绕线式异步电机转子IGBT斩波调阻调速系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国目前大部分起重机的拖动电机是绕线式异步电动机,一般采用有级开环调速方法,为了适应现代化生产的要求,亟待进行技术改造,在有些应用场合,转子斩波调阻调速法是一种比较经济实用的方法。基于可控硅的绕线式电机的转子斩波调阻法是一个已经成熟的技术,为了适应电力电子技术的发展,本文探讨了基于IGBT的转子斩波调阻调速法。采用IGBT的斩波电路可以省去原来可控硅电路所需的平波电抗器和强迫关断电路,因此斩波电路结构可以得到极大的简化。文中提出了以IGBT、二极管、电阻和电解电容等四个元器件组成的斩波电路,经实验和仿真证明不仅能有效地调节转子电阻,而且同时兼有IGBT关断吸收电路的作用,能显著改善IGBT的关断轨迹。本文建立了该调速系统的准动态数学模型,首次推导出了IGBT的占空比与斩波电路等效电阻之间的非线性关系,并给出了该斩波回路的工程设计方法,确保了所选择的电阻和电容值不仅能使系统达到指定的调速范围,而且还能使IGBT在关断时避免承受功率尖峰。鉴于有些应用场合需要有轻载低速的工作点,本文在转子斩波调阻的基础上,增加了定子降压调速,推导出了定子电压的计算公式。本文还给出了该系统的动态结构框图,提出了电流环和转速环的PI调节器的设计方法,实现了起重机的无级调速和闭环控制。
     为了用电路仿真软件PSPICE辅助本课题的研究工作,本文以IGBT为例研究了PSPICE中组合模型特性参数的辨识问
    
    2(X)1年上海大学博士学位论文
    题,并成功地将BP神经网络应用于IGBT组合模型静态特性参
    数的辨识,使得器件手册上的静态特性可以通过人工神经网络
    的运算方便地转换为相应的组合模型参数,为组合模型参数的
    辨识寻找到了一条捷径。
     鉴于用于IGBT组合模型静态特性参数辨识的BP网络在训
    练时存在很多局部极小点的情况,本文提出了一种改进的自适
    应变步长梯度算法(IAVSG),使网络避免了陷人局部极小点。
    采用该算法后,网络训练时的收敛速度大为提高。
Wound-rotor induction motors are used in a large amount of cranes in our country, and are controlled in discrete steps and open loop. These equipments are not suitable in some areas nowadays. So their reforming has become quite urgent. In some cases, rotor resistance chopper control scheme is economic and efficient. The thyristor- chopper control scheme has already been investigated thoroughly. This paper probes into the rotor resistance IGBT chopper control system for the induction motor to follow the development of modern power electronics. The IGBT-controlled chopper circuit can be greatly simplified as the smoothing inductor and commutation circuit of the thyristor-controlled chopper circuit are no more required. In this paper a novel chopper circuit consisting only four elements: one IGBT, one diode, one resistor and one electrolytic capacitor is presented. Experiments and simulation have shown that the circuit can not only adjust the resistance in the rotor circuit efficiently, but also absorb the spik
    es across IGBT when the switch is turned off, and the turn-off track of IGBT can be improved a lot. The equivalent circuit of the motor with this circuit has been analyzed in detail, and the nonlinear mapping between the equivalent resistance and the duty cycle is deduced. The value of the resistor and capacitor can be determined according to the design method given in the paper so that the specified speed ratio can be
    
    
    
    
    
