无线传感器网络节能覆盖
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线传感器网络是由大量无处不在的、具有无线通信与计算能力的微小传感器节点构成的自组织分布式网络系统,是能根据环境自主完成指定任务的智能系统;是随着无线通信和嵌入式计算技术、传感器技术、微机电技术的发展而发展起来的一种新兴信息获取技术,改变了人类与自然界的交互方式;在军事、环境监测、空间探索、反恐防暴、灾难援救、医疗卫生、智能家居等方面显示了潜在的巨大应用价值。
     网络覆盖是无线传感器网络研究和应用的关键性基础问题,是其他网络研究的基础,直接影响着网络的使用性能。无线传感器网络超大规模,节点自由密集分布、能量受限、通信能力受限、计算和存储能力受限的特点和无人职守、恶劣的应用环境给网络覆盖带来了很大的挑战。本文从自由分布节点覆盖效率最大化、节点协同覆盖、多目标关联覆盖和适应被监测区域物理量分布特性的网络覆盖四个方面研究了无线传感器网络的覆盖问题。论文主要的研究内容和创新点包括以下几个方面。
     (1)综述了无线传感器网络覆盖现有的研究成果。分析了无线传感器网络覆盖面临的问题,系统的提出了网络覆盖的评价体系,归纳了网络覆盖设计中需要注意的问题,为后面的研究做了准备。
     (2)针对移动节点自由分布网络覆盖中,覆盖效率低下的问题,研究了理想状态下的覆盖效率最优节点分布问题,推导出同构节点的最优分布;以理论研究结果为指导,考虑无效移动、边界效应和最佳移动距离等因素,改进了虚拟力算法VFA,提出了高能效的虚拟力算法CEVFA。
     (3)为满足被监测区域多个目标不同覆盖质量的需求,在CEVFA的基础上,提出了特殊区域优先覆盖的目标多重覆盖算法WMCA;该算法在保证区域完整监测的情况下能够满足对特殊关注点的覆盖重数要求,而且能量消耗量少;算法计算量小,适合资源有限的无线传感器网络;是目前为解决区域中特殊目标点多重覆盖而提出的第一个节点覆盖算法。
     (4)考虑到某些应用中,单个节点难以独立完成对目标对象的覆盖,我们提出了节点协同覆盖的思想;详细推导并分析了协同覆盖概率、节点数目、节点参与协同覆盖的最低覆盖概率之间的关系;分析了协同覆盖算法在不同节点分布情况下的性能;该方法可以有效利用网络资源提高感知质量;在协同覆盖模型的基础上,设计了能量自适应的协同覆盖优化算法CTCO;仿真结果表明,该算法在改善网络覆盖概率的同时,延长了网络的使用寿命。
     (5)通过分析能量受限节点和障碍造成的节点协同工作瓶颈问题,研究建立了节点能耗与网络覆盖质量之间的关系,节点协同覆盖质量和移动、监测能量消耗的数学优化模型,并且进行了求解和仿真分析,提出了移动节点网络中的协同目标覆盖优化算法CTCOMSN;对静止节点难以完成覆盖任务和被监测区域存在障碍的应用场景进行了算法仿真,结果显示移动节点的协同覆盖优化算法不仅可以提高覆盖效率,而且对于延长网络使用寿命也是很有效的;该算法也可以应用在一般的网络覆盖中。
     (6)在多目标监测的网络覆盖中,一个目标处于多个传感器节点的感知范围内,而一个传感器节点有时也会同时覆盖多个目标,这样目标与目标之间,节点与节点之间,存在着一定的关联。从这些关联入手,设计了多目标关联覆盖算法MTACA,利用数据挖掘中的关联规则挖掘方法确定目标集合和传感器节点集合,通过节点集合的工作状态转换完成目标的完全覆盖,并且达到延长网络使用寿命的目的;对算法进行了仿真,并与改进的目标覆盖PEAS算法进行了比较;结果表明MTACA算法在目标完全覆盖能力和网络使用寿命上明显优于改进PEAS算法。本章的另外一个重大贡献是首次从目标和节点的关联关系入手研究网络覆盖问题,对以后网络覆盖及其它研究是一个很大的启示。
     (7)在大规模的环境监测应用中,考虑被监测区域物理量场分布特性和传感器节点的位置关系,将计算流体力学中的嵌套网格技术引入无线传感器网络覆盖的算法设计中,提出适应物理量分布的嵌套网格覆盖方法NGECA;这也是在首次从被监测物理量分布的角度设计网络覆盖方法,对于无线传感器网络其他方面的研究有很大的指导意义;通过仿真研究了空间步长、物理梯度等参数对算法性能的影响;同时设计了二维应用环境中嵌套网格覆盖算法,仿真结果显示NGECA算法可以利用较少的传感器节点提供感知精度很高的被监测对象信息,在节约网络资源的同时,增加了网络的鲁棒性和稳定性。
     (8)考虑长期监测环境应用中的时间因素,提出适应时间变化的实时NGECA算法,满足应用的实时性要求;仿真结果表明物理量发生变化后,该算法部署的节点能够迅速提供变化区域的详细信息;该算法是一种准三维的节点部署方法,为以后无线传感器网络实时特性需求的应用提供一些参考。
Wireless Sensor Networks (WSNs), which are made viable by the convergence of micro-electro-mechanical system technology, wireless communications and digital electronics, have changed the way that human recognize and communicate with the physical nature. WSN is a self-organized distributed intelligent system comprising low-cost, low-power, multifunctional sensor nodes that are small in size and capable of wireless communication tethered in short distances. These tiny sensor nodes, which consist of sensing, data processing, and communicating components, leverage the idea of sensor networks based on collaborative effort of a large number of nodes. As a novel mode of computing and a hotspot of information technology after internet, Wireless Sensor Networks promise many new application areas, such as military applications, environmental applications, health application, home application and other commercial application.
    Coverage is vital and also fundamental in wireless sensor networks' research and applications, and has great influence on performance of the networks. Characteristics of sensor nodes such as large-scaled and dense deployment, constraints on power, communicating ability, computing ability and memory ability, and unattended infertile circumstance bring great challenges in network coverage. Focusing on the most efficient coverage of random distributed sensor nodes, collaborative coverage, multiple targets associative coverage and coverage adapting to the application physical nature, the dissertation studies on the coverage problems in wireless sensor networks. The major contribution of this dissertation is specifically stated as follows.
