辣椒均一化全长cDNA文库的构建及若干重要基因的表达或功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
辣椒(Capsicum annuum L.)是一种具有重要经济价值的茄科作物,而在生产过程中包括病害在内的各种生物和非生物逆境的发生严重地影响辣椒的产量和质量。培育,推广及应用抗逆品种是当前和今后解决辣椒品质问题的最为根本有效的技术对策,辣椒抗病分子机制的阐明则有利于促进现代生物技术和常规育种相结合,进而有效的促进辣椒抗逆遗传改良。大量的研究表明,包括病原菌在内的逆境胁迫可激活植物防御反应,这种诱导抗性在植物抗逆过程中起重要作用,这一过程受逆境胁迫下信号传递途径的控制,其中转录因子通过整合外界信号和协调基因表达的过程中起重要作用参与了该过程。开展辣椒应答逆境的重要转录因子的结构和功能鉴定有利于揭示辣椒抗逆分子机制,促进辣椒抗逆遗传改良。因此,本研究为了分离获得若干可能在辣椒抗病或抗逆防御反应中起重要调节作用转录因子,首先构建了外源SA处理的辣椒均一化cDNA文库,从中分别分离获得2个NAC和1个ERF转录因子阳性克隆,对所分离阳性克隆进行了与特定顺式作用原件互作的瞬间表达、亚细胞定位以及在不同逆境下转录表达的荧光定量PCR分析,并对ERF在烟草中超表达对青枯菌接种抗性和高温抗性的影响进行了分析,主要研究结果如下:
     1.采用DSN均一化技术与SMART建库技术相结合的方法,构建了在SA处理下辣椒全长均一化cDNA文库,该文库含有1.8×10~6个独立克隆,插入片段平均长度为1. 5 kb,重组率为99%,经测序获得unigenes数目为817,冗余度为5.5%,文库的均一化效果良好,质量符合要求。
     2.采用文库稀释池法从全长均一化cDNA文库中分离获得了两个辣椒NAC阳性克隆CaNAC6和CaNAC2。两个NAC蛋白都包含有NAC类转录因子特有的NAC域和C末端的可变域。蛋白结构域和分子进化分析表明CaNAC6属于第Ⅲ(stress-related NAC genes, SNAC)亚族,CaNAC2属于第Ⅰ-5(NAC2)亚族。酵母实验表明,CaNAC6和CaNAC2的C末端均具有转录激活活性。两个蛋白均可结合NAC类转录因子的识别序列NACRS序列。基因枪介导的洋葱表皮转化实验表明,35S::CaNAC6-GFP融合蛋白定位于细胞核中,35S::CaNAC2-GFP融合蛋白在细胞核和细胞膜中均有表达。荧光定量结果表明,NAA处理下CaNAC6上调表达,CaNAC2在短时间内表现为下调。CaNAC6可由SA,MeJA,ETH,ABA,机械损伤,青枯菌及干旱诱导表达。CaNAC2由SA,MeJA,青枯菌,干旱诱导表达,ABA作用下无明显变化,在乙烯利作用下表现为一定程度的下调。两个基因的表达水平在4℃冷处理时均在处理后48 h上调,在NaCl和42℃高温处理一定时间内都表现出下调。
     4.从均一化cDNA文库中分离了一个辣椒ERF阳性克隆CaERF5。洋葱表皮转化实验表明35S::CaERF5-GFP融合蛋白定位于细胞核中。瞬时表达结果表明CaERF5结合GCC-box而不结合CRT/DRE元件。分子进化和序列分析表明CaERF5属于ERF转录因子bⅨ亚族家族成员。
     5.表达模式分析表明,CaERF5在青枯菌侵染后24-96 h间上调表达,并受SA,MeJA,ETH,机械损伤、低温、高温作用诱导,但不受ABA诱导,在干旱处理下下调表达。相对于K326,除NtNPR1外,包括NtPR2,Ntosmotin,NtACS,NtPR1b,NtPR3,NtPRQ,NtMLP2及NtGST1在内的防御反应相关基因在过量表达CaERF5转基因株系中表达量显著上调。CaERF5过量表达的转基因烟草在接种青枯菌后一系列防御反应相关基因Ntosmotin,NtNPR1,NtPR3,NtPR1b,NtPRQ,NtMLP2,NtCAT1,NtGST1及NtACC均在48 h和96 h表达量无明显组间差异,而在野生型K326中,接种青枯菌96 h后这一系列基因依然呈诱导表达状态。此外,青枯菌接种48h和96h后过量表达CaERF5植株中两个热激蛋白基因(NtHSP和NtHSP18)表达水平较K326均有一定程度的提高。42℃高温处理下CaERF5转基因株系在高温胁迫下萌芽率明显高于K326,并且幼苗表现出较强的高温耐受能力。
     综上所述,本研究构建了一个外源SA处理的辣椒均一化cDNA文库,从中分离获得2个NAC(CaNAC6和CaNAC2)和1个ERF(CaERF5)转录因子阳性克隆,初步分析表明,CaNAC6和CaNAC2可能参与了辣椒响应不同生物和非生物逆境的过程。定位于细胞核可与GCC盒结合的CaERF5的转录表达同样受各种生物和非生物逆境不同程度诱导,过量表达CaERF5显著提高转基因烟草一系列防御反应相关基因的表达,并介导了转基因烟草对高温和青枯病的抗性。
Pepper (Capsicum annuum L.) is a Solanaceae crop with important economic value. Adverse factors including biotic and abiotic stresses like frequent diseases during pepper production have seriously negative effects on yield and quality. The development, promotion and application of disease-resistant cultivars are efficient technological strategy to overcome the problem of yield and quality. Illumination on molecular mechanism of disease resistance in pepper is helpful to boost combination of modern biotechnology and conventional breeding, and promote genetic improvement of stress resistance in pepper. Previous studies indicate that defense reaction can be triggered by biotic and abiotic stresses like pathogenicbacteria. This induced resistance plays an essential role in the process of stress resistance in plants. This process is controlled by signal pathways under stresses. Transcription factors, such as WRKY,NAC,ERF and so on play vital roles in the signal integration