高精细度微光学腔及单原子的控制与测量
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
腔量子电动力学(Cavity QED)主要研究受限系统中量子化电磁场和原子之间的相互作用。该系统不但可以检验量子物理的基本理论,有助于人们从根本上认识光与原子相互作用的过程,而且近年来作为量子信息的一种方案引起了人们的高度关注。在强耦合腔量子电动力学过程中,单个原子与单个光子相互作用的拉比(Rabi)频率远大于腔场的衰减率和原子的自发辐射率,即腔内光与原子的相干相互作用强于整个系统的消相干过程,原子和腔场之间的演化在一定范围内可以看成相干演化过程,腔QED系统也因此成为研究光场与原子纠缠和消相干过程的重要手段。对腔QED过程的研究极大地促进了原子操控、单粒子测量等多方面的发展。
     一方面,随着激光冷却和俘获中性原子技术的发展成熟,人们可以将一团原子甚至于单个原子俘获在空间中特定的范围,并冷却到接近绝对零度。但是如何在微腔中确定性地控制单个原子并对其进行测量是光频区腔QED实验面临的一个主要问题。本文系统回顾了腔QED实验中内腔单原子的制备方案,并提出利用微光学偶极阱的单原子隔离效应实现微腔内确定性单原子的俘获方案。在实验上我们采用双级磁光阱,利用原子自由下落的实验方案建立了自己的实验系统,在一定程度上获得了原子的控制。
     另一方面,光频区腔QED实验应用腔长极短(几十到几百微米)的超高精细度(几十万到一百万)的光学F-P腔作为光子和原子相互作用的环境。由于光学F-P腔极高的精细度,内腔光场的的衰减率非常小;同时极短的腔长可以增强单个原子的电场强度,增大光子与原子之间的相互作用(即拉比频率),从而使整个系统达到强耦合。光学微腔的建立、测量和控制是整个实验过程中的另一个重要环节。本文详细介绍了光学微腔的搭建和参数的测量过程,并对微腔锁定和操控系统的实现做了具体的分析,最终实现了微腔的锁定并在实验上观察到原子自由下落穿过微腔的信号。
     同时,对于腔QED实验系统这样一个开放系统,只能通过微腔腔镜的透射信号获得腔内的光场与原子相互作用的信息,并通过透射光场获得原子的控制等。对于强耦合的腔QED系统,平均内腔光子数非常小,微腔出射光一般在pW量级。因此建立单粒子(单原子、单光子)水平上的测量系统是实验的另一个重要方面。本文从平衡差拍探测和单光子计数两方面分析了基于腔QED中的测量问题,建立了灵敏的测量系统。
     综合上面的几个方面,围绕腔QED系统中的若干问题,本文完成了以下的具体工作:
     1.用曲率半径为10 mm的一对腔镜搭建了用于腔QED实验的光学微腔,并严格测量了其有效腔长和几何腔长分别为L_(eff)=44.627±0.004μm和L=43.900±0.005μm,线宽为△v=47.8±1.5MHz,对应的光和原子的最大耦合系数和腔场衰减率分别为2π×39.2MHz和2π×23.9MHz。对比铯原子D2线的能级衰减率2π×2.61MHz,相应的临界光子数和临界原子数分别为m_o=0.0022和N_o=0.081。该光学微腔满足光场与原子之间强耦合的要求。
     2.系统分析了高精细度光学F-P腔的透射和反射,并在实验上通过对微腔两端入射光场的功率透射率和反射率以及相应的模式匹配效率的精确测量,在较高的精度上确定了任意非对称高精细度光学腔的有用和无用损耗,确定了实验所用微光学腔的透射和其他损耗分别为:T_1=5.0(9)ppm,T_2=4.5(8)ppm,l_1=33.2(7)ppm,l_2=45.4(6)ppm。
     3.自制了探测带宽为100MHz的射频探测器,并用其搭建了一套测量灵敏度可达3.6fW的差拍探测系统。对于我们建立起来的光学微腔,用其可以探测到的最小内腔平均光子数为0.001。
     4.建立了一个基于实际系统的模型,从理论上分析了由两个单光子探测模块(SPCM)组成的HB7探测系统对各种光场二阶相干度和Mandel因子测量时,由于多种因素,包括SPCM不能同时相应多个光子的特性、背景光场和有限的探测效率等,对实际结果的影响,并从实验上通过对相干光和热光场二阶相干度的测量证实了理论分析。
     5.系统分析了腔QED系统中微腔腔长的稳定性要求和其锁定环路中的噪声要求,并采用射频边带锁频技术,利用微腔透射光场将微腔锁定到透射峰的0.1,对应的微腔长度起伏小于2pm。
     6.在实验上用斩波法实现对微腔的控制,并利用用差拍探测系统观察到铯原子自由下落时在微腔腔模中的渡越信号。
The cavity quantum electrodynamics (Cavity QED) mainly focuses on the interaction between single atoms and quantized electromagnetic field in a confined space. It has been provided a platform to test the principles of quantum electrodynamics and help people to get a deep insight into the fundamentals of atom-photon interaction. As one of the main methods for quantum information process (QIP) the cavity QED system has been a hot research field recently to demonstrate quantum computation based on the manipulation of individual atoms inside a cavity. In the strong-coupling-regime cavity QED, the atom-photon interaction (the Rabi frequency) is much larger than atom's spontaneous decay and cavity field decay, which means that the coherence effect of atom-photon system is overwhelming the decoherence of the system. In this case the evolvement of the atom-photon-cavity system can be seen as a coherent system and it makes the cavity QED system one of the prospects studying quantum entanglements, quantum decoherence process and quantum information science. The research of cavity QED, in the meantime, boosts the research of atom manipulation, single quanta detection etc.
     On one hand, the technique of laser cooling and trapping for neutral atoms comprehensively enhanced the ability of manipulating large number atoms, even single atom, in the free space. In the cavity QED experiment, however, a single atom needs to be captured inside a tiny space formed by a microcavity and this is still the main challenge. We retrospect in this dissertation some methods of getting single atoms trapped in optical domain cavity QED experiment, including optical lattices and tiny single optical trap with which single atom can be trapped by the blockade effect. We propose a new method, combined the single atom optical trap and microcavity, to capture deterministic single atoms inside microcavity. At present time, based on the free-falling configuration, we have designed and built our double MOT system and realized atom transportation from up-MOT to down-MOT and demonstrated the atom falling to the cavity.