    (1) Research on wireless sensor networks coverage is surveyed, while the challenge in WSN coverage is analyzed. Network coverage evaluation system is proposed and design issue in WSN coverage is concluded.
    (2) Focusing on the coverage efficiency, the ideal optimal distribution is deduced in mobile sensor networks coverage. According to the ideal distribution, coverage-efficient coverage algorithm CEVFA is presented which is based on virtual force algorithm VFA, considering useless move, boundary and optimal moving distance etc.. Simulation results show that the performance of CEVFA is better than VFA.
    (3) In order to satisfy the different requirement of different interest point synchronously, a new coverage algorithm WMCA is proposed. WMCA is fit for WSN for its energy-efficiency and low computing complexity. It is the first coverage algorithm that providing different coverage service for different interest points synchronously till now.
    (4) In some application, a sensor node can not cover the object independently. A
    collaborative coverage manner is presented to fulfill the application that only one sensor node cannot. Relationships among system collaborative coverage probability, the number of sensor nodes and the lowest coverage probability that nodes have to work are deduced in detail. The performance of collaborative coverage is analyzed with different sensor nodes distribution. An energy-adaptive collaborative coverage optimization algorithm CTCO is proposed, while the simulation results show that CTCO is able to improve the coverage quality and prolong the networks lifetime.
    (5) Mobile sensor nodes are introduced to obstructed and energy limited WSN coverage. Optimal relationship model is built considering collaborative coverage quality, moving distance and energy cost. Collaborative targets coverage optimization algorithm in mobile sensor networks CTCOMSN is presented. Simulation is done in obstacle coverage phenomena and circumstances that static nodes can not complete monitoring, and the results show that CTCOMSN is efficient in improving coverage quality and prolonging network lifetime. CTCOMSN can also be used in normal coverage.
    (6) For multiple target monitoring, several targets are monitored by a group of sensor nodes, while several sensor nodes are in charge of many targets. Relationship between them is complex, and there must be some association among nodes and targets. According to that association, multiple targets association coverage algorithm MTCAC is designed using association rule dining technology. Network lifetime is prolonged by transition of the work state of sensor nodes groups. Compared with advanced PEAS, MTCAC shows better coverage quality and longer lifetime. MTCAC is the first coverage algorithm in the view of association among nodes and targets, which illuminates other association research in WSN.
    (7) The location of sensor nodes can influence the coverage quality. To adapt sensor nodes to deployment of the physical characters, a novel coverage algorithm NGECA is presented. It is also the first algorithm in view of physical characters inside the monitored area, which is significant in other WSN research. Simulations have studied on influence of space grid and physical gradients, and whose results show that NGECA can provide high coverage quality with a few sensor nodes, while network resource is saved at the same time and robust and stability of WSN is increased.
    (8) In order to satisfy the real-time requirement in long-time environmental applications, a real-time NGECA is presented. Simulation results show that NGECA can quickly provide the physical information if the character varied in monitored area. It is a would-be 3D algorithm, and gives some ideas to the future real-time coverage research.
引文
[1] Akyildiz I. F., Su W., Sankarasubramaniam Y. Wireless Sensor Networks: a Survey[J]. Computer Networks. 2002, 38(4): 393-422.
    [2] 孙利民,李建中,陈渝,朱红松.无线传感器网络[M],北京,清华大学出版社,2005.1.
    [3] 于海斌,曾鹏等.智能无线传感器网络系统[M],北京,科学出版社,2006.1
    [4] 任丰原,黄海宁,林闯.无线传感器网络[J].软件学报.2003,14(7):1282-1291.
    [5] 曾鹏,于海斌,梁英等.分布式无线传感器网络体系结构及应用支撑技术研究[J].信息与控制.2004,33(3):307-313.
    [6] 李建中,李金宝,石胜飞.传感器网络及其数据管理的概念、问题与进展[J].软件学报.2003,14(10):1717-1727.
    [7] 崔莉,鞠海玲,苗勇,李天璞,刘巍,赵泽.无线传感器网络研究进展[J].计算机研究与发展.2005,42(1):163-174.
    [8] Peter Coy, Neil Gross. 21 Ideas for the 21st Century[J]. Business Week. 8, 30, 1999: 78-167.
    [9] Terry J. van der Werff. 10 Emerging Technologies that Will Change the World[J]. MIT Enterprize Technology Review. 2003, 106(1): 33-49.
    [10] Robert D. Hof. The Future of Technology[J]. Business Week. 8, 25, 2003: 1-50.
    [11] Sohrabi K., Gao J., Ilawadhi V. Protocols for Self-organization of a Wireless Sensor Network[J]. IEEE Personal Communications. 2000, 7(5): 16-27.
    [12] Ramaraju Kalidindi, Lydia Ray, Rajgopal Kannan, Sitharama Iyengar. Distributed Energy Aware MAC Layer Protocol for Wireless Sensor Networks[A]. Proceedings of International Conference on Wireless Networks[C]. 6, 23, 2003, Las Vegas, Nevada, USA. CSREA Press. 2003: 282-286.
    [13] Marco Caccamo, Lynn Y. Z., Lui Sha, Giorgio Buttazzo. An Implicit Prioritized Access Protocol for Wireless Sensor Networks[A]. Proceedings of the 23rd IEEE Real-Time Systems Symposium (RTSS'02)[C]. 2002: 39-48.
    [14] Venkatesh Rajendran, Katia Obraezka, Garcia-Luna-Aceves J. J. Energy-Efficient, Collision-Free Medium Access Control for Wireless Sensor Networks[A]. Proceedings of the 1st ACM International Conference on Embedded Networked Sensor Systems(SenSys 2003)[C]. 11, 2003, Los Angeles, California, USA. ACM Press. 2003: 181-192.
    [15] Kahn J. M., Katz R. H., Pister K. S. J. Next Century Challenges: Mobile Networking for Smart Dust[A]. Proceedings of the 5th Annual ACM/IEEE International Conference on Mobile Computing and Networking (MobiCom'99) [C]. 8, 15, 1999, Seattle, Washington: ACM SIGMOBILE. 1999: 483-492.