and coordination of transcriptional regulation of various genes expression. So structure and functional analysis of transcription factors in response to stresses is a feasible approach to elucidate the molecular mechanism of stress resistance in plants. In this paper, to isolate several transcription factors possibly playing important role in disease-resistant or stress-resistant response, a normalized cDNA library enriched in full-length sequences was constructed using DSN (duplex-specific nuclease)-normalization method combined with SMART (switching mechanism at 5′end of RNA transcript) technique. Full-length cDNA of two NAC transcription factors (TFs) and one ERF TF were isolated from the normalized cDNA library. The structure, expression pattern, subcullar localization and their binding to coresponding cis-elements of the three candidate transcription factors were characterized, and the effect of ERF overexpression in T1 transgenic tobacco lines on resistance to Ralstonia solanacearum inoculation and resistance to high temperature stress were also analyzed. The main results were as followings:
     1. A full-length normalized cDNA library of pepper seedling under Salicylic acid treatment was constructed using DSN-normalization method combined with SMART technique. The normalized cDNA library contained 1.8×10~6 independent clones and the average insertion size of cDNA was 1.5 kb with 99% recombination rate. After sequencing, 817 unigenes were obtained. The cDNA library was well normalized with 5.5% redundancy.
     2. Two full-length cDNA clones encoded NAC TFs were isolated from pepper normalized cDNA library based on pooling strategy combined with PCR-based screening method. Both NAC proteins contained highly conserved NAC domain accompanied by diverse C-terminal domains. Protein structure and sequence alignment analysis suggested that CaNAC6 belonged to groupⅢ(stress-related NAC genes, SNAC) and CaNAC2 belonged to the fifth subgroup of the groupⅠ(NAC2).β-gal assay suggested that the transactivation region of CaNAC6 and CaNAC2 were located in the C-terminals. Both NAC proteins could bind to the NACRS sequence to activate the GUS gene expression. Transient expression analysis in onion epidermal cells suggested 35S::CaNAC6-GFP fusion protein was localized in the nucleus, whereas 35S::CaNAC2-GFP was localized in both cytoplasm and nucleus.
     According to Real time PCR analysis, the expression of CaNAC6 was up-regulated, and down-regulated for CaNAC2 in a short time under 1- Naphthaleneacetic acid (NAA)treatment. CaNAC6 could be induced by SA, methyl-jasmonic acid (MeJA), Ethephon (ETH), Abscisic acid ( ABA), mechanical wounding,drought and Ralstonia solanacearum inoculation. CaNAC6 could be induced by SA, MeJA, drought and Ralstonia solanacearum inoculation. However,CaNAC6 showed down-regulated expression under ETH treatment and no significant difference was observed under ABA treatment. In addition,the expression of two NAC genes showed up-regulated after 48 h under 4℃condition and down-regulated under high salinity and heat stresses.
