预平衡裂变动力学研究及n+~(12)C反应的理论分析与中子核数据库的建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要包括两方面研究内容:一是应用裂变的扩散模型对n+~(238)U和p+~(208)pb的预平衡裂变过程进行研究;二是对n+~(12)C反应的理论分析与中子评价核数据库的建立.
     关于预平衡裂变,主要通过数值解Smoluchowski方程,对两个典型核反应n+~(238)U和p+~(208)pb的裂变过程进行了研究,并把结论推广到锕系核和重核的情况.对锕系核来说,在中低能的情况下,可以忽略预平衡裂变过程的影响;而对Pb等重核来说,即使在激发能比较高(GeV量级)的情况下,也可以忽略预平衡裂变的贡献.从而为利用平衡态理论计算裂变截面,在加速器洁净能源驱动次临界系统(ADS)等工程的靶物理模拟计算中忽略靶材料核的预平衡裂变提供了理论支持.在核温度较高的锕系核的裂变过程中,会出现裂变速率的Overshooting现象,该现象主要是由鞍点处的扩散流引起的.对于Pb等重核则不会出现类似的Overshooting现象.同时,还讨论了选择鞍点或断点作为裂变点在扩散模型中所引起的物理图像,并认为在扩散模型中选择鞍点作为裂变点是比较合理的.如裂变前及裂变过程中有轻粒子发射,则裂变速率的Overshooting现象将减弱甚至消失,这是因为发射的轻粒子总会带走母核的一些能量,子核的激发能或核温度将减少或降低,从而减弱了预平衡过程中裂变的几率.从定性的角度更加支持了在中低能情况下利用平衡态理论计算裂变截面及在高能情况下靶物理的模拟计算中忽略预平衡裂变过程的合理性.
     当扩散项为常数、漂移项为一维谐振子势(包括谐振子势阱和谐振子位垒)的情况下,得到Smoluchowski方程的解析表达式.此解析解包含了目前已知其它势场形式的解析表达式,初始条件为δ(x—x_0)函数也只是此解析解的一种特例.其中重点讨论了谐振子势阱形式的解析解,分析了几率密度在不同的核温度及初始条件下随时间的变化特征,得到了定态解及稳定解的表示形式及其满足的条件.根据一维情况下的定态解及稳定解可知,在大粘滞性条件下的输运过程中,当扩散流受到谐振子势的束缚时,不管扩散流处于何种状态,最终会达到稳定.这个结论为扩散流稳定性条件的应用提供了一定的参考.同时,为研究大粘滞性的扩散过程(如天然气在煤颗粒中的扩散,乳胶质的悬浮等问题)的应用提供学术上的参考。
     在轻核反应方面,角动量相关的跃迁矩阵元是该理论模型的一个关键问题.本文利用耦合表象与非耦合表象之间的转换技巧,详细地推导了跃迁几率角动量因子,得到的结果与文献给出的结果一致,且此推导方法简单,思路明了易懂.利用新轻核反应模型理论.重新对n+~(12)C反应进行了研究,主要在四个方面进行了改进.第一,把入射能量提高到30MeV,以供核工程的需要;第二,在n+~(12)C反应过程中,对靶核和各反应道剩余核能级纲图进行了更新;第三,在更新的能级纲图基础上,得到了一套新的中子及带电粒子的光学模型势参数;最后,重新对各个反应道进行了分析,并在此基础上,利用改进的LUNF程序,得到了出射总中子双微分截面,并很好地符合实验数据.通过对出射总中子双微分截面的理论分析可知,总谱(从出射能区的高能段起)的第一个峰值主要是弹性散射反应道的贡献,第二、第三个峰值主要分别是第一、第二激发态非弹散射反应道的贡献,而第四个峰值则主要是由第三激发态非弹散射反应道与(n,nα)反应道共同贡献的结果.由于~(12)C的第三激发态存在E3模式的γ退激和α粒子发射的竞争,而目前程序对E3模式的γ退激不能计算准确.为此,我们借鉴日本库JENDL-3.3中采用耦合道和统计模型计算的第三激发态非弹散射截面的结果,在配合中子角通量谱基准检验结果的基础上进行调整,得到了与中子角通量谱符合很好的基准检验结果,以确定第三激发态非弹散射截面值.在此基础上,建立了30MeV以下入射能区的中子评价核数据库,并截取20MeV以下能区的数据建立了更新版中子评价核数据库CENDL-3.1版.通过基准检验,可看到本文CENDL-3.1版的基准检验结果非常好地符合了中子角通量谱实验数据,且明显比ENDF/B-Ⅶ库的结果要好.特别是本文新建的两个核数据库都包含了伴随中子出射的全部带电粒子信息的双微分截面文档(file 6),这在国际上同类核数据库(包括ENDF/B-Ⅶ库和JENDL-3.3库)是无法做到的.另外,由于目前理论计算的20MeV以上能区的非弹散射角分布不能很好地符合实验数据,且ENDF/B-Ⅶ库和JENDL-3.3库中也都没有给出这些数据,故本文利用最小二乘法拟合实验数据,给出了20MeV以上能区的第一激发态、第二激发态非弹散射角分布的Legendre系数,从而弥补了其它数据库中的不足.同时,在新轻核反应模型理论的基础上,为带电粒子Kerma(Kinetic Energy Released from Material)系数的研究提供了很好的理论基础.
This thesis is consists of two parts: first, the research of the pre-equilibrium fission processes for n+~(238)U and p+~(208)Pb reactions based on the diffusion model; second, the theoretical analysis and the establishment of nuclear databases for n+~(12)C reaction based on light nuclear reaction model.