    [16] http://dies.cs.utwente.nl/research/completed/#eyes
    [17] http://ec.europa.eu/research/fp6/projects.cfm?p=5&pmenu=off
    [18] http://www.ist-flexinet.org
    [19] http://www.greatduckisland.net/
    [20] http://www.angoya.net/lni/projects.htm
    [21] http://bibliotecnica.upe.es/PFC/arxius/migrats/50838-2.pdf
    [22] 林瑞仲,面向目标跟踪的无线传感器网络研究[D],浙江大学博士学位论文,2005.
    [23] http://www.nsfc.gov.cn/
    [24] http://www.973.gov.cn/
    [25] http://www.gov.cn/jrzg/2006-02/09/content_183787.htm
    [26] Jian N, Chandler, S. A. G, Connectivity properties of radio telephone network.[A]Mobile and personal communications. 1993. Seventh IEE European Conference[C], 13-25 Dec 1993: 136-141.
    [27] Pister K, Hohlt B, Jeong J, et al.. Ivy—A sensor network infrastructure. 2003. http://www-bsac.eecs.berkeley.edu/projects/ivy.
    [28] Edgar H. C. Wireless Sensor Networks: Architectures and Protocols[M]. Boca Raton, Florida: CRC Press LLC, 2004: 1-40.
    [29] Mark Weiser. The Computer for the 21st Century[J]. Scientific American. 9, 1991, 265(3): 94-104.
    [30] Mark Weiser. Some Computer Science Issues in Ubiquitous Computing[J]. Communications of the ACM. 7, 1993, 36(7): 75-84.
    [31] Lyytinen, K and Yoo, Y. Issues and challenges in ubiquitous computing[A], Communications of the ACM[C]. 200245(12): 62-65.
    [32] Bult K., Burstein A., Chang D. et al. Low Power Systems for Wireless Microsensors[A]. Proceedings of the 1996 International Symposium on Low Power Electronics and Design[C]. 8, 12, 1996, Monterey, CA, USA: IEEE. 1996: 17-22.
    [33] Gregory J. Pottie, William J. Kaiser. Wireless Integrated Network Sensors[J]. Communications of the ACM. 2000, 43(5): 51-58.
    [34] Lizhi Charlie Zhong, Rahul Shah, Chunlong Guo, Jan Rabaey. An Ultra-Low Power and Distributed Access Protocol for Broadband Wireless Sensor Networks [A]. IEEE Broadband Wireless Summit[C]. Las Vegas, Nevada. 5, 2001
    [35] 胡罡,叶湘滨,陈利虎.“智能尘埃”的体系结构与关键技术[J].传感器世界.2004,10(1):17-20.
    [36] Akyildiz I. F., Pompili D., Melodia T. Challenges for Efficient Communication in Underwater Acoustic Sensor Networks[J]. ACM Special Interest Group on Embedded Systems Review, 2004, 1(2). http://www.es.virginia.edu/sigbed/and http://www.seaweb.org/.
    [37] Mainwaring A., Polastre J., Szewczyk R., Culler D., Anderson J. Wireless Sensor Networks for Habitat Monitoring [A]. Proceedings of the 1st ACM International Workshop on Wireless Sensor Networks and Applications [C]. 2002, New York: ACM Press. 2002: 88-97.
    [38] Akkaya K, Younis M, A Survey on Routing Protocols for Wireless Sensor Networks. Ad Hoc Networks. 2005,3(3):325-349.
    [39] Heinzelman W., Kulik J., Balakrishnan H. Adaptive protocols for information dissemination in wireless sensor networks [A]. Proceedings of the 5th Annual ACM/IEEE International Conference on Mobile Computing and Networking (MobiCom99) [C], Seattle, WA, August 1999.
    [40] Intanagonwiwat C, Govindan R, Estrin D. Directed diffusion: a scalable and robust communication paradigm for sensor networks [A]. Proceedings of the 6th Annual ACM/IEEE International Conference on Mobile Computing and Networking (MobiCom00) [C], Boston, MA, August 2000.
    [41] Shah R, Rabaey J. Energy aware routing for low energy ad hoc sensor networks [A]. Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC) [C], Orlando, FL, March 2002.
    [42] Braginsky D, Estrin D. Rumor routing algorithm for sensor networks [A]. Proceedings of the First Workshop on Sensor Networks and Applications (WSNA) [C], Atlanta, GA, October 2002.
    [43] Schurgers C. Srivastava M B. Energy efficient routing in wireless sensor networks [A]. The MILCOM Proceedings on Communications for Network-Centric Operations: Creating the Information Force [C], McLean, VA, 2001.
    [44] Chu M, Haussecker H, Zhao F. Scalable information driven sensor querying and routing for ad hoc heterogeneous sensor networks [J]. The International Journal of High Performance Computing Applications, 2002,16 (3): 293-313.
    [45] Yao Y, Gehrke J. The cougar approach to in-network query processing in sensor networks [J]. SIGMOD Record. 2002,31(3):9-18.
    [46] Sadagopan N, Krishnamachari B, Helmy A. The ACQUIRE mechanism for efficient querying in sensor networks [A], Proceedings of the First IEEE International Workshop on Sensor Network Protocols and Applications [C], 11 May 2003:149-155.
    [47] Heinzelman W, Chandrakasan A, Balakrishnan H. Energy-efficient communication protocol for wireless sensor networks [A]. Proceeding of the Hawaii International Conference System Sciences [C], Hawaii, January 2000.
    [48] Lindsey S, Raghavendra C S., PEGASIS: power efficient gathering in sensor information systems [A]. Proceedings of the IEEE Aerospace Conference [C], Big Sky, Montana, March 2002.
    [49] Lindsey S, Raghavendra C S., Sivalingam K. Data gathering in sensor networks using the energy delay metric [A]. Proceedings of the IPDPS Workshop on Issues in Wireless Networks and Mobile Computing [C], San Francisco, CA, April 2001.
    
    [50] Manjeshwar A, Agrawal D P., TEEN: a protocol for enhanced efficiency in wireless sensor networks [A], Proceedings of the 1st International Workshop on Parallel and Distributed Computing Issues in Wireless Networks and Mobile Computing [C], San Francisco, CA, April 2001.