     3. A full-length cDNA clone encoded ERF TF was isolated from pepper normalized cDNA library. Transient expression analysis in onion epidermal cells indicated that 35S::CaERF5-GFP fusion protein was localized in the nucleus, and CaERF5 could bind to the GCC-box but no DNA binding activity was observed with CRT/DRE motif. Protein structure and sequence alignment analysis suggested that CaERF5 belonged to theⅨb subfamily of the ERF TF superfamily.
     4. According to Real time PCR analysis, CaERF5 was up-regulated from 24 h to 96h after R.asolanacearum infection and also could be induced by SA, MeJA, ETH, mechanical wounding, extreme temperatures, but no transcript accumulation was observed under ABA treatment. Furthermore, CaERF5 transcript was repressed by dehydration.
     The T1 generation of ERF overexpression transgenic tobacco was obtained, and the expression patterns of several representative stress-responsive genes were monitored in 8-weeks-old transgenic plants. In contrast to K326 plant, the NtPR2, Ntosmotin, NtACS, NtGST1, NtMLP2 and also JA/ET pathway related genes including NtPR1b, NtPR3 and NtPRQ transcripts were found to be up-regulated in the overexpression CaERF5 transgenic line. No transcript alteration of NPR1 was observed between K326 and ox-CaERF5-5 transgenic line. The Ntosmotin, NtNPR1, NtPR3, NtPR1b, NtPRQ, NtMLP2, NtCAT1, NtGST1 and NtACC transcripts were found to have no significant difference between 48 h and 96 h postinoculation with R.asolanacearum in ox-CaERF5-5 transgenic line. In K326, these genes show higher expression level at 96h after R.asolanacearum infected than that at 48h.
     NtHSP and NtHSP18 were up-regulated in ox-CaERF5-5 transgenic line after 48 h and 96 h postinoculation with R.asolanacearum.Furthermore, the germination and seedling growth of K326 plants was significantly inhibited by 42℃heating treatment than ox-CaERF5 transgenic lines.
     Taken together, a full-length normalized cDNA library of pepper seedling under Salicylic acid treatment was constructed. Full-length cDNA of two NAC (CaNAC6 and CaNAC2) TFs and one ERF (CaERF5) TF were isolated from the normalized cDNA library. A preliminary analysis showed that CaNAC6 and CaNAC2 play roles in pepper response to both abotic and biotic stresses. CaERF5 located in the nucleus and binding to the GCC-box was also induced by different abotic and biotic stresses. The expression of CaERF5 was also induced by different abotic and biotic stresses. A series of defense related genes transcripts were found to be up-regulated in the overexpression CaERF5 transgenic line.Transgenic tobacco plants over-expressing CaERF5 showed improved tolerance against high temperature and R.asolanacearum.
引文
[1]Wiemann S, Mehrle A, Bechtel S et al. CDNAs for functional genomics and proteomics: the German Consortium [J]. C R Biol, 2003, 326(10-11): 1003-1009.
    [2]Sterck L, Rombauts S, Vandepoele K et al. How many genes are there in plants (and why are they there)? [J]. Curr Opin Plant Biol, 2007, 10(2): 199-203.
    [3]Zhang Z X, Zhang F D, Tang W H et al. Construction and characterization of normalized cDNA library of maize inbred Mo17 from multiple tissues and developmental stages [J]. Mol Biol (Mosk), 2005, 39(2): 198-206.
    [4]Kim M, Kim S, Ki B D. Isolation of cDNA clones differentially accumulated in the placenta of pungent pepper by suppression subtractive hybridization [J]. Mol Cells, 2001, 11(2): 213-219.
    [5]Hyodo H, Takemura M, Yokota A et al. Systematic isolation of highly transcribed genes in inflorescence apices in Arabidopsis thaliana from an equalized cDNA library [J]. Biosci Biotechnol Biochem, 2000, 64(7): 1538-1541.
    [6]Weissman S M. Molecular genetic techniques for mapping the human genome [J]. Mol Biol Med, 1987, 4(3): 133-143.
    [7]储昭晖,彭开蔓.水稻全生育期均一化cDNA文库的构建和鉴定[J].科学通报, 2002, 47(21): 1656-1662.
    [8]Meier-Ewert S, Lange J, Gerst H et al. Comparative gene expression profiling by oligonucleotide fingerprinting [J]. Nucleic Acids Res, 1998, 26(9): 2216-2223.
    [9]Poustka A J, Herwig R, Krause A et al. Toward the gene catalogue of sea urchin development: the construction and analysis of an unfertilized egg cDNA library highly normalized by oligonucleotide fingerprinting [J]. Genomics, 1999, 59(2): 122-133.