     In pre-equilibrium fission fields, n+~(238)U and p+~(208)Pb reactions are studied by numerical solution of Smoluchowski equation, and their results can be extended to the fission reactions of those nuclei in actinium and sub-actinium family. It is suggested that the contributions of the pre-equilibrium fission can be ignored for the projectile with low or medium incoming energy to the target in actinium family, and even with high energy(GeV) to the target in sub-actinium family. The evidences are provided theoretically in this paper for overlooking the contributions of pre-equilibrium fission to calculating the fission cross sections used equilibrium statistics and to stimulating the nuclear material on target physics of the accelerator driven sub-critical system (ADS). In fission processes at higher nuclear temperature for fissile nuclei, the fission rates appear Overshooting phenomena, which are induced by the fission current at saddle. However, there is no Overshooting phenomenon for sub-actinium family nuclei. Simultaneously, the physical figures are obtained and analyzed by views saddle or scissor as the fission point in this paper. It is reasonable that the saddle is regarded as the fission point in the diffusion model. If the light particle emissions are considered in fission processes, Overshooting will weaken gradually, even vanish. The exited energy of compound nuclear decreases because of the light particles emission, so the contribution of pre-equilibrium fission decreases. It is proved more qualitatively that the contribution of the pre-equilibrium fission can be ignored in some fields at the suitable projectile energy mentioned above.
     In this paper, the analytical solution of Smoluchowski equation, of which diffusive term is constant and drift term harmonic oscillator potential (including the well and the barrier potentials), is derived from a simple Gaussian distribution in a easy and wizard method. This analytical solution covers all analytical expressions published nowadays. The properties of probability density distributions and probability currents are analyzed with time evolution at the different nuclear temperatures or the different initial distributions. The stationary and the steady solution are derived from the analytical solution, and their bound conditions are given too. The stationary and the steady solutions offer some advices for the applied studies in some strong friction coefficient fields.
     The angular momentum factors of all kinds of transition matrix elements, which are kernel of the light nuclear reaction model, are derived through the transformation from coupled and un-coupled representations each other. Based on the new light reaction model, four aspects of n+~(12)C reaction are extended or modified. Firstly, the incident neutron energy extends up to 30 MeV. Secondly, more open reaction channels are considered, including (n, 2n), (n, t), (n, ~3He), (n, pα), (n, ~6Li) and (n, dα) channels, which are closed below 20 MeV. Thirdly, some updated level schemes are used, in stead of old and pseudo ones. Finally, we obtained a new set of neutron and charged particles optical potential parameters. On the basis of four improved aspects, LUNF code is modified to calculate the total outgoing neutron double-differential cross sections from the threshold energy to 30 MeV. The calculated results agree fairly well with the experimental measurements. The analysis of the total energy angular spectra shows that the elastic channel and the inelastic channels of the 1st and 2nd excited levels largely con tribute to the first three peaks, the third excited level of inelastic channel and (n, nα) channel commonly to the 4th peak of the total spectra at high outgoing energy region. Because theγde-excitation mechanism of the 3rd excited state belongs to E3 module, which is not described successfully in Systematics up to now and not calculated accurately in LUNF code in other way, the calculated total spectra are generally lower than the experimental data at the 4th peak region. Thus, the neutron angular flux spectra are low too at the same location. In order to improve this deficiency, the evaluation method is used to set up the neutron nuclear databases below 30 MeV and below 20 MeV (CENDL-3.1), whose 3rd excite level inelastic cross sections (MF=3, MT=53) are modified in virtue of the results of JENDL-3.3 calculated in coupled channel and statistic model. The validation of ~(12)C evaluation for the updated database CENDL-3.1 was performed with neutron angular flux experiment (FNS) in this paper. The results agree very well with the benchmark measurements, and have obvious improvement contrast to ENDF/B-Ⅶ. It is one of the great characteristics that the file-6, which is not included in ENDF/B-Ⅶ, JENDL-3.3 and so on, comprises the information of all charged particles in accompany with outgoing neutron. Simultaneously, using the method of least squares, a code is developed to stimulate the Legendre coefficients of the 1st and 2nd excited level inelastic angular distributions, which are absent in ENDF/B-Ⅶand JENDL-3.3 above 20 MeV for lacking suitable theory. Furthermore, the new light nuclear reaction model extended in this paper provides a good method, which can study the Kerma (Kinetic Energy Released from Material) coefficients of the charged particles.
引文
[1] 胡济民.原子核理论(第二卷).北京:原子能出版社,1987:341-392.
    [2] 胡济民.核裂变物理学.北京:北京大学出版社,1999.
    [3] 丁大钊,叶春堂,赵志祥等.中子物理学-原理方法与应用(上册).北京:原子能出版社、2005:342-390.
    [4] 张竞上.核裂变和裂变机制的模型理论.现代物理知识,2003,1:22-27.
    [5] N. Bohr, J. A. Wheeler. The Mechanism of Nuclear Fission. Phys. Rev., 1939, 56: 426.
    [6] V. M. Strutinsky. Sov. J. Nucl. Phys., 1966, 3: 499.
    [7] V. M. Strutinsky. Shell effects in nuclear masses and deformation energies. Nucl. Phys. A, 1967, 95: 420.
    [8] V. M. Strutinsky. Shells in deformed nuclei. Nucl. Phys. A, 1968, 122: 1-33.
    [9] H. A. Kramers. Brownian motion in a field of force and the diffusion model of chemical reactions. Physica, 1940, 7(4): 284-304.
    [10] A. Gavron, A. Gayer, et al. Time Scale of Fission at High Angular Momentum. Phys. Rev. Lett., 1981, 47: 1255-1258.
    [11] E. Holub, D. Hilscher, et al. Neutron emission in central heavy-ion collisions of ~(165)Ho+ ~(20)Ne at 11, 14.6, and 20.1 MeV/nucleon. Phys. Rev. C, 1983, 28: 252-270.
    [12] D. J. Hindle, R. J. Charity, et al. Neutron Emission from Fission Fragments during Acceleration. Phys. Rev. Lett., 1984, 52: 986-989.
    [13] A. Gavron, A. Gayer, et al. Neutron emission in the fissioning ~(158)Er composite system. Phys. Rev. C, 1987, 35(2): 579-590.