    
    [51] Manjeshwar A, Agrawal D P., APTEEN: a hybrid protocol for efficient routing and comprehensive information retrieval in wireless sensor networks [A]. Proceedings of the 2nd International Workshop on Parallel and Distributed Computing Issues in Wireless Networks and Mobile computing [C], Ft. Lauderdale, FL, April 2002.
    
    [52] Younis M, Youssef M, Arisha K. Energy-aware routing in cluster-based sensornetworks [A]. Proceedings of the 10th IEEE/ACM International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS2002) [C], Fort Worth, TX, October 2002.
    
    [53] Subramanian L, Katz R H. An architecture for building self configurable systems [A]. Proceedings of IEEE/ACM Workshop on Mobile Ad Hoc Networking and Computing [C], Boston, MA, August 2000.
    
    [54] Rodoplu V, Ming T H. Minimum energy mobile wireless networks [J], IEEE Journal of Selected Areas in Communications, 1999,17(8): 1333-1344.
    
    [55] Li L, Halpern J Y. Minimum energy mobile wireless networks revisited [A]. Proceedings of IEEE International Conference on Communications (ICC01) [C], Helsinki, Finland, June 2001.
    
    [56] Xu Y, Heidemann J, Estrin D. Geography-informed energy conservation for ad hoc routing [A]. Proceedings of the 7th Annual ACM/IEEE International Conference on Mobile Computing and Networking (MobiCom01) [C], Rome, Italy, July 2001.
    
    [57] Yu Y, Estrin D, Govindan R. Geographical and energy aware routing: a recursive data dissemination protocol for wireless sensor networks, UCLA Computer Science Department Technical Report, UCLA-CSD TR-01-0023, May 2001.
    
    [58] Chang J H, Tassiulas L. Maximum lifetime routing in wireless sensor networks [A]. Proceedings of the Advanced Telecommunications and Information Distribution Research Program (ATIRP_2000) [C], College Park, MD, March 2000.
    
    [59] Kalpakis K, Dasgupta K, Namjoshi P. Maximum lifetime data gathering and aggregation in wireless sensor networks [A]. Proceedings of IEEE International Conference on Networking (NETWORKS02) [C], Atlanta, GA, August 2002.
    [60] Ye F, Chen A, Lu S et. al. A Scalable Solution to Minimum Cost Forwarding in Large Scale Sensor Networks[A]. 10th International Conference on Computer Communications and Networks (ICCCN2001)[C], Scottsdale, Arizona USA. October 15-17, 2001
    [61] Sohrabik K, Gao J, Ailawadhi Vet.al. Protocols for self-organization of a wireless sensor network[J], IEEE Personal Communications, 2000, 7(5): 16-27.
    [62] Akkaya K, Younis M. An energy-aware QoS routing protocol for wireless sensor networks[A]. Proceedings of the IEEE Workshop on Mobile and Wireless Networks (MWN 2003)[C], Providence, RI, May 2003.
    [63] He T, Stankovie J A, Lu C et. al. SPEED: a stateless protocol for real-time communication in sensor networks[A]. Proceedings of International Conference on Distributed Computing Systems[C], Providence, RI, May 2003.
    [64] C. Intanagonwiwat, R. Govindan, D. Estrin. Directed Diffusion: A Scalable and Robust Communication Paradigm for Sensor Networks[C]. In: MOBICOM 2000, August 2000: 56-67.
    [65] J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan, D. Estrin, D. Ganesan. Building Efficient Wireless Sensor Networks with Low-Level Naming[J]. ACM SIGOPS Operating Systems Review, 2001, 35(5): 146-159.
    [66] 戴晓华,王智等,无线传感器网络智能信息处理研究[J],2006.2,vol.19(1):1-7.
    [67] C. Intanagonwiwat, D. Estrin, R. Govindan, J. Heidemann. Impact of Network Density on Data Aggregation in Wireless Sensor Networks[A] In: ICDCS'02[C]., July 2002: 457-458.
    [68] J. Zhao, R. Govindan, D. Estrin. Computing aggregates for monitoring wireless sensor networks[A]. In: 2003 IEEE International Workshop on Sensor Network Protocols and Applications[C], May 2003: 139-148.
    [69] M. Ding, X. Zh. Cheng, G. L. Xue. Aggregation tree construction in sensor networks[A]. VTC 2003-Fall. 2003 IEEE 58th[C], October 2003, vol(4): 2168-2172.
    [70] A. Boulis, S. Ganeriwal, M. B. Srivastava. Aggregation in sensor networks: an energy-accuracy trade-off[A]. 2003 IEEE International Workshop on Sensor Network Protocols and Applications[C], May 2003: 128-138.
    [71] J. N. Al-Karaki, R. Ul-Mustafa, A. E. Kamal. Data aggregation in wireless sensor networks-exact and approximate algorithms[A]. Workshop on High Performance Switching and Routing[C], 2004: 241-245
    [72] I. Solis, K. Obraczka. The impact of timing in data aggregation for sensor networks[A]. In: 2004 IEEE International Conference on Communications[C], June 2004, 6: 3640-3645.
    [73] J. Chou, D. Petrovic, K. Ramchandran. Signals, Tracking and exploiting correlations in dense sensor networks[A]. In: ACM The Thirty-Sixth Asilomar Conference on Systems and Computers[C], 2002, 1: 39-43.
    [74] J. Chou, D. Petrovic, R. Kannan. A distributed and adaptive signal processing approach to reducing energy consumption in sensor networks[A]. In: IEEE INFOCOM 2003[]C. April 2003: 1054-1062.
    [75] T. Arici, B. Gedik, Y. Altunbasak, L. Liu. PINCO: a pipelined in-network compression scheme for data collection in wireless sensor networks[A]. In: IEEE ICCCN 2003[C], October 2003: 539-544.
    [76] S. J. Back, G. D. Veciana, X. Su. Minimizing energy consumption in large-scale sensor networks through distributed data compression and hierarchical aggregation[J]. In: IEEE Selected Areas in Communications 2004, 22(6): 1130-1140.
    [77] S. Pattemn, B. Krishnamachari, R. Govindan. The impact of spatial correlation on routing with compression in wireless sensor networks[A]. In: IEEE International Symposium on Information Processing in Sensor Networks IPSN' 04[C], April 2004: 28-35.