    achieved and the power spikes across IGBT when it is turned-off can be weakened or avoided. In our system, the stator voltage control is also applied as a secondary strategy, so that the motor can also run at low speeds with light load. The practical calculation method of the stator voltage has also been introduced.
    In order to simulate the above system with old version of PSPICE, we have investigated the identification of model parameters of IGBT composite model in this software, and BP neural network has been applied. With the help of neural network, the steady-state behavior related parameters of IGBT can be acquired quite easily.
    During the training of the BP network in this application, we have observed that there exist a large amount of local minimal points. We have developed an unproved adaptive variable step gradient (IAVSG) algorithm, so that the net can jump out of the local minimums more efficiently, and the convergence speed can be greatly increased.
引文
1 陈伯时.电力拖动自动控制系统.北京:机械工业出版社,1992
    2 Günter Cieβow, Siegfried Kulka, Die Anwendung yon pulsgesteuerten Wiederstanden bei Gleichstrom-Reihenschluβmotoren und Drehstrom- Schleifringlaufermotoren. AEG-Mitteilungen: 1965; 55(2): 123-129
    3 Sen P.C., Ma K.H.J. Rotor Chopper Control for Induction Motor Drive: TRC Strategy. IEEE Trans. IA, 1975;11(1): 43-49
    4 Sen P.C., Ma K.H.J. Constant Torque Operation of Induction Motors Using Chopper in Rotor Circuit. IEEE Trans. IA, 1978;14(5): 408-414
    5 Joshi P.R., Dubey G.K. Optimum DC Dynamic Braking Control of an Induction Motor Using Thryster Chopper Controlled Resistance. IEEE Trans. IECI, 1974;21(2): 60-65
    6 Dubey G.K., Pillai S.K., Reddy P.P. Analysis and Design of a Doubly Fed Chopper for Speed Control of Slip-Ring Induction Motors. IEEE Trans. IECI, 1975;22(4): 522-538
    7 Wani N.S., Ramamoorty M. Chopper Controlled Slipring Induction Motor. IEEE Trans. IECI, 1977; 24(2): 153-161
    8 Ramamoorty M., Wani N. S. Dynamic Model for a Chopper -Controlled Slip-Ring Induction Motor. IEEE Trans. IECI,1978;25(3): 260-266
    9 Mahmoud S.A., Lashin A.E., et al. Torque/Speed Control of Wound Rotor Induction Motors using a DC Chopper Circuit. Electric Machines and Power Systeras, 1986;11(1): 25-39
    10 Abdelfattah M.Y., Abdelaziz A.R. Performance Study of a ChopperControlled Induction Motor. Electric Machines and Power Systems, 1991; 19:81-102
    
    
    11 徐云舫,陈津侯,童福尧等.绕线型感应电动机可控硅控制转子电阻无级调速系统.电气自动化,1994;(1):2-4
    12 王成山,黎家玲,晋帆.大功率异步电机转子电阻斩波调阻调速装置中斩波器得参数设计.电气自动化,1992;(1):8-15
    13 王耀德.异步电动机的转子斩波调速系统.电气自动化,1984;(6):4-11
    14 惠毅,张广溢.斩波调速系统数字触发器的设计.电气自动化,1987;(4):7-10
    15 Srinivasan P.S., Velayndhan C., Charlu P.K. A Solid State Resistance Controller for 3-Phase Slip-Ring Induction Motor. Electric Machines and Power System, 1981;6:153-156
    16 Ramamoorty M., Arunachalam M. Dynamic Performance of A ClosedLoop Induction Motor Speed Control System with Phase-Controlled SCR's in the Rotor. IEEE Trans. IA, 1979; 15(5): 489-493
    17 Chin S.M., Chung C.W., et al. Starting Control of Wound-Rotor Induction Motors by Using Chopper-Controlled Resistance in Rotor Circuit. Conf Record-IAS Annual Meeting, 1989
    18 张浩然,陈松立,谭国俊.转子电阻斩波调节的交流调速系统.电气传动自动化,1997;19(1):12-16
    19 管宏飞.港口起重机用绕线异步电机转子斩波调阻调速系统的研究.上海大学硕士论文,1998
    20 何湘宁,B.W.威廉姆斯,T.C.格林.组合功率开关半导体模型及其参数敏感性分析.电工技术学报,1995;(3):72-77
    21 Chang Su Mitter, Allen R. Hefner, Dan Y. Chen et al. Insulated Gate Bipolar Transistor (IGBT) Modeling Using IG-Spice. IEEE Trans. IA, 1993; 30(1), 24-33
    22 International Rectifier. IGBT Designer's Manual. California: International Rectifier, 1994
    