    [14] D. J. Hofmann, B. B. Back, P. Paul. Rapid increase in prescission giant-dipole-resonance γ-ray emission with bombarding energy. Phys. Rev. C, 1995, 51(5): 2597-2605.
    [15] WU Xi-zhen, ZHUO Yi-zhong, et al. Calculation of the nuclear fission by numberical solution of F-P equation. Commun. in Theor. Phys., 1982, 1(6): 769-778.
    [16] P. Grangé, Li Jun-Qing, H. A. Weidenmüiller. Induced nuclear fission viewed as a diffusion process: Transients. Phys. Rev. C, 1983, 27(5): 2063-2077.
    [17] 冯仁发,卓益忠,李君清.考虑趋向平衡过程的裂变率计算.原子核物理,1984,6(2):113-119.
    [18] 冯仁发,吴锡真,卓益忠.裂变系统扩散过程的研究.原子核物理,1988,10(1):16-23.
    [19] 孙喆民,吴锡真,冯仁发,卓益忠.核裂变扩散模型的进一步研究.原子核物理, 1988, 10(4): 307-313.
    [20] Wu Xizhen, Feng Renfa, Bao Jingdong, Sun Zemin, and Zhuo Yizhong. A description of heavy ion induced fission based on diffusion model. AIP Conference Proceedings, 1992, 250: 245-255.
    [21] 刘国兴,戴兴曦.重离子裂变反应动力学研究.原子核物理评论,1997,14(4):207-212.
    [22] F. Scheuter, H. Hofmann. On the propagation of a fissionin system across the barrier toword scission. Nucl. Phys. A, 1983, 394: 477-500.
    [23] H. Delagrange, Y. Abe. Dynamical decay of nuclei at high temperature: competition between particle emission and fission decay. Z. Phys. A, 1986, 323: 437-449.
    [24] P. Grangé, S. Hassani, H. A. Weidenmiiller. Effect of nuclear dissipation on neutron emission prior to fission. Phys. Rev. C, 1986, 34(1): 209-217.
    [25] K. H. Bhatt, P. Grangé, B. Hiller. Nuclear friction and lifetime of induced fission. Phys. Rev. C, 1986, 33(3): 954-968.
    [26] S. Chandrasekhar. Stochastic Problems in Physics and Astronomy. Rev. Mod. Phys., 1943, 15: 1-89.
    [27] N. G. van Kampen. A soluble model for diffusion in a bistable potential. J. Stat. Phys., 1977, 17: 71-88.
    [28] H. A. Weidenmiiller, Zhang Jing-Shang. Nuclear fission viewed as a diffusion process: Case of very large friction. Phys. Rev. c, 1984, 29(3): 879-884.
    [29] Zhang Jing-Shang, H. A. Weidenmiiller. Generalization of Kramers' formula: Fission over a multidimensional potential barrier. Phys. Rev. C, 1983, 28: 2190-2192.
    [30] H. A. Weidenmiiller, Zhang Jing-Shang. Stationary Diffusion over a Multidimensional Potential Barrier: A Generalization of Kramers' Formula. J. Star. Phys., 1984, 34: 191-201.
    [31] 张竞上.扩散模型中多维扩散方程的解析解.原子核物理,1986,8(2):183-187.
    [32] LU Zhong-dao, TANG Xue-tian. Analytical solution of the 2n-dimensional FOKKERPLANCK equation with harmonic oscillator potential. Commun. in Theor. Phys., 1984, 3(3): 323-343.
    [33] 钟云霄.计算机模拟无规力研究布朗粒子越过位垒的逃逸.原子核物理,1987,9(1):28-33.
    [34] J. Bao, Y. Zhuo, X. Wu. Systematic studies of fission fragment kinetic energy distributions by Langevin simulations. Z. Phys. A, 1995, 352: 321-325.
    [35] Jing-Dong Bao, Ying Jia. Determination of fission rate by mean last passage time. Phys. Rev. C, 2004, 69: 027602.
    [36] Y. Abe, S. Ayik, et al. On stochastic approaches of nuclear dynamics. Physics Reports, 1996, 275: 49-196.
    
    [37] P. Frobrich, I.I. Gontchar. Langevin description of fusion, deep-inelastic collisions and heavy-ion-induced fission. Physics Reports, 1998, 292: 131-237.
    [38] Sun,Z.Y., Wang.S.N., Zhang,J.S., Zhuo,Y.Z. Angular Distribution Calculation Based on the Exciton Model Taking Account of the Inference of the Fermi Motion and the Pauli Principle. Z.Phys.A, 1982,305: 61.
    [39] Zhang Jing Shang, Georg Wolschin. Solution of the Reduced Occupation-Number Equation for a Fermion System. Z. Phys, A, 1983, 311: 177-184.
    [40] J. S. Zhang, X. Z. Yang. The Pauli Exclussion Effect in Multiparicle and Hole State Densityies. Z. Phys. A, 1988, 329: 69.
    [41] Zhang J. S., Wen Y. Q., Wang S. N., Shi X. J. Formation and emission of light particles in fast neutron induced reaction-a united compound pre-equilibrium model. Commun. Theor. Phys., 1988, 10: 33-44.
    [42] Zhang J.S. The Angular Distribution of Light Particle Projectile Based on a Semi-Classical Model. Commun. Theor. Phys., 1990, 14: 41-52.
    [43] J. S. Zhang. A semi-Classical Theory of Multi-Step Nuclear Reaction Processes. Proc. Of Beijing Inter. Sympo. On Fast Neutron Physics. Singapore, JBW Printers & Binders Pre. Ltd, 1991, 193.
    [44] J. S. Zhang. Non-uniform level density effect on exciton state densities. Z Phys. A, 1992, 344: 49-54; Chin. J. of Nucl. Phys., 1992, 14: 121-126.