    [78] S. Madden, R. Szewczyk, M. J. Franklin, D. Culler. Supporting aggregate queries over ad-hoc wireless sensor networks[A]. In: Proceedings Fourth IEEE Workshop on Mobile Computing Systems and Applications WMCSA'02[C], June 2002, pp.49-58.
    [79] X. Li, Y. J. Kim, R. Govindan, W. Hong. Multi-dimensional Range Queries in Sensor Networks[A]. In: Proceedings of the 1st international conference on Embedded networked sensor systems[C], November 2003.
    [80] B. J. Bonfils, P. Bonnet. Adaptive and Decentralized Operator Placement for In-Network Query Processiong[A]. LNCS 2634, IPSN 2003[C]: 47-62.
    [81] S. Das, K. Shuster, C. Wu. The ACQUIRE Mechanism for Efficient Querying in Sensor Networks[A]. In: Proceedings of the first international joint conference on Autonomous agents and multi-agent systems[C], July 2002: 149-155.
    [82] J. Newsome, D. Song. GEM: Graph EMbedding for Routing and Data-Centric Storage in Sensor Network Without Grographic Information[A]. In: Proceedings of the 1st international conference on Embedded networked sensor systems. November 2003 [C].
    [83] D. Ganesan, B. Greenstein, D. Perelyubskiy, D. Estrin, J. Heidemann. An Evaluation of Multi-resolution Storage for Sensor Network[A]. In: IEEE Proceedings of the first international conference on Embedded networked sensor systems[C], November 2003.
    [84] J. L. Wong, R. Jafari, M. Potkonjak. Gateway placement for latency and energy efficient data aggregation[A]. In: 29th Annual IEEE International Conference on Local Computer Networks[C], November 2004:.490-497.
    [85] V. Erramilli, I. Matta, A. Bestavros. On the interaction between data aggregation and topology control in wireless sensor networks[A]. In: First Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks[C], October 2004:557-565.
    [86] T. Pham, E. J. Kim, M. Moh. On Data Aggregation Quality and Energy Efficiency of Wireless Sensor Network Protocols-Extended Summary[A]. In: First International Conference on Broadband Networks[C], 2004: 730-732.
    [87] R. Min, M. Bhardwaj, et. al Energy-centric enabling technologies for wireless sensor networks[A]. In: IEEE Wireless Communications[C], August 2002: 28-39.
    [88] I. F. Akyildiz, D. Pompili, T. Melodia. Challenges for Efficient Communication in Underwater Acoustic Sensor Networks[J]. ACM Special Interest Group on Embedded Systems Review, http://www.cs.virginia.edu/sigbed/ and http://www.seaweb.org/. 2004, 1(2).
    [89] Liping Liu, Feng Xia, Zhi Wang, et.al, Deployment Issues in Wireless Sensor Networks[A], Lecture Notes in Computer Science[C], 13-15, Dec 2005: 239-248
    [90] Yung-Tsung Hou; Tzu-Chen Lee; Bing-Chiang Jeng; Chia-Mei Chen Optimal coverage deployment for wireless sensor networks[A], Advanced Communication Technology, 2006. ICACT 2006. The 8th International Conference[C] 20-22 Feb. 2006, vol1: 523-527.
    [91] Canfeng Chen; Jian Ma; Mobile Enabled Large Scale Wireless Sensor Networks[A], Advanced Communication Technology, 2006. ICACT 2006. The 8th International Conference[C], 20-22 Feb. 2006, vol(1): 333-338
    [92] Peng-Jun Wan; Chih-Wei Yi; Coverage by Randomly Deployed Wireless Sensor Networks[A], Network Computing and Applications, Fourth IEEE International Symposium on [C], 27-29 July 2005: 275-278.
    [93] Iranli, A.; Maleki, M.; Pedram, M.; Energy efficient strategies for deployment of a two-level wireless sensor network[A, Low Power Electronics and Design, 2005. ISLPED '05. Proceedings of the 2005 International Symposium on [C], 8-10 Aug. 2005: 233-238.
    [94] Wei Li; Cassandras, C. G.; A minimum-power wireless sensor network self-deployment scheme[A], Wireless Communications and Networking Conference[C], 13-17 March 2005, vol(3): 1897-1902.
    [95] Luo, R. C.; Tu, L. C.; Chen, O.; Auto-deployment of mobile nodes in wireless sensor networks using grid method[A], Industrial Technology, 2005. ICIT 2005. IEEE International Conference on[C], 14-17 Dec. 2005: 359-364
    [96] Xueqing Wang; Yongtian Yang; Zhonglin Zhang; A Virtual Rhomb Grid-Based Movement-Assisted Sensor Deployment Algorithm in Wireless Sensor Networks[A], Computer and Computational Sciences, 2006. IMSCCS '06. First International Multi-Symposiums on[C], 20-24 June 2006, vol(1): 491-495.
    [97] Kenan Xu; Hassanein, H.; Takahara, G.; Quanhong Wang; Relay node deployment strategies in heterogeneous wireless sensor networks: single-hop communication case[A], Global Telecommunications Conference, 2005. GLOBECOM'05. IEEE[C], 28 Nov.-2 Dec. 2005, Vol(1): 21-25..
    [98] Yunhuai Liu; Ngan, H.; Lionel M. Ni;Power-aware Node Deployment in Wireless Sensor Networks[A],Sensor Networks, Ubiquitous, and Trustworthy Computing, 2006. IEEE International Conference on[C], 05-07 June 2006 vol(1): 128-135.
    [99] 刘丽萍,王智,孙优贤,无线传感器网络中的资源优化[J],传感技术学报.2006,6,vol(3):917-925.
    [100] Christian Frank, Kay Romer, Algorithms for generic role assignment in wireless sensor networks[A], Sensys 2005, Proceedings of the 3rd ACM Conference on Embedded Networked Sensor Systems[C], November 2005
    [101] Cotterell, S.; Downey, K.; Vahid, F., Applications and experiments with eblocks-electronic blocks for basic sensor-based systems[A], IEEE SECON 2004[C].