    
    23 Allen R. Hefner, David L. Blackburn. An Analytical Model for the Steady-State And Transient Characteristics of the Power Insulated-Gate Bipolar Transistor. Solid State Electronics, 1988; 31(10): 1513-1532
    24 Allen R. Hefner. Modeling Buffer Layer IGBT's for Circuit Simulation. IEEE Trans. Power Electronics, 1995;10(2):111-123
    25 Allen R. Hefner. An Improved Understanding for the Transient Operation of the Power Insulated Gate Bipolar Transistor(IGBT). IEEE Trans. Power Electronics, 1990; 5(4): 459-468
    26 Allen R. Hefner, Daniel M. Diebolt. An Experimentally Verified IGBT Model Implemented in the Saber Circuit Simulator. IEEE Trans. Power Electronics, 1994;9(5), 532-542
    27 Di-Son Kuo, Chenming Hu. An Analytical Model for the Power Bipolar-MOS Transistor. Solid-State Electronics, 1986; 29(12): 1229-1237
    28 B. Jayant Baliga, Michael S. Adler, Robert P. Love et al, The Insulated Gate Transistor: A New Three-Terminal MOS-Controlled Bipolar Power Device. IEEE Trans. ED, 1984;31(6): 821-828
    29 Holger Goebel. A Unified Method for Modeling Semiconductor Power Devices. IEEE Trans. PE, 1994;9(5): 497-505
    30 Allen R. Hefner. An Investigation of the Drive Circuit Requirements for the Power Insulated Gate Bipolar Transistor (IGBT). IEEE Trans. PE, 1991; 6(2): 208-219
    31 Allen R. Hefner. Analytical Modeling of Device-Circuit Interactions for the Power Insulated Gate Bipolar Transistor (IGBT). IEEE Trans. IA, 1990; 26(6): 995-1005
    32 崔扬,贾林,王正元.IGBT SPICE模型的建立.电力电子技术, 1996,(4):87-89
    33 刘晖,余岳辉.IGBT关断瞬态特性分析.微电子学,1994;24(6):55-57
    
    
    34 Kuo J.B., Chiang C.S. Turn-On Transient Analysis of A Power IGBT with An Inductive Load in Series with A Resistive Load. Solid-State Electronics, 1994;37(9): 1673-1676
    35 Aimin Li, Xiangning He, Zhaoming Qian. A Circuit Simulation Model for An Ultra-fast IGBT And Analysis of Parameter Sensitivity. Proceedings ICPE'95. Seoul, 1995
    36 欧榕津,王朝英.IGBT的SPICE模拟.微电子学,1994;24(2):29-32
    37 Yingyu Zhou, Lunjun Hsu. A Practical SPICE Macro Model for the IGBT. IECON Proceedings, 1993;2:762-766
    38 Franc Mihalic, Karel Jezernik, Klaus Krischan etc. IGBT SPICE Model. IEEE Trans.IE, 1995;42(1): 98-105
    39 马莉,何湘宁,周景海等.用PSPICE仿真GTO的瞬态特性.电力电子技术,1996;(4):90-93
    40 Han-Soo Kim, Young-Ho Chou, Seong-Dong Kim, et al. IEEE PESC'93, 71-74
    41 Franc Mihalic, Miro Milanoviae,Danilo Zadravec, et al. IGBT SPICE Macro Model. IEEE IECON'92, 240-245
    42 Sheng K., Finney S.J., Williams B.W. Fast and Accurate IGBT Model for PSPICE. Electronics Letters, 1996;32(25): 2294-2295
    43 欧榕津,王朝英.IGBT在SPICE中的应用.现代电子技术,1994;(3):23-25
    44 洪乃刚,温郑铨.电力电子器件的PSPICE二极管—可控开关模型.电力电子技术,1997;(1):97-99
    45 姚立真.通用电路模拟技术.北京:电子工业出版社,1994
    46 袁寿财.新型功率器件IGBT研制.电力电子技术,1997;(1):77-79
    47 何湘宁.用PSPICE多瞬态分析法建立新型电力电子器件的模型特性.电力电子技术,1995;(3):62-66
    