    [45] Zhang J.S. A Unified Hauser-Feshbach and Exciton Model for Calculating Double-differential Cross Sections of Neutron Induced Reactions Below 20 MeV. Nucl. Sci. & Eng., 1993, 114:55-64.
    [46] Zhang J.S. A Theoretical Calculation of Double-Differential Cross Sections of Deuteron Emission. Chin. J. of Nucl, Phys., 1993, 15: 347-351.
    [47] J. S. Zhang, S. W. Yan, C. L. Wang. The Pick-up Mechanism in Composite Particle Emission Processes. Z. Phys. A, 1993, 344: 251-258.
    [48] Zhang Jingshang, Wen Yuanqi. Angular Momentum Dependent Exciton Model. Chin. J. of Nucl, Phys., 1994, 16: 153-159.
    [49] J. S. Zhang. Improvement of Computation on Neutron Induced Helium Gas Produc- tion. Proc. Int. Conf. Nuclear Data for Science and Technology. Gatlinburg, Tennessee American Nuclear Society 9-13, 1994, 2: 932.
    [50] Zhang J. S. A method for Calculating Double-Differential Cross Sections of AlphaParticle Emissions. Nucl. Sci. & Eng., 1994, 116: 35-41.
    [51] Zhang J. S. Exciton Model of Two-Fermion System. Chinese J. Nucl. Phys., 1994, 16: 55-58.
    [52] Zhang J. S., Zhou S. J. E-dependent pre-formation probability of composite particles. Chin. J. of Nucl. Phys., 1996, 18: 28.
    [53] Jingshang Zhang, Yinlu Han, Ligang Cao. Model calculation of n+~(12)C Reaction from 4.8 to 20 MeV. NUCLEAR SCIENCE AND ENGINEERING, 1999, 133: 218-234.
    [54] H. Feshbach, C. E. Porter, V. F. Weisskopf. Model for nuclear reactions with neutrons. Phys. Rev., 1954, 96(2): 448-464.
    [55] H. Feshbach. Unified Theory of Nuclear Reactions. Rev. Mod. Phys. 1964, 36:1076-1078.
    [56] S. M. Polikanov, et al. Soy. Phys. JETP, 1962, 15: 1016-1021 .
    [57] S. M. Polikanov. Spontaneously fissioning isomers. Physics Uspekhi, 1968, 11 (1): 22-33.
    [58] 冯仁发,吴锡真,卓益忠.核裂变扩散模型Kramers定态解的理论分析.高能物理与核物理,1994,18(4):361365.
    [59] 钟云霄,张敏钊.粘滞性与温度随形变参量变化时的核裂变速率-布朗运动模型.原子核物理,1985,7(3):258-261.
    [60] 钟云霄.布朗粒子越过位垒的逃逸速率.高能物理与核物理,1985,9(1):108-115.
    [61] 钟云霄,陈俊珍.布朗粒子越过双峰位垒的逃逸速率.高能物理与核物理,1985,9(3):356-361.
    [62] 钟云霄.用计算机模拟无规力研究—维核裂变的暂态过程.高能物理与核物理,1989.13(5):451-454.
    [63] Zhong-Dao Lu, Bin Chert, Jing-Shang Zhang, Yi-Zhong zhuo. Transient behavior at deformations beyand saddle point and neutron multiplicity. Phys. Rev. C, 1990, 42(2): 707-710.
    [64] 陆中道.裂变扩散过程中的轻粒子发射和原子核粘滞性系数.核物理动态,1994,11(3):27-31.
    [65] 叶巍,沈文庆等.裂变路径对断点前粒子发射的影响.高能物理与核物理,1998,22(7):639-645.
    [66] 叶巍,沈文庆等.10.6MeV/u~(84)Kr+~(27)Al反应中角动量对断点前粒子多重性的影响. 高能物理与核物理.1998;22(3):265-270.
    [67] 叶巍.断前粒子发射的壳效应.高能物理与核物理,2003,27(9):798-802.
    [68] 叶巍.断前粒子发射的同位素效应.高能物理与核物理.2003,27(3):233-237.
    [69] YE Wei. Influence of angular momentum on shell effects of pre-scission particle emission of a light closed shell nucleus ~(132)Sn. High energy physics and nuclear physics, 2004, 28(2): 181-185.
    [70] SUN Xiao-Jun, ZHANG Jing-Shang. The Study of Pre-equilibrium Fission Based on Diffusion Model. Commun Theor Phys, 2006, 45(2): 325-331.
    [71] Zhou Jinfeng, Shen Qingbiao, Sun Xiuquan, Theoretical calculations of proton reactions cross sections in a lead target with energy E_p ≤ 300MeV. Nuclear technology, 1999, 127: 113.
    [72] K. K. Gudima, S. G. Mashnik, V. D. Toneev. Cascade exciton Model of Nuclear Reactions. Nucl. Phys. A, 1983, 401: 329-361.
    [73] A. S. Botvina, A. S. Iljinov, L. N. Mishustin, et al. Statistical Simulation of the Break-up of Highly Excited Nuclei. Nucl. Phys. A, 1987, 475: 663-686.
    [74] A. Demenyev, V. Gurentso, O. Ryazhskaya, et al. Production and Transport of Hadrons Generated in Nuclear Cascade Initiated by Muons in the Rock. Nucl. Phys. Suppl., 1990, 70: 486-492.
    [75] A. Demenyev, N. Sobolevsky. Shield-universal Monte-Carlo Hadron Transport Code: Scope and Applications. Radiation Measurements, 1999, 30: 553-561.
    [76] M. H. Peters. The Smoluchowski diffusion equation for structured macromolecules near structured surfaces. J. Chem. Phys., 2000, 112(12): 5488-5498.
    [77] N. J. Wagner. The Smoluchowski equation for colloidal suspensions developed and analyzed through the GENERIC formalism. J. Non-Newtonian Fluid Mech., 2001, 96: 177-201.
    [78] D. Banerjeea, et al. Quantum Smoluchowski equation: escape from a metastable state. Physica, A, 2003, 318: 6-13.