    [102] W. B. Heinzelman, A. L. Murphy, H. S. Carvalho and M. A. Perillo., Middleware to Support Sensor Network Applications[A], IEEE Network Magazine Special Issue[C], January 2004
    [103] Y. Yu, B. Krishnamachafi, and V. K. Prasanna, Issues in Designing Middleware for Wireless Sensor Networks[J], IEEE Network Magazine, special issue on Middleware Technologies for Future Communication Networks., January 2004
    [104] L. Ville and P. Dickman., Garnet: A Middleware Architecture for Distributing Data Streams Originating in Wireless Sensor Netwok[A], 23rd International Conference on Distributed Computing Systems Workshops(ICDCSW'03)[C], May 2003
    [105] Chen Wang, Li Xiao, Rong Jin, Sensor Localization in an Obstructed Environment[A], International Conference on Distributed Computing in Sensor Systems[C], June 2005
    [106] Miklos Maroti, Branislav Kusy, Gyorgy Balogh, Peter Volgyesi, Andras Nadas, Karoly Molnar, Sebestyen, Radio Interferometric Geolocation[A], Sensys 2005, Proceedings of the 3rd ACM Conference on Embedded Networked Sensor Systems[C], November 2005
    [107] Radu Stoleru, Tian He, John A. Stankovic, David Luebke, A High-Accuracy, Low-Cost Localization System for Wireless Sensor Networks[A], Sensys 2005, Proceedings of the 3rd ACM Conference on Embedded Networked Sensor Systems[C], November 2005
    [108] Jyh-How Huang, Saqib Amjad, Shivakant Mishra, CenWits: a sensor-based loosely coupled search and rescue system using witnesses[A], Sensys 2005, Proceedings of the 3rd ACM Conference on Embedded Networked Sensor Systems[C], November 2005
    [109] Yoon Hak Kim, Antonio Ortega, Quantizer Design and Distributed Encoding Algorithm for Source Localization in Sensor Networks[A], Fourth International Conference on Information Processing in Sensor Networks (IPSN'05)[C], April 2005
    [110] Kiran Yedavalli, Bhaskar Krishnamachari, Sharmila Ravula, Bhaskar Srinivasan, Ecolocation: A Technique for RF Based Localization in Wireless Sensor Networks[A], Fourth International Conference on Information Processing in Sensor Networks (IPSN '05)[C], April 2005
    [111] Yabo Li, Xiang-Gen Xia, A Family of Distributed Space-Time Trellis Codes with Asynchronous Cooperative Diversity[A], Fourth International Conference on Information Processing in Sensor Networks (IPSN '05)[C], April 2005
    [112] Ossama Younis and Sonia Fahmy, A Scalable Framework for Distributed Time Synchronization in Multi-hop Sensor Networks[A], SECON, [C] September 2005
    [113] Saurabh Ganeriwal, Deepak Ganesan, Hohyun Shim, Vlasios Tsiatsis, Mani B. Srivastava, Estimating clock uncertainty for efficient duty-cycling in sensor networks[A], Sensys 2005, Proceedings of the 3rd ACM Conference on Embedded Networked Sensor Systems[C], November 2005
    [114] Geoffrey Werner-Allen, Geetika Tewari, Ankit Patel, Matt Welsh, Radhika Nagpal, Firefly-inspired sensor network synchronicity with realistic radio effects[A], Sensys 2005, Proceedings of the 3rd ACM Conference on Embedded Networked Sensor Systems[C], November 2005
    [115] S. Palchaudhuri, A. K. Saha and D. B. Johnson, Adaptive clock synchronization in sensor networks[A], 3rd International Symposium on Information Processing in Sensor Networks (IPSN '04)[C], April 2004
    [116] P. Blum, L. Meier and L. Thiele, Improved interval-based clock synchronization in sensor networks[A], 3rd International Symposium on Information Processing in Sensor Networks (IPSN '04)[C], April 2004.
    [117] Bang Wang, A survey on coverage problems in wireless sensor networks,[R]ECE Technical Report, ECE Dept., National University of Singapore, 2006.
    [118] 刘丽萍,王智,孙优贤,无线传感器网络部署及其覆盖问题研究[J],电子与信息学,2006.9,vol28(9):1752-1757.
    [119] Takagi H, Kleninrock L, Optimal transmission ranges for randomly distributed packet radio terminals[J], IEEE Trans. Commun. 1984(32):246-257.
    [120] Kleinrock L, Silveater J.A, Optimum transmission radii for packet radio networks or why six is a magic number[A], Proc. of IEEE Nat.Telecommun Conf. [C], December 1978: 431-435.
    [121] HouT, Li. V, Transmission range control in multihop packet radio networks[J], IEEE Trans. Commun. January 1986(34): 38-44.
    [122] PhilipsT. K, Panwar S. S, Tantawi A. N, Connectivity properties of a packet radio network model[A], IEEE Transactions on Information Theory[C], September 1989(35): 1044-1047.
    [123] Gilbert E. N. Random plane networks[J], SIAM, 1961(9): 533-543.
    [124] Hall. P, On continuum percolation[J], Ann, Probab, 1985(13):1250-1266.
    [125] Xue F, Kumar P. R, The number of neighbors needed for connectivity of wireless networks[J]. wireless Networks 2004(10): 169-181.
    [126] Yu D, Li H, On the definition of ad hoc network connectivity[A]. communication Technology Proceedings, International Conference ICCT 2003 [C], 9-11 April 2003(12), 990-994.
    [127] Clementi A. E. F, PennaP, Silvestri R, Hardness results for the power range assignment problem in packet radio networks, Proc. 2nd International Workshop on Approximation Algorithms for Combinatorial Optimization Problems (RANDOM/APPROX 99),, 1999: 197-208.
    [128] Kirousis L. M, Krabakis E, Krizanc D. et. a.l, Power consumption in packet radio networks[J], Theoretical Computer Science, July 2000(243): 289-305.
    [129] Santi P, Blough D. M, Vainstein F, A probabilistic analysis for the range assignment problem in ad hoc networks[A]. Proceedings of the 2nd ACM international symposium on Mobile ad hoc networking & computing[C], October 2001: 212-220.
    [130] 任彦,张思东,张宏科,无线传感器网络中覆盖控制理论与算法[J],软件学报,2006.3,vol17(3):422-433.