     On the other hand, the cavity used in the optical domain cavity QED experiments usually has a length of tens micrometers and the cavity finesse is very high (usually from 10~4 to 10~6). High quality cavity implies long pthoton life time inside the cavity, which dramatically decreases the dissipation of the intracacity fields. And the short cavity means small cavity volume with high amplitude of a single-photon field, consequently, strong atom-photon interaction (Rabi frequency). All these efforts can bring the whole photon-atom system to the strong coupling regime. Clearly the microcavity plays a critical role in the whole experiment, including the cavity building, the parameter measurement and the cavity control. As one of the main part of this dissertation, we will introduce in detail our microcavity building procedure, parameters measuring methods, microcavity locking and control schemes. And eventually by chopping the cavity locking beam we observed the atom transits based on the microcavity and atom control.
     Moreover, cavity QED is an open quantum system and the intracavity atom-photon dynamic process can be known only by the leakage of the field through the cavity mirrors. By measuring the output field one can not only know what happened inside the cavity, but also prepare certain quantum states and control the atoms by quantum feedback. However, in the strong coupling regime the intracavity mean-photon-number is so small that the leakage power is usually at the level of pW. So a very sensitive detection system on single quanta level is needed and it is another important issue for the cavity QED experiment. We have theoretically analyzed and experimentally investigated the ultra-sensitive detection based on the balanced heterodyne detection as well as the single photon counting detection.
     The main works of this dissertation are as follows:
     1. We have built a microcavity by means of two super-mirrors with 100 mm of radius and measured the effective and physical lengths as L_(eff)= 44.627±0.004μm and L = 43.900±0.005μm , respectively. We also measured cavity linewidth asΔv = 47.8±1.5MHz , the corresponding maximum atom-cavity coupling factor and the cavity field decay rate are 2π×39.2MHz and 2π×23.9MHz, respectively. Since the decay rates of the Cesium atom D2 line is 2π×2.61MHz, the corresponding critical photon number and critical atom number are m_0=0.0022 and N_0=0.081 , respectively. This implies that our microcavity fulfill the requirements of strong coupling.
     2. We theoretically analyzed the reflectivities and transmissions of an arbitary F-P cavity with incident beams on both sides. And by measuring the TEM_(00) mode matching efficiency we have accomplished the measurement experimentally with high precision and determined the transmission losses and other unwanted losses of an asymmetric microcavity. The measured results for mirror 1 and mirror 2 are: T_1 = 5.0(9) ppm , T_2 = 4.5(8)ppm, l_1 = 33.2(7)ppm,l_2 = 45.4(6)ppm, respectively.
     3. We built a balanced heterodyne detection system with two home-made RF detectors. The minimum detected power can be achieved as 3.7 fW, which corresponds to a mean intracavity photon number of 0.001 for our microcavity.
     4. We established a detection model based on the HBT scheme and modern single photon count module (SPCM) which is not photon number resolvable. The real experimental situations have been taken into account, including total detection efficiency, background noise and the property of SPCM. The detected second order degree of coherence, g~((2)), has been comprehensively analyzed. We also finished the experiment measurement of g~((2)) with coherent light and thermal light and confirmed our theoretical analyses.
     5. We analyzed the stability of the microcavity length and the requirement of feedback loop for the cavity locking. By using the Pound-Drever-Hall method the microcavity has been controlled with length stability of 2 pm.
     6. Atom transits were observed with heterodyne detection when carefully controlling the atom falling and the microcavity with a chopped auxiliary locking beam.
引文
[1] E. M. Purcell, "Spontaneous Emission Probability at Radio Frequencis (Abstract)," Phys.Rev. 69,681(1946).
    