    
    48 李爱民,何湘宁,钱照明.超快速IGBT电路仿真模型及其参数灵敏度分析.电力电子技术,1996;(4):61-65
    49 张立民.人工神经网络的模型及其应用.上海:复旦大学出版社,1993
    50 袁曾任.人工神经网络及其应用.北京:清华大学出版社,1999
    51 Ehud.D.Karnin. A Simple Procedure for Prtming Back-Propagation Trained Neural Networks. IEEE Trans. NN, 1990; 1(2): 239-242
    52 Jacques de Villiers, Etienne Barnard. Backpropagation Neural Nets with One And Two Hidden Layers. IEEE Trans. NN, 1992; 4(1): 136-141
    53 Auckland D.W., Pickup I.E.D., Shuttleworth R., et al. Artificial Neural Network-Based Method for Transient Response Prediction. IEE Proc. Gener. Transm. Distrib., 1995;142(3): 323-329
    54 Chong-Ho Choi, Jin Young Choi. Constructive Neural Networks with Piecewise Interpolation Capabilities for Function Approximations. IEEE Trans. NN, 1994;5(6): 936-944
    55 Chen S., Billings S.A. Neural Networks for Nonlinear Dynamic System Modelling And Identification. INT. J. Control, 1992;56(2): 319-346
    56 Shih-Chi Huang, Yih-Fang Huang. Bounds on the Number of Hidden Neurons in Multilayer Perceptrons. IEEE Trans. NN, 1991; 2(1): 47-55
    57 Andrew R.Webb. Functional Approximation by Feed-Forward Networks: A Least-Squares Approach to Generalization. IEEE Trans. NN, 1994; 5(3): 363-371
    58 Shlomo Geva, Joaquin Sitte. A Constructive Method for Multivariate Function Approximation by Multilayer Perceptrons. IEEE Trans. NN, 1992; 3(4): 621-626
    59 Tianping Chen, Hong Chen. Approximation Capability to Functions of Several Variables, Nonlinear Functionals, And Operators by Radial Basis Function Neural Networks. IEEE Trans. NN, 1995; 6(4): 904-910
    60 Tianping Chen, Hong Chen, Ruey-wen Liu. Approximation Capability in
    
    C((?)) by Multilayer Feedforward Networks and Related Problems. IEEE Trans. NN, 1995;6(1): 25-30
    61 John K. Kruschke, Javier R. Movellan. Benefits of Gain: Speed Learning And Minimal Hidden Layers in Back-Propagation Networks. IEEE Trans. SMC, 1991;21(1): 273-280
    62 Guang-Bin Huang, Haroon A. Babri. Upper Bounds on the Number of Hidden Neurons in Feedforward Networks with Arbitrary Bounded Nonlinear Activation Functions. IEEE Trans. NN, 1998; 9(1): 224-229
    63 Sartori M.A., Antsaklis P.J. A Simple Method to Derive Bounds on the Size And to Train Multilayer Neural Networks. IEEE Trans. NN, 1991; 2(2): 467-471
    64 Kreinovich V.Y. Arbitrary Nonlinearity Is Sufficient to Represent All Functions by Neural Networks: A Theorem. Neural Networks, 1991; 4(2): 381-383
    65 Hornik K., Stinchcombe M., White H. Multilayer Feedforward Networks Are Universal Approximators. Neural Networks, 1989; 2(2), 356-366
    66 Choi C.-H., Choi J.Y. Constructive Neural Networks with Piecewise Interpolation Capabilides for Function Approximations. IEEE Trans. Neural Networks, 1994; 5(6): 936-944
    67 Rumelhart D.E., Hinton G.E., Wiiliams R.J. Learning Representations by Back-Propagadng Errors. Nature, 1986;323:533-536
    68 Baum E.B., Haussler D. What Size Net Gives Valid Generalization. Neural Computation, 1989;1(1): 151-160
    69 Leshno M., Lin V.Y., Pinkus A., et al. Multilayer Feedforward Networks with A Nonpolynomiai Activation Function Can Approximate Any Function. Neural Networks, 1993;6(6): 861-867
    70 陆系群,余英林.设计前馈神经网络结构的一种新方法.华南理工大学学报(自然科学版),1998;26(1):112-115
    
    
    71 葛彩霞.三层前馈型神经网络的最佳逼近研究.应用数学,1999;12(1):47-49
    72 韦岗,贺前华,欧阳景正.关于多层感知器的函数逼近能力.信息与控制,1996;25(6):321-324
    73 张铃,张钹.前向神经网络设计问题的回顾与探索.计算机工程与科学,1998;20(4):1-10
    74 易忠胜,刘树深,李刚等.一种改良BP网络方法研究.1998;18(4):389-392
    75 翼春荣,石玉,韩莉莉等.前馈神经网络BP算法.西安工业学院学报,1997;17(4):278-281
    76 尹申明,陆建东,雷鸣等.自适应神经网络学习方法研究.计算机研究与发展,1994;31(6):24-29
    77 叶东毅.基于模型逼近度和接受概率的一个变步长快速BP学习算法.1996;19(10):783-787
    78 叶东毅,卢笑迎.前馈神经网络权值和拓扑结构的一个学习算法.福州大学学报,1997;25(3):24-28
    79 柳文,冯建农,柳明.一种改进型快速BP算法.计算机工程与科学,1998;20(4):17-20
    80 叶东毅,何萧玲.前馈神经网络的一个新的自适应学习算法.系统工程与电子技术,1998;(12):72-74
    81 邓志东,孙增圻.利用线性再励的自适应变步长快速BP算法.模式识别与人工智能,1993;6(4):319-323
    82 李松银,郑君里.前向多层神经网络模糊自适应算法.电子学报,1995;23(2):1-6
    83 朱江海,戚飞虎.一种采用基于知识的优化过程的BP算法研究.红外与毫米波学报,1997;16(5):357-363
    84 杨龙,杜亚军.BP算法的可视化研究与BP智能算法.成都理工学院学报,1998;25(增刊):97-106
    