    [131] Mihaela Cardei, Dingzhu Du, Improving Wireless Sensor Network Lifetime through Power Aware Organization[J], Wireless Networks 11, 2005, 333~340.
    [132] Megerian S, Koushanfar F, Potkonjak M, Srivastava MB. Worst and best-case coverage in sensor networks[J]. IEEE Trans. on Mobile Computing, 2005, 4(1): 84~92.
    [133] Cortes J, Martinez S, Karatas T, Bullo F. Coverage control for mobile sensing networks[J]. IEEE Trans. on Robotics and Automation, 2004, 20(2): 243~255.
    [134] Meguerdichian S, Koushanfar F, Potkonjak M, Srivastava MB. Coverage problems in wireless ad-hoc sensor network[A]. In: Sengupta B, ed. Proc. of the IEEE INFOCOM. Anchorage: IEEE Press, 2001. 1380~1387.
    [135] Li XY, Wan PJ, Frieder O. Coverage in wireless ad hoe sensor networks[J]. IEEE Trans. on Computers, 2003, 52(6):753~763.
    [136] Meguerdichian S, Koushanfar F, Qu G. et.al Exposure in Wireless Ad Hoc Sensor Networks. [A] Procs. Of 7th Annual International Conference on Mobile Computing and Networking (MobiCom'01)[C]. July 2001: 139-150.
    [137] Meguerdichian S, Slijepcevic S, Karayan V, et al.. Localized algorithms in wireless ad-hoc networks: location discovery and sensor exposure[A]. In ACM Int'l Symp. on Mobile Ad Hoe Networking and Computing (MobiHOC)[C], 2001: 106-116.
    [138] Veltri G, Huang Q, Qu G, Potkonjak M. Minimal and maximal exposure path algorithms for wireless embedded sensor networks[A], In: Akyildiz IF, Estion D, eds. Proc. of the ACM Int'l Conf. on Embedded Networked Sensor Systems (SenSys)[C]. New York: ACM Press, 2003.4050.
    [139] Peter Hall, Introduction to the Theory of Coverage Processes [M], John Wiley and Sons, 1988.
    [140] Honghai Zhang and Jennifer Hou, on deriving the upper bound of α -lifetime for large sensor networks[A], in ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc)[C], 2004: 121-132.
    [141] Santosh Kumar, Ten H. Lai and Jozsef Balogh, On k-coverage in a mostly sleeping sensor network[A], in ACM International Conference on Mobile Computing and Networking (MobiCom)[C], 2004: 114-158.
    [142] Benyuan Liu and Don Towsley, A study of the coverage of large-scale sensor networks [A], in IEEE International Conference on Mobile Ad-hoc and Sensor Systems (MASS)[C], 2004: 475-483.
    [143] Slijepcevic S; Potkonjak, Power efficient organization of wireless sensor networks. Communications [A], IEEE International Conference[C] , 11-14 June 2001,2:472-476.
    [144] Ting Yan, Tian He and John A. Stankovic, Differentiated surveillance for sensor networks [A], in ACM International Conference on Embedded Networked Sensor Systems (SenSys)[C], 2003:51-62.
    [145] Chi-Fu Huang, Li-Chu Lo, yu Chee Tseng andWen-Tsuen Chen, Decentralized energy-conserving and coverage preserving protocols for wireless sensor networks [A], in International Symposium on Circuits and Systems (ISCAS)[C],2005.
    [146] Hidayet Ozgur Sanli and Hasan Cam, Energy efficient differentiable coverage service protocols for wireless sensor networks [A], in IEEE International Conference on Pervasive Computing and Communications (PerCom)[C],2005.
    [147] Guiling Wang, Guohong Cao and Tom LaPorta, A bidding protocol for deploying mobile sensors [A], in IEEEInternational Conference on Network Protocols (ICNP)[C], 2003: 315-324.
    [148] Guiling Wang, Guohong Cao and Tom LaPorta, Proxy-based sensor deployment for mobile sensor networks [A], in IEEE International Conference on Mobile Ad-hoc and Sensor Systems (MASS)[C], 2004: 493-502.
    [149] Amitabha Ghosh, Estimating coverage holes and enhancing coverage in mixed sensor networks [A], in IEEEInternational Conference on Local Computer Networks[C], 2004: 68-76.
    [150] O'Rourke J, Art gallery theorem and algorithms[M]. New York: Oxford University Press, 1987.
    [151] Zhang H, Hou J.C, Maintaining sensing coverage and connectivity in large sensor network.Technical[R] report UIUCDCS-R-2003-2351, June 2003.
    [152] Chakrabarty K, Iyengar S. S, Qi H, et al.. Grid coverage for surveillance and target location in distributed sensor networks [J], IEEE Transactions on Computers, December 2002.51(12): 1448-1453.
    [153] Couqueur T, Phipatanasuphorn V, Ramanathan P, et al.. Sensor deployment strategy for target detection,[A].Proceeding of The First ACM International Workshop on Wireless Sensor Networks and Applications, WSNA'02[C], September 28,2002, Atlanta, Georgia, USA.42-48.
    [154] Huang C-F, and Tseng Y-C, The coverage problem in a wireless sensor network.[A] WSNA03 [C], September 19,2003, San Diego, CA. 2003:115-121.
    [155] Liu J, Cheung P, et al.. A dual-space approach to tracking and sensor management in wireless sensor networks [A] .WSNA'02[C], Atlanta, Georgia, USA, September 28,2002:131-139.
    [156] Cerpa A, Elson J. Hamilton.M, et al.. Habitat monitoring: application driver for wireless communications technology [R].UCLA Computer Science Technical Report 20002,3, December 2000.
    [157] Di Tian, Georganas ND. A node scheduling scheme for energy conservation in large wireless sensor networks[A]. Wireless Communications and Mobile Computing[C], Wiley, UK March 2003,3(2): 271-290.
    [158] Ye F, Zhong G, Lu S, et al.Energy efficient robust sensing coverage in large sensor networks[R],UCLA Technical report 2002.
    [159] Kubisch M., Karl H., Wolisz A., Zhong L.C., Rabaey J. Distributed Algorithms for Transmission Power Control in Wireless Sensor Networks [A]. Wireless Communications and Networking (WCNC'03[C]). IEEE , Vol.(1), March 2003:16-20.