    [2] P. L. Knight and P. W. Milonni, "Spontaneous Emission Between Mirrors ," Opt. Commun. 9, 119(1973).
    
    [3] G. Feher et al., "Spontaneous Emission of Radiation from an Electron Spin System," Phys.Rev. 109,221(1958).
    
    [4] K. H. Drexhage, in "Progress in Optics XII," (E. Wolf, ed,). Morth-Holland, New York (1974).
    
    [5] R. G. Hulet, E. S. Hilfer, and D. Kleppner "Inhibited Spontaneous Emission by a Rydberg Atom," Phys. Rev. Lett. 55, 2137 (1985).
    
    [6] E T Jaynes, and F W Cummings, "Comparison of Quantum and Semiclassical Radiation Theories with Application to the Beam Maser," Proc. IEEE 51,89(1963).
    
    [7] M. O. Scully and M. S. Zubairy, Quantum Optics, Cambridge University Press, 1997
    
    [8] Q. A. Turchette, Quantum optics with single atoms and single photons, PhD thesis California institute of technology 1997.
    
    [9] T. Pellizzari, S. A. Gardiner, J. I. Cirac, and P. Zoller, "Decoherence, continuous observation, and quantum computing: A cavity QED model," Phys. Rev. Lett. 75, 3788-3791 (1995); S. J. van Enk, J. I. Cirac, and P. Zoller, "Purifying two-bit quantum gates and joint measurements in cavity QED," Phys. Rev. Lett. 79, 5178-5181 (1997); J. Pachosand H. Walther, "Quantum computation with trapped ions in an optical cavity," Phys. Rev. Lett. 89, 187903 (2002); L. M. Duan, A. Kuzmich, and H. J. Kimble, "Cavity QED and quantum-information processing with "hot" trapped atoms," Phys. Rev. A 67, 032305 (2003); X. X. Yi, X. H. Su, and L. You, "Conditional quantum phase gate between two 3-state atoms," Phys. Rev. Lett. 90, 097902 (2003); L. You, X. X. Yi, and X. H. Su, "Quantum logic between atoms inside a high-Q optical cavity," Phys. Rev. A 67, 032308 (2003); L. M. Duan and H. J. Kimble, "Scalable Photonic Quantum Computation through Cavity-Assisted Interactions," Phys. Rev. Lett. 92, 127902 (2004); L. M. Duan, B. Wang, and H. J. Kimble "Robust quantum gates on neutral atoms with cavity-assisted photon scattering," Phys. Rev. A 72, 032333 (2005).
    
    [10] X. Maitre et al., "Quantum Memory with a Single Photon in a Cavity," Phys. Rev. Lett. 79, 769 (1997).
    
    [11] M. Combescot and C. Tanguy, "New criteria for bosonic behavior of excitons," Europhys. Lett. 55,390(2001).
    
    [12] H. Mabuchi, A. C. Doherty, "Cavity Quantum Electrodynamics: Coherence in Context," Science 298, 1372 (2002).
    
    [13] G. Nogues et al., "Seeing a single photon without destroying it," Nature 400, 239 (1999).
    
    [14] A. Rauschenbeutel et al., "Coherent Operation of a Tunable Quantum Phase Gate in Cavity QED," Phys. Rev. Lett. 83, 5166 (1999 ).
    
    [15] B. T. H. Varcoe, S. Brattke, M. Weidinger, and H. Walther, "Preparing pure photon number states of the radiation field," Nature 403, 743 (2000).
    
    [16] P. Bertet et al., "Generating and Probing a Two-Photon Fock State with a Single Atom in a Cavity," Phys. Rev. Lett. 88, 143601 (2002).
    