    
    85 鲁子奕,杨绿溪,五球等.提高前馈神经网络泛化能力的新算法.电路与系统学报,1997;2(4):7-12
    86 Renato De Leone, Rosario Capparuccia, Emanuela Merelli. A Successive Overrelaxation Backpropagation Algorithm for Neural-Network Training. IEEE Trans. 1998; 9(3): 381-387
    87 Minoru Fukumi, Sigeru Omatu. A New Back-Propagation Algorithm with Coupled Neuron. IEEE Trans. NN, 1991;2(5): 535-538
    88 Richard P.Brent. Fast Training Algorithms for Multilayer Neural Nets. IEEE Trans. NN, 1991;2(3): 346-354
    89 Funahashi K. On the Approximate Realization of Continuous Mappings by Neural Networks. Neural Networks,1989; 2(2): 183-192
    90 Bichsel M., Seitz P. Minimum Class Entroopy: A Maximum Information Approach toLayered Networks. Neural Networks, 1989; 2(2): 133-141
    91 Baba N. A Hybrid Algorithm for finding the Global Minimum of Error Function of Neural Networks. Proe. Int. Joint Conf. Neural Networks, 1990; 3(1): 585-588
    92 Jacobs R.A. Increased Rates of Convergence through Learning Rate Adaptation. Neural Networks, 1988; 1 (2): 295-307
    93 Weigend A., Huberman B., Rumelhart D. Predicting the Future: A Connection Approach. Int. J. Neural Syst. 1990;3(2), 193-209
    94 Lizhong Wu, Moody J. A Smoothing Regularizer for Feedforward And Recurrent Neural Networks. Neural Comp., 1996; 8(3): 461-489
    95 Redich A.N. Redundancy Reduction as A Strategy for Unsupervised Learning. Neural Comp., 1993; 5(2): 289-304
    96 Ooyen Van, Nienhuis B. Improving the Convergence of the Back- Propagation Algorithm. Neural Networks, 1992; 5(3): 465-471
    97 Chyi-tsong Chen, Wei-der Chang. A Feedforward Neural Network with Function Shape Autotuning. Neural Networks, 1996;9(4): 627-641
    
    
    98 Perantonis S.J., Kattas D.A. An Efficient Constrained Learning Algorithm with Momentum Acceleration. Neural Networks, 1995; 8(2): 237-249
    99 Charles W.L. Training Feedforward Neural Networks: An Algorithm Giving Improved Generalization. Neural Networks, 1997;10(1): 61-68
    100 Royal A. A Polynomial Time Algorithm for the Construction And Training of A Class of Multilayer Perceptrons. Neural Networks. 1993; 6(4): 535-545
    101 陈坚.交流电机数学模型及调速系统.北京:国防工业出版社,1991
    102 张立,赵永健.现代电力电子技术器件、电路及应用.北京:科学出版社,1992
    103 李爱民.功率斩波器无损耗吸收电路的研究.浙江大学硕士学位论文,1996
    104 张立,黄两一.电力电子场控器件及其应用.北京:机械工业出版社,1996
    105 顾绳谷.电机及拖动基础.北京:机械工业出版社,1980
    106 陈伯时,陈敏逊.电气自动化新技术丛书:交流调速系统.北京:机械工业出版社,1998
    107 董纯厚.近代交流调逮.北京:冶金工业出版社,1995
    108 杨兴瑶.电动机调速的原理及系统.北京:水利电力出版社,1979
    109 胡寿松.自动控制原理(第三版).北京:国防工业出版社,1994

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700