    [160] Ning Li, Hou, J.C. Localized topology control algorithms for heterogeneous wireless networks [A], Networking, IEEE/ACM Transactions on[C] Dec. 2005 Vol.l3(6):1313-1324.
    [161] Wattenhofer R., Zolinger A., XTC: A practical topology control algorithm for ad-hoc networks [A], in proc.18th IPDPS'04[C] Santa Fe, New Mexico, Apr.2004:216-223.
    [162] Varshney P, Distributed detection and data fusion[M]. Spinger-Verlag, New York, 1996.
    [163] Li D, Wong K, Hu Y.H, et al.. Detection, classification and tracking of targets in distributed sensor networks [J]. IEEE Signal Processing Magazine, Mar 2002. 19(2): 17-29.
    [164] Bang Wang, Wei Wang, V. Srinivasan, and K.C. Chua, Information Coverage for Wireless Sensor Networks [J], IEEE Communications Letters, vol. 9, no. 11, 2005: 967-969,
    [165] Winfield A.F.T, Distributed sensing and data collection via broken ad hoc wireless connected networks of mobile robots[J], in Distributed Autonomous Robotic Systems 4, eds. LE Parker, G Bekey & J Barhen, Springer-Verlag, 2000:273-282.
    [166] Nojeong H, Varshney, P.K, An intelligent deployment and clustering algorithm for a distributed mobile sensor network[A]. IEEE International Conference on [C], 5-8 Oct. 2003,5:4576 - 4581.
    [167] Jindong Tan et,al. Multiple vechile for sensor network area coverage[A] .Proceedings of the 5 th world congress on intelligent control and automation [C], hangzhou ,China,June 15-19,2004: 4666-4670.
    [168] Zou Y, Chakrabarty K, Sensor deployment and target localization based on virtual forces [A], in Proc. IEEE INFOCOM Conference[C], 2003:1293-1303.
    [169] Howard A, Matari'c M.J., Sukhatme G S. Mobile Sensor Network Deployment using Potential Fields: A Distributed, Scalable Solution to the Area Coverage Problem[A]. The 6th international conference on distributed autonomous robotic systems (DARS02)[C] ,Fukuoka, Japan, June 25-27,2002:299-308.
    [170] Gage D. W, Command control for many-robot systems [A].AUVS-92, the 19th Annual AUVS Technical Symposium,Huntsville AL[C], June 1992:22-24.
    [171] Yi Zou, coverage-driven sensor deployment and energy-efficient information processing in wireless sensor networks [D],doctor dissertation, department of electrical and computer engineering Duke University,2004
    [172] Yong Xu; Xin Yao, A GA approach to the optimal placement of sensors in wireless sensor networks with obstacles and preferences [A], Consumer Communications and Networking Conference[C], 2006. CCNC 2006. 2006 3rd IEEE ,Volume 1, 8-10 Jan. 2006:127 - 131.
    [173] Xiaorui Wang, Guoliang Xing, Yuanfang Zhang, Chenyang Lu, Robert Pless, Christopher Gill, Intergrated Coverage and Connectivity Configuration in Wireless Sensor Networks[J], ACM Sensys, 2003,28-39
    [174] Mihaela Cardei, My T. Thai, Yingshu Li and Weili Wu, Energy-efficient target coverage in wireless sensor networks [A],in IEEE INFOCOM [C], 2005:1976-1984.
    [175] Maggie X. Cheng, Lu Ruan and Weili Wu, Achieving minimum coverage breach under bandwidth constraints in wireless sensor networks [A], in IEEE Infocom[C], 2005: 2638-2645.
    [176] Sachin Adlakha and Mani Srivastava, Critical density thresholds for coverage in wireless sensor networks [A],in IEEE Wireless Communications and Networking Conference (WCNC)[C], 2003, vol. 3: 1615-1620.
    [177] Benyuan Liu and Don Towsley, On the coverage and detectability of large-scale wireless sensor networks [A], in International Conference on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt), 2003 [C].
    [178] Sameera Poduri and Gaurav S. Sukhatme,Constrained coverage for mobile sensor networks[A], in IEEE International Conference on Robotics and Automation[C], 2004, vol. 1: 165-171.
    [179] 曹峰,刘丽萍,王智,能量有效的无线移动传感器网络部署[J],信息与控制,2006.4,vol35(2):147-154.
    [180] Mohamed Aly, Kirk Pruhs, Taieb Znati and Brady Hunsaker, The coverage problem for myopic sensors[A], in IEEE International Conference on Wireless Networks, Communications and Mobile Computing[C], 2005: 964-968.
    [181] Zhao Qun and Mohan Gurusamy, Lifetime maximization using observation time scheduling in multi-hop sensor networks[A], in IEEE/CreateNet International Workshop on Broadband Advanced Sensor Networks (BroadNets)[C], 2005.
    [182] Mihaela Cardei, Jie Wu, Mingming Lu and Mohammad O. Pervalz, Maximum network lifetime in wireless sensor networks with adjustable sensing ranges[A], in IEEE International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob)[C], 2005: 438-445.
    [183] Ye F, Zhong G, Lu S et. al. PEAS: A Robust Energy Conserving Protocol for Long-lived Sensor Networks[A]The 23rd International Conference on Distributed Computing Systems (ICDCS'03)[C], May 2003.
    [184] Cerpa A, Estrin D, ASCENT: adaptive self-configuring sEnsor networks topologies[A]. INFOCOM 2002. Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies Proceedings[C], June 2002(3):23-27.
    [185] Jiawei Han,Micheline Kamber著,范明、孟小峰等译,数据挖掘概念与技术[M],北京,机械工业出版社,2004。
    [186] 刘丽萍,曹峰,王智等,基于嵌套网格的无线传感器网络节能部署,信息与控制,2006.4,vol.35(2):154-161.
    [187] Benek J A, Buning P G, Steger J L. A 3-D Chimera Grid Embedding Technique[R]. USA: AIAA, 1985: 322~331.
    [188] 苏力华,楼玫娟,肖金香,等.气象卫星遥感监测在森林防火中的应用[J].西北农林科技大学学报(自然科学版),2004,32(11):85~88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700