    [17] M. Weidinger, B. T. H. Varcoe, R. Heerlem, and H. Walther, "Trapping States in the Micromaser," Phys. Rev. Lett. 82, 3795 (1999).
    
    [18] S. Brattke, B. T. H. Varcoe, and H. Walther, "Generation of Photon Number States on Demand via Cavity Quantum Electrodynamics," Phys. Rev. Lett. 86, 3534 (2001).
    
    [19] P. Bertet et al., "Direct Measurement of the Wigner Function of a One-Photon Fock State in a Cavity," Phys. Rev. Lett. 89, 200402 (2002).
    
    [20] A. Auffeves et al., "Entanglement of a Mesoscopic Field with an Atom Induced by Photon Graininess in a Cavity," Phys. Rev. Lett. 91, 230405 (2003).
    
    [21] M. Brune et al., "Observing the Progressive Decoherence of the Meter in a Quantum Measurement," Phys. Rev. Lett. 77, 4887 (1996).
    
    [22] E. Hagley et al., "Generation of Einstein-Podolsky-Rosen Pairs of Atoms," Phys. Rev. Lett. 79,1 (1997).
    
    [23] A. Rauschenbeutel et al., "Step-bystep engineered multiparticle entanglement", Science 288, 2024 (2000).
    
    [24] A. Rauschenbeutel et al., "Controlled entanglement of two field modes in a cavity quantum electrodynamics experiment," Phys. Rev. A 64, 050301(R) (2001).
    [25] S.Osnaghi, et al., "Coherent Control of an Atomic Collision in a Cavity" Phys. Rev. Lett. 87,037902(2001).
    [26] M. Brune et al., "Quantum Rabi Oscillation: A Direct Test of Field Quantization in a Cavity," Phys. Rev. Lett. 76, 1800 (1996).
    [27] T. Meunier et al., "Rabi Oscillations Revival Induced by Time Reversal: A Test of Mesoscopic Quantum Coherence," Phys. Rev. Lett. 94, 010401(2005).
    [28] R Maioli et al., "Nondestructive Rydberg Atom Counting with Mesoscopic Fields in a Cavity," Phys. Rev. Lett. 94, 113601(2005).
    [29] S. Nuβmann et al., "Submicron Positioning of Single Atoms in a Microcavity," Phys. Rev. Lett. 95, 173602 (2005).
    [30] K. M. Fortier et al., "Deterministic loading of individual atoms to a high-finesse optical cavity," arxiv:0703156v1 (2007).
    [31] Q. A. Turchette, R. J. Thompson, and H. J. Kimble, "One-dimensional atoms," Appl. Phys. B60, S1 (1995).
    [32] Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, "Measurement of Conditional Phase Shifts for Quantum Logic," Phys. Rev. Lett. 75, 4710 (1995).
    [33] K. M. Birnbaum et al., "Photon blockade in an optical cavity with one trapped atom," Nature 436, 87 (2005).
    [34] C. J. Hood et al., "The Atom-Cavity Microscope: Single Atoms Bound in Orbit by Single Photons," Science 287, 1447 (2000).
    [35] P. W. H. Pinkse et al., "Trapping an atom with single photons," Nature 404, 365 (2000).
    [36] A. C. Doherty et al., "Trapping of single atoms with single photons in cavity QED," Phys. Rev. A 63, 013401 (2000).
    [37] J. McKeever et al., "Experimental realization of a one-atom laser in the regime of strong coupling," Nature 425, 268 (2003).
    [38] J. McKeever et al., "Deterministic Generation of Single Photons from One Atom Trapped in a Cavity" Science 303, 1992 (2004).
    [39] M. Hennrich, T. Legero, A. Kuhn, and G. Rempe, "Vacuum-Stimulated Raman Scattering Based on Adiabatic Passage in a High-Finesse Optical Cavity," Phys. Rev. Lett. 85, 4872 (2000).
    
    [40] A. Kuhn, M. Hennrich, and G. Rempe, "Deterministic Single-Photon Source for Distributed Quantum Networking," Phys. Rev. Lett. 89, 067901 (2002).
    
    [41] G. T. Foster, L. A. Orozco, H. M. Castro-Beltran, and H. J.Carmichael "Quantum State Reduction and Conditional Time Evolution of Wave-Particle Correlations in Cavity QED," Phys. Rev. Lett. 85, 3149 (2000).
    
    [42] W. P. Smith, J. E. Reiner, L. A. Orozco, S. Kuhr, and H. M.Wiseman "Capture and Release of a Conditional State of a Cavity QED System by Quantum Feedback," Phys. Rev. Lett. 89, 133601 (2002).
    