    [79] L. Machura, M. Kostur, et al. Consistent description of quantum Brownian motors operating at strong friction. Phys. Rev, E, 2004, 70: 031107-031111.
    [80] J. Luczkaa, et al. The diffusion in the quantum Smoluchowski equation. Physica, A, 2005, 351: 60-68.
    [81] 胡岗.随机力与非线性系统.上海:上海科技教育出版社,1994.
    [82] SUN Xiao-Jun, et al. Analytical solution Smoluchowski equation in harmonic oscillator potentail. Commun. Theor. Phys., 2005, 43(6): 1099-1104.
    [83] 孙小军,陆晓.一维Smoluchowski方程的谐振子解析解.广西师范大学学报(自然科学版),2007,1.
    [84] 段军锋.~5He预形成几率研究及中子诱发~(16)O和~(19)F反应双微分截面文档的建立[博士学位论文].北京:中国原子能科学研究院,2006.
    [85] 曾谨言.量子力学.卷Ⅱ(第三版).北京:科学出版社,2001:335-368.
    [86] 马中玉,张竞上.高等量子力学讲义.北京:中国原子能科学研究院,2006:45-80.
    [87] A. Bohr, B. R. Mottelson. Nuclear Structure(Vol. 1, No. 1). New York, W. A. Benjamin, 1969: 85-93.
    [88] J. S. Zhang. UNF Code for Fast Neutron Reaction Data Calculations. Nucl. Sci. Eng., 2002, 142: 207-219.
    [89] 申庆彪.低能和中能核反应理论(上册).北京:科学出版社,2005:90-100.
    [90] D. J. Brenner, R. E. Prael. The ~(12)C(n,n')3α Cross Section up to 60 MeV. TECHNICALNOTES, 1984: 97-101.
    [91] Zhang Jingshang, Han Yinlu. Model Calculation of n+~6 Li Reactions Below 20MeV. Commun. Theor. Phys., 2001, 36: 437—442.
    [92] Zhang Jingshang, Han Yinlu. Calculation of Double-Differential Cross Sections of n+~7 Li Reactions Below 20MeV. Commun. Theor. Phys., 2002, 37: 465—474.
    [93] Zhang Jingshang, Han Yinlu, Shen Guangren, Shen Qingbiao. Progress report on the model calculation of n+~9 Be reactions below 20MeV. Communicatin of Nuclear Data Progress, 1998, 20: 5-17.
    [94] Zhang Jingshang, Yu Baosheng, Han Yinlu. γ+~9 Be Reaction below 30 MeV. Communicatin of Nuclear Data Progress, 1999, 21: 35-41.
    [95] Zhang Jingshang. Theoretical Analysis of Neutron Double-Differential Cross Sections of n+~10 B at 14.2MeV. Commun. Theor. Phys., 2002, 39: 433—438.
    [96] Wang Jimin, Duan Junfeng, Yan Yuliang, Sun Xiaojun, Zhang Jingshang. ~5He Emission in Neureon-induced Reactions. Commun. Theor. Phys., 2006, 46: 527-532.
    [97] Zhang Jingshang. Theoretical Analysis of Neutron Double-Differential Cross Sections of n+~(11)B at 14.2MeV. Commun. Theor. Phys., 2002, 39: 83—88.
    [98] Yan Yuliang, Duan Junfeng, Sun Xiaojun, Wang Jimin, Zhang Jingshang. Theoretical Analysis of Neutron Double-Differential Cross Sections of n+~(14)N at 14.2MeV. Commun. Theor. Phys., 2005, 44: 128—132.
    [99] Zhang Jingshang, Han Yinlu, Fan Xiaoli. Theoretical Analysis of Neutron Double- Differential Cross Sections of n+~(16)O at 14.1MeV. Commun. Theor. Phys., 2001, 35: 579-584.
    [100] Duan Junfeng, Yan Yuliang, Wang Jimin, Sun Xiaojun, Zhang Jingshang. Further Analysis of Neutron Double-Differential Cross Section of n+~(16)O at 14.1MeV and 18MeV. Commun. Theor. Phys., 2005, 44: 701-706.
    [101] Duan Junfeng, Yan Yuliang, Sun Xiaojun, Zhang Yue, Zhang Jingshang. Theoretical Analysis of Neutron Double-Differential Cross Sections of n+~(19)F at 14.2MeV. Commun. Theor. Phys., 2007, 47: 102-106. [102] G.Audi, A.H.Wapstra, C.Thibault. The Ame2003 atomic mass evaluation (II). Nuclear Physics A729, 2003, 22: 337-676.
    [103] R.B. Firestone, V.S. Shirley. Table of Isotopes 8th. New York: John Wiley & Sons, 1996.
    [104] D.R.Tilley, et al. Energy Levels of Light Nuclei A = 8, 9, 10. Nucl. Phys. A, 2004, 745: 155-362.
    [105] D.R.Tilley, C.M.Cheves, et al. Energy levels of light nuclei A=5, 6, 7. Nucl. Phys. A, 2002, 708: 3-163.
    
    [106] SHEN Qing-Biao. Computer Code Abstract. Nucl. Sci. Eng., 2002, 141: 78-84.
    [107] A.Takahashi, J.YAMAMOTO, K.OHSHIMA, H.ODA, K.FUJIMOTO, M.UEDA, M.FUKAZAWA, Y.YANAGI, K.SUMITA. DOUBLE DIFFERENTIAL NEUTRON EMISSION CROSS SECTIONS WITH 14 MEV NEUTRON SOURCE. OKTAV-A-83-01, 1983.
    [108] A.TAKAHASHI, E.ICHIMURA, Y.SASAKI, H.SUGIMOTO. Osaka University Report
    No. OKTAVIAN A-87-03, 1987.
    
    [109] M.BABA, M.ONO, N.YABUTA, T.KIKUTI, N.HIRAKAWA. SCATTERING OF 14.1MeV NEUTRONS FROM ~(10)B, ~(11)B, C, N, O, F AND Si. Conf. on Nuclear Data for Basic & Applied Sci., 1985, 1: 223.
