经元的关系[J].神经科学通报,2005,21(1):19-21.
    11.惠雪枫,宿长军,李柱一.大鼠下丘脑星形胶质细胞对不同时段睡眠剥夺的反应[J].第四军医大学学报,2006,27(6):559-561.
    12. Grassi Zucconi G, Cipriani S, Balgkouranidou I,et al.'One night'sleep deprivation stimulates hippocampal neurogenesis[J]. Brain Res Bull,2006,(69):375-381
    13. van Calker D, Biber K. The role of glial adenosine receptors in neural resilience and the neurobiology of mood disorders[J]. Neurochem Res,2005,30(10):1205-1217.
    14. Hsu JC. Lee YS. Chang CN, et al. Sleep deprivation prior to transient global cerebral ischemia attenuates glial reaction in the rat hippocampal formation[J]. Brain Res,2003,984(1-2):170-81.
    15. Chretien F, Le Pavec G, Vallat-Decouvelaere AV, et al. Expression of excitatory amino acid transporter-1 (EAAT-1) in brain macrophages and microglia of patients with prion diseases[J]. J Neuropathol Exp Neurol,2004,63(10):1058-71.
    16. Zaborowski A. Creutzfeldt-Jakob disease and other human transmissible spongiform encephalopathies[J].Psychiatr Pol,2004,38(2):297-309.
    17. da Silva LG, Mottin CC, Souza DO, et al. Serum S100B but not NSE levels are increased in morbidly obese individuals affected by obstructive sleep apnea-hypopnea syndrome. Obes Surg, 2008,18(8):993-9.
    18. Klein JB, Gozal D, Pierce WM, et al. Proteomic identification of a novel protein regulated in CA1 and CA3 hippocampal regions during intermittent hypoxia.Respir Physiol Neurobiol, 2003,136(2-3):91-103
    19.Sawaguchi T, Patricia F, Kadhim H, et al. Clinicopathological correlation between brainstem gliosis using GFAP as a marker and sleep apnea in the sudden infant death syndrome. Early Hum Dev,2003,75 Suppl:S3-11.
    20. Thomas C. Thannickal TC, Robert Y. et al. Reduced number of hypocretin neurons in human narcolepsy. Neuron,2000,27:469-74.
    21.Thannickal TC, Siegel JM, Nienhuis R, et al. Pattern of hypocretin (orexin) soma and axon loss, and gliosis, in human narcolepsy[J]. Brain Pathol,2003,13(3):340-51.
    [1]Sato, S, Shintani, Y, Miyajima, N, et al. Novel G protein-coupled receptor protein and DNA there of. World Patent Application (2002). WO 02/31145 Al.
    [2]Yan-Ling Xu,Rainer K. Reinscheid, Salvador Huitron-Resendiz, et al. Neuropeptide S:A Neuropeptide Promoting Arousal and Anxiolytic-like Effects. Neuron,2004,19;43 (4):487-97
    [3]Roth,-A-L; Marzola,-E; Rizzi,-A, et al.Structure-activity studies on neuropeptide S:identification of the amino acid residues crucial for receptor activation. J-Biol-Chem,2006,28; 281(30):20809-16
    [4]Camarda,-V; Trapella,-C; Calo,-G; et al.Synthesis and biological activity of human neuropeptide S analogues modified in position 2. J-Med-Chem.2008,14; 51(3):655-8
    [5]Tancredi,-T; Guerrini,-R; Marzola,-E, et al.Conformation-activity relationship of neuropeptide S and some structural mutants:helicity affects their interaction with the receptor. J-Med-Chem,2007,6; 50(18):4501-8
    [6]Xu,-Y-L; Gall,-C-M; Jackson,-V-R,et al.Distribution of neuropeptide S receptor mRNA and neurochemical characteristics of neuropeptide S-expressing neurons in the rat brain. J-Comp-Neurol. 2007,1;500(1):84-102
    [7]Reinscheid,-R-K, Neuropeptide s:anatomy, pharmacology, genetics and physiological functions.Results-Probl-Cell-Differ.2008; 46:145-58
    [8]Kilduff TS, Lein ES, de la Iglesia H, et al. New developments in sleep research:molecular genetics, gene expression, and systems neurobiology. J Neurosci.2008 Nov 12;28(46):11814-8.
    [9]Lage R, Dieguez C, L6pez M.Caffeine treatment regulates neuropeptide S system expression in the rat brain. Neurosci-Lett.2006,13; 410(1):47-51
    [10]Gottlieb DJ, O'Connor GT, Wilk JB.Genome-wide association of sleep and circadian phenotypes.BMC-Med-Genet.2007; 8 Suppl 1:S9
    [11]Rizzi A, Vergura R, Marzola G, Neuropeptide S is a stimulatory anxiolytic agent:a behavioural study in mice. Br J Pharmacol.2008,154(2):471-9
    [12]Leonard,-S-K; Dwyer,-J-M; Sukoff-Rizzo,-S-J; et al.Pharmacology of neuropeptide S in mice: therapeutic relevance to anxiety disorders. Psychopharmacology-(Berl).2008 May; 197(4):601-11
    [13]Jungling K, Seidenbecher T, Sosulina L. Neuropeptide S-mediated control of fear expression and extinction:role of intercalated GABAergic neurons in the amygdale. Neuron.2008,31;59(2):298-310
    [14]Takahiro Mochizukia, Juhyon Kima and Kazuo Sasaki, et al. Injection of neuropeptide S into the rat ventral tegmental area induces hyperactivity and increases extracellular levels of dopamine metabolites in the nucleus accumbens shell.Peptides. Article in Press.