    [43] J. Ye, D. W. Vernooy, and H. J. Kimble "Trapping of Single Atoms in Cavity QED," Phys. Rev. Lett. 83, 4987(1999).
    
    [44] J. McKeever et al., "State-Insensitive Cooling and Trapping of Single Atoms in an Optical Cavity," Phys. Rev. Lett. 90, 133602 (2003).
    
    [45] J. McKeever et al., "Determination of the Number of Atoms Trapped in an Optical Cavity," Phys. Rev. Lett. 93, 143601 (2004).
    
    [46] J. A. Sauer et al., "Cavity QED with optically transported atoms," Phys. Rev. A 69, 051804(R)(2004).
    
    [47] S. NuPmann et al., "Vacuum-stimulated cooling of single atoms in three dimensions," Nature Physics 1. 122 (2005).
    
    [48] A.D.Boozer et al., "Cooling to the Ground State of Axial Motion for One Atom Strongly Coupled to an Optical Cavity," Phys. Rev. Lett. 97, 083602 (2006).
    
    [49] G. Hechenblaikner, M. Gangl, P. Horak, and H. Ritsch "Cooling an atom in a weakly driven high-Q cavity," Phys. Rev. A 58, 3030(1998)
    
    [50] P. Maunz et al., "Cavity cooling of a single atom," Nature 428, 50 (2004)
    
    [51] R.J.Thompson et al., "Observation of normal-mode splitting for an atom in an optical cavity," Phys. Rev. Lett. 68, 1132 (1992).
    
    [52] A. Boca et al., "Observation of the Vacuum Rabi Spectrum for One Trapped Atom," Phys. Rev. Lett. 93, 233603(2004); P. Maunz et al., "Normal-Mode Spectroscopy of a Single-Bound-Atom-Cavity System," Phys. Rev. Lett. 94, 033002 (2005).
    
    [53] D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streed, and H. J. Kimble, "High-Q measurements of fused-silica microspheres in the near infrared," Opt. Lett. 23, 247 (1998)
    [54] D. W. Vernooy et al., "Well-dressed states for wave-packet dynamics in cavity QED" Phys.Rev.A 56, 4287 (1997).
    
    [55] D. K. Armaini, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip" Nature All, 925 (2003).
    
    [56] Takao Aoki et al., "Observation of strong coupling between one atom and a monolithic microresonator" Nature 443, 671 (2006).
    
    [57] M. Keller, H. Walther, et al., "Continuous Generation of Single Photons with Controlled Waveform in an Ion-Trap Cavity System," Nature 431, 1075 (2004).
    
    [58] G. S. Solomon, M. Pelton, and Y. Yamamoto, "Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity," Phys. Rev. Lett. 86, 3903 (2001).
    
    [59] J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, "Design of photonic crystal microcavities for cavity QED," Phys. Rev. E 65, 016608 (2001).
    
    [60] J. Vuckovic and Y. Yamamoto, "Photonic crystal microcavities for cavity quantum electrodynamics with a single quantum dot," Appl. Phys. Lett. 82, 2374 (2003).
    
    [61] Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, "Measurement of Conditional Phase Shifts for Quantum Logic," Phys. Rev. Lett. 75, 4710 (1995).
    
    [62] P. Munstermann, et al., "Single slow atoms from an atomic fountain observed in a high-finesse optical cavity, " Opt. Comm. 159, 63 (1999).
    
    [63] G. Rempe, R. J. Thompson, H. J. Kimble, and R. Lalezari, and R. Lalezari, "Measurement of ultralow losses in an optical interferometer," Opt. Lett. 17, 363-365 (1992).
    
    [64] C. J. Hood, M. S. Chapman, T. W. Lynn, and H. J. Kimble, "Real-time cavity QED with single atoms," Phys. Rev. Lett. 80, 4157 (1998).
    
    [65] C. J. Hood, H. J. Kimble, and J. Ye, "Characterization of high-finesse mirrors Loss, phase shifts, and mode structure in an optical cavity," Phys. Rev. A 64, 033804 (2001).
    
    [66] H. Mabuchi, J. Ye, and H. J. Kimble, "Full observation of single-atom dynamics in cavity QED," Appl. Phys.B 68, 1095 (1999).
    
    [67] Z. Hu and H. J. Kimble, "Observation of a single atom in a magneto-optical trap." Opt. Lett. 19, 1888(1994).
    