    
    [110] M.BABA, M.ISHIKAWA, N.YABUTA, T.KIKUCHI, H.WAKABAYASHI, N.HIRAKAWA. DOUBLE DIFFERENTIAL NEUTRON EMISSION CROSS SECTIONS OF Cu, Ti, Zr AND C. Conf. on Nuclear Data for Science and Technology, Mito, 1988: 209.
    
    [111] M.BABA, S.MATSUYAMA, M.FUJISAWA, T.IWASAKI, S.IWASAKI, R.SAKAMOTO. APPLICATION OF POST ACCELERATION BEAM CHOPPER FOR NEUTRON EMISSION CROSS SECTION MEASUREMENTS. JAERI-M-90- 025,1990:383.
    [112] 张竞上.在中子诱导的核反应中~5He发射的可能性.中国科学(G辑),2003,33(6):488-494.
    [113] 刘廷进.国际评价中子核数据库.原子核物理评论,2001,3(18):192-196.
    [114] G. F. AUCHAMPAUGH. NEUTRON TOTAL CROSS-SECTION MEASUREMENTS OF ~9Be, ~(10)B, ~(11)B, ~(12)C AND ~(13)C FROM 1.0 TO 14-MeV USING ~9Be(DEUTERON,N) ~(10)B REACTION AS A WHITE NEUTRON SOURCE. Nuclear Science and Engineering, (69) 1979, 30.
    [115] M. V. HARLOW JR, et al. ELASTIC SCATTERING OF 17 TO 21MeV NEUTRONS FROM ~(12)C. Nuclear Physics, 67(1965): 249.
    [116] H. B. WILLARD, et al. TOTAL CROSS SECTIONS OF ~(12)C AND ~(12)C FOR FAST NEUTRONS. ORNL-2501, 18(1958).
    [117] C. M. HUDDLESTON, et al. TOTAL NEUTRON CROSS SECTION FOR ~(12)C FROM 500KeV TO 1350 KeV. Physical Review, 117(1960): 1055.
    [118] R. M. WILENZICK, et al. MEASUREMENT AND INTERPRETATION OF NEUTRON TOTAL CROSS SECTIONS OF CARBON, CALCIUM AND LEAD. Physical Review, 121 (1961): 1150.
    [119] U. FASOLI, et al. NEUTRON-CARBON INTERACTION, TOTAL AND ELASTIC SCATTERING DIFFERENTIAL CROSS SECTIONS AND PHASE SHIFT ANALYSIS, 2.1 TO 4.7 MeV. Nuclear Physics A, 205(1973): 305.
    [120] K. M. DIMENT, C. A. UTTLEY. THE NEUTRON TOTAL CROSS-SECTION OF CARBON BETWEEN 100 eV AND 10 MeV. EANDC(UK)-94AL(1968).
    [121] P. H. BOWEN, et al. NEUTRON TOTAL CROSS-SECTIONS IN THE ENERGY RANGE 15 TO 120 MeV. Nuclear Physics, 22(1961): 640.
    [122] V. M. MOROZOV, et al. THIN CASEOUS TARGET FOR NEUTRON INVESIIGATIONS. YFI-25, 41(1977).
    [123] C. A. UTTLEY, K. M. DIMENT. TOTAL NEUTRON CROSS SECTION MEASUREMENTS. UTTLEY, (1964)(ERE-PR/NP-9(1966)).
    [124] P. BOSCHUNG, et al. Scattering of fast neutrons by ~(12)C, ~(54)Fe, ~(56)Fe, ~(58)Ni and ~(60)Ni. Nuclear Physics, 161 (1971): 593.
    [125] R. M. WHITE, et al. STATES IN ~(12)B FROM MEASUREMENT AND R-MATRIX ANALYSIS OF SIGMA(THETA) FOR ~(11)B(N,N)~(11)B. Nuclear Physics, A340(1980): 13.
    [126] D. LISTER, A. SAYRES. ELASTIC SCATTERING OF NEUTRONS FROM CAR- BON AND OXYGEN IN THE ENERGY RANGE 3.0 TO 4.7 MeV. Physical Review, 143(1966):745.
    [127] D.W.GLASGOW, et al. DIFFERENTIAL ELASTIC AND INELASTIC SCATTERING OF 9 TO 15MeV NEUTRONS FROM CARBON. Nuclear Science and Engineering,61 (1976)521:7612. [128] F.DEMANINS, et al. ELASTIC SCATTERING OF FAST NEUTRONS BY ~6LI AND ~(12)C BETWEEN 1.98 MeV AND 4.64 MeV. Lettere al Nuovo Cimento,8(1973):259.
    [129] G.HAOUAT, et al. DIFFERENTIAL CROSS SECTIONS FOR CARBON NEUTRON ELASTIC AND INELASTIC SCATTERING FROM 8.0 TO 14.5MeV. CEA-R-4641(IN FRENCH), 1975.
    [130] N.OLSSON, et al. CROSS SECTIONS AND PARTIAL KERMA FACTORS FOR ELASTIC AND INELASTIC NEUTRON SCATTERING FROM CARBON IN THE ENERGY RANGE 16.5-22.0MeV. Conf. on Nuclear Data for Science and Technology, Mito(1988):1045.
    [131] F.G.PEREY, W.E.KINNEY. Carbon neutron elastic-and inelastic-scattering cross sections from 4.5 to 8.5 MeV. ORNL-4441(1969).
    [132] D.E.Velkley, et al. Scattering of Neutrons by Carbon from 7 to 9 MeV. Physical Re-view,C7(1973):1736.
    [133] V.C.ROGERS, et al. GAMMA-RAY PRODUCTION CROSS SECTIONS FOR CARBON AND NITROGEN FROM THRESHOLD TO 20.7 MEV. DNA-3495F(1974).