    [15]Castro AA, Casagrande TS, Morettia M et al.Lithium attenuates behavioral and biochemical effects of neuropeptide S in mice.Peptides.2009,30(10):1914-1920
    [16]Dee M. Duangdao, Stewart D. Clark, Naoe Okamura, Rainer K. Reinscheid. Behavioral phenotyping of Neuropeptide S receptor knockout mice.Behavioural Brain Research,2009,205(1): 1-9
    [17]Okamura,-N; Hashimoto,-K; Iyo,-M, Gender-specific association of a functional coding polymorphism in the Neuropeptide S receptor gene with panic disorder but not with schizophrenia or attention-deficit/hyperactivity disorder. Prog-Neuropsychopharmacol-Biol-Psychiatry.2007,1; 31(7): 1444-8
    [18]Niimi M.Centrally administered neuropeptide S activates orexin-containing neurons in the hypothalamus and stimulates feeding in rats. Endocrine.2006 Aug; 30(1):75-9
    [19]Smith KL, Patterson M, Dhillo WS. Neuropeptide S stimulates the hypothalamo-pituitary-adrenal axis and inhibits food intake. Endocrinology.2006 Jul; 147(7):3510-8
    [20]Cline MA, Godlove DC, Nandar W.Anorexigenic effects of central neuropeptide S involve the hypothalamus in chicks (Gallus gallus).Comp-Biochem-Physiol-A-Mol-Integr-Physiol.2007 Nov; 148(3):657-63
    [21]D'Amato,-M; Bruce,-S; Bresso,-F; et al. Neuropeptide s receptor 1 gene polymorphism is associated with susceptibility to inflammatory bowel disease. Gastroenterology.2007 Sep; 133(3): 808-17
    [22]Orsmark-Pietras,-C; Melen,-E; Vendelin,-J;et al. Biological and genetic interaction between tenascin C and neuropeptide S receptor 1 in allergic diseases.Hum-Mol-Genet.2008 Jun 1; 17(11): 1673-82
    [23]Vendelin,-J; Pulkkinen,-V; Rehn,-M; et al.Characterization of GPRA, a novel G protein-coupled receptor related to asthma. Am-J-Respir-Cell-Mol-Biol.2005 Sep; 33(3):262-70
    [24]Pulkkinen,-V; Majuri,-M-L; Wang,-G; et al. Neuropeptide S and G protein-coupled receptor 154 modulate macrophage immune responses. Hum-Mol-Genet.2006 May 15; 15(10):1667-79
    [25]Vendelin,-J; Bruce,-S; Holopainen,-P; et al.Downstream target genes of the neuropeptide S-NPSR1 pathway. Hum-Mol-Genet.2006 Oct 1; 15(19):2923-35
    [26]R.W. Han, X.Q. Yin, M. Chang, Y.L. Peng, W. Li, R. Wang, Neuropeptide S facilitates spatial memory and mitigates spatial memory impairment induced by N-methyl-D-aspartate receptor antagonist in mice, Neurosci. Lett.455(2009)74-77.
    [27]D.M. Duangdao, J. Najera, I.N. Okamura, R.K. Reinscheid, Analysis of emotional and cognitive behavior phenotypes in NPS receptor-deficient mice, Program No.193.1/UU16.2008, Neuroscience Meeting Planner, Society for Neuroscience, Washington, DC,2008 (Online).
    [28]N. Okamura, D.M. Duangdao, R.K. Reinscheid, Neuropeptide S enhances longterm memory formation, Program No.193.2/UU17,2008 Neuroscience Meeting Planner, Society for Neuroscience, Washington, DC,2008 (Online).
    [29]Badia-Elder NE, Henderson AN, Bertholomey ML,et al.The Effects of Neuropeptide S on Ethanol Drinking and Other Related Behaviors in Alcohol-Preferring and-Nonpreferring Rats. Alcohol Clin Exp Res.2008 Jun 17. [Epub ahead of print]
    [30]Lage,-R; Gonzalez,-C-R; Dieguez,-C;et al.Nicotine treatment regulates neuropeptide S system expression in the rat brain. Neurotoxicology.2007 Nov; 28(6):1129-35
    [31]Han RW, Chang M, Peng YL,et al, Central Neuropeptide S inhibits distal colonic transit through activation of central Neuropeptide S receptor in mice.Peptides.2009 Jul;30(7):1313-7.
    [32]Castro AA, Casagrande TS, Morettia M et al. Neuropeptide S produces hyperlocomotion and prevents oxidative stress damage in the mouse brain:A comparative study with amphetamine and diazepam. Pharmacology, Biochemistry and Behavior 2009,91:636-642
    [33]Okamura N, Habay SA, Zeng J,et al. Synthesis and pharmacological in vitro and in vivo profile of 3-oxo-1,1-diphenyl-tetrahydro-oxazolo[3,4-a]pyrazine-7-carboxylic acid 4-fluoro-benzylamide (SHA 68), a selective antagonist of the neuropeptide S receptor. J Pharmacol Exp Ther. 2008;325(3):893-901
    [34]Ruzzaa C, Rizzia A, Trapellab C,et al. Further studies on the pharmacological profile of the neuropeptide S receptor antagonist SHA 68. Peptides, In Press, Available online 19 February 2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700