    [68] D. Haubrich, et al., "Observation of individual neutral atoms in magnetic and magneto-optical traps" Europhys. Lett. 34, 663 (1996).
    [69] R. Grimm, M. Weidenm黮er, and Y. B. Ovchinnikov, "Optical dipole traps for neutral atoms," Advances in Atomic, Molecular and Optical Physics 42, 95-170 (2000).
    [70] D. Frese et al., "Single Atoms in an Optical Dipole Trap: Towards a Deterministic Source of Cold Atoms" Phys. Rev. Lett. 85, 3777 (2000).
    [71] S. J. M. Kuppens, K. L. Corwin, K. W. Miller, T. E. Chupp, and C. E. Wieman, "Loading an optical dipole trap," Phys. Rev. A 62, 013406 (2000).
    [72] N. Schlosser, G. Reymond, Ⅰ. Protsenko, and P. Grangier, "Sub-poissonian loading of single atoms in a microscopic dipole trap," Nature 411, 1024 (2001).
    [73] Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, "Measurement of Conditional Phase Shifts for Quantum Logic," Phys. Rev. Lett. 75, 4710 (1995).
    [74] S. Kuhr et al. "Deterministic Delivery of a Single Atom," Science 293,278 (2001).
    [75] S. Kuhr et al., "Coherence Properties and Quantum State Transportation in an Optical Conveyor Belt," Phys. Rev. Lett. 95, 099901 (2005).
    [76] J. A. Sauer et al., "Cavity QED with optically transported atoms," Phys. Rev. A 69, 051804(R) (2004).
    [77] N. Schlosser et al., "Collisional Blockade in Microscopic Optical Dipole Traps" Phys. Rev. Lett. 89 023005(2002).
    [78] Y. R. E Sortais et al., "Diffraction limited optics for single atom manipulation" Phys. Rev. A 75, 013406 (2007).
    [79] S. Yoon, et al., "Definitive number of atoms on demand: controlling the number of atoms in a few-atom magneto-optical trap," Appl. Phys. Lett. 88, 211104 (2006).
    [80] 刘涛,铯原子磁光阱及光学偶极俘获的实验与理论研究,山西大学博士毕业论文,2004年。
    [81] 闰树斌,耿涛,张天才,王军民“用于腔量子电动力学研究的铯原子双磁光阱,”中国激光 33,190(2006)。
    [82] 耿涛,闫树斌,王彦华,杨海菁,张天才,王军民“用短程飞行时间吸收谱对磁光阱中冷原子温度的测量,”物理学报,54,11(2005)。
    [83] Shubin Yan, Tao Geng, Tiancai Zhang, and Junmin Wang, "Continuously transferring cold atoms in cesium double magneto-optical trap," Chinese Physics 15, 1746 (2006).
    [84] 闫树斌,用于腔量子电动力学的铯原子双磁光阱及其冷原子的输运研究,山西 大学博士毕业论文,2006年。
    [85] 耿涛,基于光学腔量子电动力学的原子操控,山西大学博士毕业论文,2006年。
    [86] N. Hodgson and H. Weber, Laser resonators and beam propagation-Fundamentals, advanced concepts and application (Second Edition) Springer 2005
    [87] Amnon Yariv, Quantum Electronics (Third edition), John wiley & sons, 1988 p147-148.
    [88] 李利平,刘涛,李刚,张天才,王军民,“高精细度光学腔中低损耗的测量”物理学报53,1401(2004)。
    [89] W. Lichton, "Precise wavelength measurements and optical phase shifts,Ⅰ. General throry," J. Opt. Soc. Am. A 2,1869 (1985).
    [90] R. G DeVoe et al., "Precision optical-frequency-difference measurements," Phys. Rev. A 37, 1802(R) (1988).
    [91] J. S. Seeley "Resolving power of multilayer filters," J. Opt. Soc. Am. 54, 342 (1964).
    [92] T. W. Lynn, "Measurement and control of individual quanta to cavity QED," PhD thesis, California institute of technology, 2003.
    [93] Daniel A. Steck, "Cesium D Line Data" http://steck.us/alkalidata, (1998).
    [94] A. Sappey, E. Hill, T. Settersten, and M. Linne, "Fixed-frequencycavity ringdown diagnostic for atmospheric particulate matter," Opt. Lett. 23, 954 (1998).
    [95] P. Fritschel, G. Gonzalez, B. Lantz, P. Saha, and M. Zucker, "High Power Interferometric Phase Measurement Limited by Quantum Noise and Application to Detection of Gravitational Waves," Phys. Rev. Lett. 80, 3181 (1998).
    [96] R. J. Jones, J.-C. Diels, J. Jasapara, and W. Rudolph, "Stabilization of the frequency, phase, and repetition rate of an ultra-short pulse train to a Fabry-Perot reference cavity," Opt. Comrnun. 175, 409 (2000).