    [134] E.HADDAD, D.D.PHILLIPS. ELASTIC AND INELASTIC SCATTERING OF NEUTRONS FROM ~(12)C. Bulletin of the American Physical Society,4(1959):358.
    [135] I.L.MORGAN, et al. ANGULAR DISTRIBUTION OF GAMMA RAYS FROM C, O, AND N AT En=14.8 MeV. ORO-2791-32(1971).
    [136] A.S.MEIGOONI, et al. NUCLEON-INDUCED EXCITATION OF COLLECTIVE BANDS IN ~(12)C. Nuclear Physics,A445(1985):304.
    [137] G.DECONNINCK, J.P.MEULDERS. STUDY OF RESONANT STATES IN ~(13)C BY SCATTERING OF FAST NEUTRONS ON ~(12)C. Physical Review,Cl(1970):1326.
    [138] G.BOERKER, et al. ELASTIC AND INELASTIC NEUTRON SCATTERING ON ELEMENTAL CARBON. Conf. on Nuclear Data for Science and Technology, Juelich(1991):317.
    [139] G.A.GRIN, et al. ~(12)C(N,N), (N,N') AND (N,N')3A REACTIONS AT 14 MeV. Helvetica Physica Acta, 42(1969):990.
    [140] R.BOUCHEZ. et al. SCATTERING OF 14 MeV NEUTRONS FROM ~(12)C AND EXCITATION OF THE 7.65 MeV LEVEL. Nuclear Physics,43(1963):628.
    [141] K.GUL, et al. SCATTERING OF 14.7 MeV NEUTRONS FROM ~(12)C AND EVIDENCE FOR A NEW REACTION CHANNEL. Physical Review,C24(1981)6:245.
    [142] R.C.HAIGHT, et al. THE ~(12)C(N,ALPHA)REACTION AND THE KERMA FACTOR FOR CARBON AT En = 14.1 MeV. Nuclear Science and Engineering, 87(1984):41.
    [143] U.FABIAN. INTERACTION OF 14 MeV NEUTRONS WITH ~(12)C IN STILBENE REFERENCE. Phys. Sci. Zeitschrift fur Naturforschung, A26(1971):317.
    [144] G.DIETZE, et al. DIFFERENTIAL CROSS SECTIONS OF THE ~(12)C(N,α)~9Be REACTION IN THE ENERGY RANGE FROM 8 TO 10 MeV EXTRACTED FROM THE ~(213)Ne SCINTILLATOR RESPONSE FUNCTIONS. Conf. on Nuclear Data for Science and Technology, Antwerp(1982).
    [145] H.J.BREDE, et al. DETERMINATION OF NEUTRON-INDUCED ALPHA-PARTICLE CROSS SECTIONS ON CARBON USING THE RESPONSE OF A LIQUID SCINTILLATION DETECTOR. Nuclear Science and Engineering, 107(1991):22.
    [146] A.P.STEVENS. NEUTRON INDUCED ALPHA PRODUCTION FROM CARBON BETWEEN 18 AND 22 MeV. INIS-MF-3596(1976).
    [147] M.L.CHATTERJEE, B.SEN. THE (N,ALPHA) REACTION ON ~(12)C AT 14 MeV. Nuclear Physics,51(1964):583.
    [148] W.E.KREGER, B.D.KERN, ~(12)C(N,P)~(12)B CROSS SECTION FOR 14.9 TO 17.5 MeV NEUTRONS. Physical Review,113(1959):890.
    [149] E.M.RIMMER, P.S.FISHER. RESONANCES IN THE (N,P) REACTION ON ~(12)C. Nuclear Physics,A108(1968):567.
    [150] V.E.ABLESIMOV, et al. THE CROSS-SECTION FOR THE ~(12)C(N,P)~(12)B REACTION NEAR THE THRESHOLD. Neutron Physics Conf., Kiev(1971).
    [151] V.V.BOBYR, et al. INVESTIGATION OF EXCITATION FUNCTION OF ~(12)C(N,P)~(12)B REACTION AT THE NEUTRON ENERGY 16-18 MeV. Izv.Rossiiskoi Akademii Nauk,Ser.Fiz.,36(1972)12:2621.
    [152] B.ANTOLKOVIC, et al. Study of the reaction ~(12)C(n,3α)n from threshold to En=35MeV. Nuclear Physics, A394(1983):87-108.
    [153] B.ANTOLKOVIC, et al. REACTION CROSS SECTIONS ON CARBON FOR NEUTRON ENERGIES FROM 11.5 TO 19 MeV. Nuclear Science and Engineer-ing,107(1991):l.
    [154] G.M.Frye, et al. Disintegration of Carton into Three Alpha Particles by 12-20 MeV Neutrons. Physical Review, 99(1955)5:1375. [155] J.E.BROLLEY, et al. (N,2N) REACTIONS IN ~(12)C, ~(63)Cu AND ~(92)Mo. Physical Review,88(1952):618.
    
    [156] P.WELCH, et al. NEUTRON ACTIVATION CROSS SECTION ON Al, ~(12)C AND Pb WITH 20-26 MeV MONOENERGETIC NEUTRONS. Bulletin of the American Physical Society, 26(1981):708.
    [157] B.ANDERS, et al. EXCITATION FUNCTIONS OF NUCLEAR REACTIONS PRODUCING ~(11)C. Zeitschrift fuer Physik, A301(1981):353.
    [158] T.S.SOEWARSONO, et al. NEUTRON ACTIVATION CROSS SECTION MEASUREMENT FROM ~7Li(P,N) IN THE PROTON ENERGY REGION OF 20 MeV TO 40 MeV. JAERI-M-92-027(1992):354.
    [159] O.D.BRILL, et al. CROSS SECTION OF THE (N,2N) REACTION IN ~(12)C, ~(14)N, ~(16)O AND ~(19)F IN THE ENERGY INTERVAL 10-37 MeV. Doklady Akademii Nauk, 136(1961)1:55.