    [97] P. Grangier, G Reymond, and N. Schlosser, "Implementations of Quantum Computing Using Cavity Quantum Electrodynamics Schemes," Fortschr. Phys. 48, 859(2000).
    [98] J. Ye and T. W. Lynn, "Applications of optical cavities in modem atomic, molecular, and optical physics," in Advances in Atomic Molecular and Optical Physics (B. Bederson and H. Walther, Eds., Academic, 2003), p. 1.
    [99] D. Z. Anderson, J. C. Frisch, and C. S. Masser, Mirror reflectometer based on optical cavity decay time," Applied Optics 23, 1238 (1984).
    [100] K. An, B. A. Sones, C. Fang-Yen, R. R. Dasari, and M S. Feld, "Optical bistability induced by mirror absorption: measurement of absorption coefficients at the sub-ppm level," Opt. Lett. 22, 1433 (1997).
    [101] Gang Li, Yuchi Zhang, Yuan Li, Xiaoyong Wang, Jing Zhang, Junmin Wang, and Tiancai Zhang, "Precision Measurement of Ultra-low Losses of an Asymmetric Optical Micro-cavity," Applied Optics 45, 7628 (2006).
    [102] Hans-A. Bachor and Timothy C. Ralph, A Guide to Experimental in Quantum Optics, Second, Revised and Enlarged Edition, (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 2004), p124.
    [103] C. Fabre, R. G. DeVoe, and R. G. Brewere, "Ultrahigh-finesse optical cavities," Opt. Lett. 11,365 (1986).
    [104] T. W. Lynn, K. Birnbaum, and H. J. Kimble, "Strategies for real-time position control of a single atom in cavity QED," Journal of Optics B: Quantum and Semiclassical Optics, 7, S215 (2005).
    [105] H. Hanbury-Brown, and R. Q. Twiss, "A test of a new type of stellar interferometer on sirius," Nature 178, 1046 (1956).
    [106] A.雅里夫著李宗琦译高鼎三校光电子学导论科学出版社1983.
    [107] Gang Li, Liping Li, Zhijing Du, Tao Liu, Tiancai Zhang, Junmin Wang, "Ultra-low mean-photon-number measurement with balanced optical heterodyne detection," Chinese Physics Letters, 21,671 (2004).
    [108] Agilent spectrum analysis basics, Application Note 150.
    [109] N. S. Nightingale, "A new silicon avalanche photodiode counting detector module for astronomy,"ExperimentalAstronomy 1,407 (1991).
    [110] J. Han and H. G Craighead, "Separation of long DNA molecules in a microfabricated entropic trap array," Science 288, 1026 (2000).
    [111] P D. Townsend, "Experimental investigation of the performance limits for first telecommunications-window quantum cryptography systems," IEEE Photonics Technology Letters 10, 1048 (1998); J. G Rarity, E R. Tapster, and E M. Gorman, "Secure free-space key exchange to 1.9km and beyond,"Journal of Modern Optics 48, 1887 (2001).
    [112] A.M. Steinberg, E G. Kwiat, and R. Y. Chiao, "Measurement of the single-photon tunneling time," Phys. Rev. Lett. 71, 708 (1993); D.V. Strekalov, T.B. Pittman, A.V. Sergienko, Y.H. Shih, and P.G. Kwiat, "Postselection-free energy-time entanglement,"Phys. Rev. A 54, R1-R4 (1996); L.-M. Duan, M. D. Lukin, J. L. Cirac, and P. Zoller, "Long-distance quantum communication with atomic ensembles and linear optics,"Nature 414, 413 (2001).
    [113] A. J. Miller, S. W. Nam, J. M. Martinis, and A. V. Sergienko, "Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination," Appl. Phys. Lett. 83, 791 (2003).
    [114] M. Fujiwara, and M. Sasaki, "Multiphoton discrimination at telecom wavelength with charge integration photon detector," Appl. Phys. Lett. 86, 111119 (2005).
    [115] http ://www.photondetection.com/pub/top/
    [116] T.E. Ingerson, R.J. Keamey, and R.L. Coulter, "Photon counting with photodiodes," Appl. Opt. 22, 2013 (1983).
    [117] M. Ghioni, S. Cova, F. Zappa, and C. Samori, "Compact active quenching for fast photon counting with avalanche photodiodes,"Review Scientific Instruments 67, 3440 (1996).
    [118] 赵峰 郑力明 廖常俊 刘颂豪“红外单光子探测器暗计数的研究”激光与光电子学进展 42,29(2005)。
    [119] Gang Li, Tiancai Zhang, Yuan Li, and Junmin Wang, "Photon statistics of light fields based on single-photon-counting modules," Phys. Rev. A 71, 023807(2005).
    [120] H. J. Kimble, M. Dagenais, and L. Mandel, "Photon Antibunching in Resonance Fluorescence," Phys. Rev. Lett. 39, 691 (1977).
    [121] F. Diedrich, and H. Walther, "Nonclassical radiation of a single stored ion," Phys. Rev. Lett. 58, 203 (1987); L. Fleury, J.-M. Segura, G. Zumofen, B. Hecht, and U. P. Wild, "Nonclassical Photon Statistics in Single-Molecule Fluorescence at Room Temperature," Phys. Rev. Lett. 84, 1148 (2000).
    [122] F. Treussart, R. Alleaume, V. Le Floc'h, L. T. Xiao, J.-M. Courty, and J.-F. Roch, "Direct Measurement of the Photon Statistics of a Triggered Single Photon Source," Phys. Rev. Lett. 89, 093601 (2002).
    [123] C. Brunel, B. Lounis, P. Tamarat, and M. Prrit, "Triggered Source of Single Photons based on Controlled Single Molecule Fluorescence," Phys. Rev. Lett. 83, 2722 (1999).
    [124] C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, "Triggered Single Photons from a Quantum Dot," Phys. Rev. Lett. 86, 1502 (2001).
    [125] C, Kurtsiefer, S. Mayer, R Zarda, and H. Weinfurter, "Stable Solid-State Source of Single Photons," Phys. Rev. Lett. 85, 290 (2000); A. Beveratos, R. Brouri, T. Gacoins, A. Villing, J.-R Poizat, and E Grangier, "Single Photon Quantum Cryptography," Phys. Rev. Lett. 89, 187901 (2002).
    [126] L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, Cambridge University Press, 1995.
    [127] R. Short, and L. Mandel, "Observation of Sub-Poissonian Photon Statistics," Phys. Rev. Lett. 51,384 (1983).
    [128] L. T. Xiao, Y. T. Zhao, T. Huang, J. M. Zhao, W. B. Yin, and S. T. Jia, "Effect of Background Noise on the Photon Statistics of Triggered Single Molecules," Chin. Phys. Lett. 21,489 (2004).
    [129] J. A. Abate, H. J. Kimble, and L. Mandel, "Photon statistics of a dye laser," Phys. Rev. A 14, 788 (1976).
    [130] R. A. Campos, B. E. A. Saleh, and M. C. Teich, "Quantum-mechanical lossless beam splitter: SU(2) symmetry and photon statistics," Phys. Rev. A 40, 1371 (1989).
    [131] Gang Li, Tiancai Zhang, Yuan Li, and Junmin Wang, "Correction of photon statistics of quantum states in single photon detection," Proc. of SPIE 5631,134 (2005).
    [132] F. T. Arecchi, "Measurement of the Statistical Distribution of Gaussian and Laser Sources," Phys. Rev. Lett. 15, 912 (1965); L. Basano, and P. Ottonello, "New correlator-photon counter to illustrate the fundamentals of light statistics" Am. J. Phys. 50, 996 (1982).
    [133] Richard C. Dorf, and Robert H. Bishop, Modern Control Systems (Ninth Edition),科学出版社,培生教育出版集团,2002
    [134] J.H.Shirley,“Modulation transfer processes in optical heterodyne saturation spectroscopy," Opt.Lett 7,537(1982).
    [135] 刘涛,李利平,闫树斌,雷宏香,张天才,王军民,“铯原子D2线调制转移光谱的实验研究,”中国激光 30,791(2003)。
    [136] P. Pinkse and G. Rempe, "Single atoms moving in a high-finesse cavity," "Cavity-Enhanced Spectroscopies", Roger van Zee and Patrick Looney (Eds.) Experimental methods in the physical sciences 40, 255-295 Elsevier Science, (2002).
    [137] G. Hechenblaikner, M. Gangl, P. Horak, and H. Ritsch "Cooling an atom in a weakly driven high-Q cavity," Phys. Rev. A 58, 3030(1998).
    [138] 杜志静,张玉驰,王晓勇,闰树斌,张天才,王军民,“不同波长的激光器通过F-P腔相对于铯原子谱线的锁定”光学学报26,452(2006)。
    [139] 王晓勇,李刚,张玉驰,王军民,张天才,“基于特定频率的高精细度光学微腔的控制,”光电子激光17,64(2006增刊)。
    [140] R. W. P. Drever et al., "Laser phase frequency stabilization using an optical resonator," Appl. Phys. B 31, 97 (1983).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700