    [160] R.M.WILENZICK, ELASTIC AND INELASTIC SCATTERING OF 6 MeV NEUTRONS. Nuclear Physics, 62(1965):511.
    [161] M.ADEL-FAWZY, et al. ELASTIC AND INELASTIC SCATTERING OF NEUTRONS IN THE ENERGY RANGE 7 TO 12 MeV ON ~6Ll, ~7Li, ~(12)C, ~(32)S, ~(93)Nb AND ~(209)Bi. ZFK-443(1981):13.
    [162] G.HAOUAT, et al. DIFFERENTIAL CROSS SECTIONS FOR CARBON NEUTRON ELASTIC AND INELASTIC SCATTERING FROM 8.0 TO 14.5 MeV. Conf. on Neutron Physics, Kiev(1973).
    [163] J.B.SINGLETARY, D.E.WOOD. SCATTERING OF 14-MEV NEUTRONS BY CARBON. Physical Review,114(1959):1595.
    [164] A.YOSHIMURA, et al. TIME-OF-FLIGHT SPECTROMETER FOR FAST NEUTRONS. EANDC-1, (1965)24.
    [165] G.C.BONAZZOLA, BACKWARD SCATTERING OF 14.1 MeV NEUTRONS FROM ~(12)C. Lettere al Nuovo Cimento, 3(1972):99.
    [166] S.SHIRATO, et al. DIFFERENTIAL CROSS SECTIONS FOR ELASTIC AND INELASTIC NEUTRON SCATTERING FROM ~(12)C AT 14.1 MeV. JAERI-M-92-027,(1992):320.
    [167] HUANG RANG-ZI, et al. THE DIFFERENTIAL SCATTERING CROSS SECTIONS OF 14 MeV NEUTRONS FROM ~(12)C AT BACK ANGLES. CNP,5(1983)4:372 [168] G.C.BONAZZOLA. PRVATE COMMUNICATION TO MRS. M.DEVROEY.BONAZZOLA(1966).
    
    [169] E.MEZZETTI. et al. BACKWARD SCATTERING OF 14.2 MeV NEUTRONS FROM CARBON AND SULFUR. Lettere al Nuovo Cimento, 22(1978)3:91.
    [170] J.H.COON, et al. SCATTERING OF 14.5 MeV NEUTRONS BY COMPLEX NUCLEI. Physical Review,111(1958):250.
    [171] E.ARAI. ANGULAR DISTRIBUTION OF NEUTRONS ELASTICALLY SCATTERED ON BERYLLIUM AND CARBON. ARAI(1971).
    [172] Z.M.CHEN, et al. Neutron scattering from ~(12)C between 15.6 and 17.3 MeV. Jour. of Physics, G19(1991):877.
    [173] M.THUMM, et al. RESONANCE EFFECTS IN ELASTIC AND FIRST EXCITED LEVEL INELASTIC NEUTRON SCATTERING ON ~(12)C FROM 15.0 TO 18.25 MeV. Nuclear Physics, A344(1980):466.
    [174] Y.YAMANOUTI, et al. SCATTERING OF 28.15 MeV NEUTRONS FORM ~(12)C. JAERI-M-89-119(1989):177.
    [175] F.D.MCDANIEL, et al. Spin-Flip Probability in the Inelastic Scattering of 7.48 MeV Neutrons from the 4.43 MeV State in ~(12)C. Physical Review, C6(1972):1182.
    [176] V.V.BOBYR, et al. ANGULAR DISTRIBUTION OF 14-MeV NEUTRONS INELAS-TICALLY SCATTERED ON CARBON, NITROGEN AND SULFUR. Soviet Physics - JETP, 14(1962):18.
    [177] W.M.DEUCHARS, D.DANDY. GAMMA-RADIATION FROM INTERACTION OF 14 MeV NEUTRONS. Proceedings of the Physical Society (London), 75(1960):855.
    [178] J.BENVENISTE, GAMMA RAYS FROM THE INTERACTION OF 14 MeV NEUTRONS WITH CARBON. Nuclear Physics, 19(1960):448.
    [179] J.D.ANDERSON, et al. INELASTIC SCATTERING OF 14 MeV NEUTRONS FROM CARBON AND BERYLLIUM. Physical Review, 111(1958):572.
    [180] T.KOZLOWSKI, et al. ANGULAR DISTRIBUTION OF GAMMA RAYS FROM INELASTIC SCATTERING OF 14.1 MeV NEUTRONS ON ~(12)C AND ~(16)O. INR-661(1965).
    [181] K.TESCH. THE SCATTERING OF 14 MEV NEUTRONS ON BORON, CARBON AND SULPHUR. Nuclear Physics, 37(1962):412.
    [182] R.L.CLARKE, W.G.CROSS. ELASTIC AND INELASTIC SCATTERING OF 14.1MeV NEUTRONS FROM C, MG, SI AND S. Nuclear Physics, A95(1967): 320.
    [183] G. T. WESTERN, et al. ELASTIC AND NONELASTIC NEUTRON SCATTERING IN NIOBIUM, VANADIUM AND CARBON. AFWL-TR-65-216, 2(1966). System. LA12740-M, Los Alamos National Laboratory report, 1994. LA-13709-M, Los Alamos National Laboratory report, 2000.
    [184] 吴海成.CENDL-3.1宏观检验:~(12)C. 中国核数据中心,2006.
    [185] Oyama Y., Maekawa H. Measurement and Analysis of an Angular Neutron Flux on a Beryllium Slab Irradiated with Deuteron-Tritium Neutrons. Nucl. Sci. Eng., 97, 220-234 (1987).
    [186] Oyama Y., Yamaguchi S., Maekawa H. Experimental Results of Angular Neutron Spectra Leaking from Slabs of Fusion Reactor Candidate Materials (Ⅰ). JAERI-M 90-092 (1990).
    [187] 李庆杨,王能超,易大义编.数值分析.清华大学出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700