    [10]Eickhoff H, Schuchhardt J, Ivanov I et al. Tissue gene expression analysis using arrayed normalized cDNA libraries [J]. Genome Res, 2000, 10(8): 1230-1240.
    [11]Clark M D, Hennig S, Herwig R et al. An oligonucleotide fingerprint normalized and expressed sequence tag characterized zebrafish cDNA library [J]. Genome Res, 2001, 11(9): 1594-1602.
    [12]Ko M S. An 'equalized cDNA library' by the reassociation of short double-stranded cDNAs [J]. Nucleic Acids Res, 1990, 18(19): 5705-5711.
    [13]Patanjali S R, Parimoo S, Weissman S M. Construction of a uniform-abundance (normalized) cDNA library [J]. Proc Natl Acad Sci U S A, 1991, 88(5): 1943-1947.
    [14]Soares M B, Bonaldo M F, Jelene P et al. Construction and characterization of a normalized cDNA library [J]. Proc Natl Acad Sci U S A, 1994, 91(20): 9228-9232.
    [15]Zhulidov P A, Bogdanova E A, Shcheglov A S et al. A method for the preparation of normalized cDNA libraries enriched with full-length sequences [J]. Bioorg Khim, 2005, 31(2): 186-194.
    [16]Shagin D A, Rebrikov D V, Kozhemyako V B et al. A novel method for SNP detection using a new duplex-specific nuclease from crab hepatopancreas [J]. Genome Res, 2002, 12(12): 1935-1942.
    [17]Bogdanova E A, Shagin D A, Lukyanov S A. Normalization of full-length enriched cDNA [J]. Mol Biosyst, 2008, 4(3): 205-212.
    [18]Anisimova V E, Rebrikov D V, Shagin D A et al. Isolation, characterization and molecular cloning of duplex-specific nuclease from the hepatopancreas of the Kamchatka crab [J]. BMC Biochem, 2008, 9: 14.
    [19]Edery I, Chu L L, Sonenberg N et al. An efficient strategy to isolate full-length cDNAs based on an mRNA cap retention procedure (CAPture) [J]. Mol Cell Biol, 1995, 15(6): 3363-3371.
    [20]Zhu Y Y, Machleder E M, Chenchik A et al. Reverse transcriptase template switching: a SMART approach for full-length cDNA library construction [J]. Biotechniques, 2001, 30(4): 892-897.
    [21]Carninci P, Waki K, Shiraki T et al. Targeting a complex transcriptome: the construction of the mouse full-length cDNA encyclopedia [J]. Genome Res, 2003, 13(6B): 1273-1289.
    [22]Carninci P, Shibata Y, Hayatsu N et al. Normalization and subtraction of cap-trapper-selected cDNAs to prepare full-length cDNA libraries for rapid discovery of new genes [J]. Genome Res, 2000, 10(10): 1617-1630.
    [23]Carninci P, Kvam C, Kitamura A et al. High-efficiency full-length cDNA cloning by biotinylated CAP trapper [J]. Genomics, 1996, 37(3): 327-336.
    [24]Sugahara Y, Carninci P, Itoh M et al. Comparative evaluation of 5'-end-sequence quality of clones in CAP trapper and other full-length-cDNA libraries [J]. Gene, 2001, 263(1-2): 93-102.
    [25]Suzuki Y, Sugano S. Construction of a full-length enriched and a 5'-end enriched cDNA library using the oligo-capping method [J]. Methods Mol Biol, 2003, 221: 73-91.
    [26]Suzuki Y, Sugano S. Construction of full-length-enriched cDNA libraries. The oligo-capping method [J]. Methods Mol Biol, 2001, 175: 143-153.
    [27]Efimov V A, Chakhmakhcheva O G, Archdeacon J et al. Detection of the 5'-cap structure of messenger RNAs with the use of the cap-jumping approach [J]. Nucleic Acids Res, 2001, 29(22): 4751-4759.
    [28]Bogdanov E A, Shagina I, Barsova E V et al. Normalizing cDNA libraries [J]. Curr Protoc Mol Biol, 2010, Chapter 5: Unit 5 12 11-27.
    [29]Seki M, Narusaka M, Kamiya A et al. Functional annotation of a full-length Arabidopsis cDNA collection [J]. Science, 2002, 296(5565): 141-145.
    [30]Schmidt W M, Mueller M W. CapSelect: a highly sensitive method for 5' CAP-dependent enrichment of full-length cDNA in PCR-mediated analysis of mRNAs [J]. Nucleic Acids Res, 1999, 27(21): e31.
    [31]Xie Y F, Wang B C, Li B et al. Construction of cDNA library of cotton mutant Xiangmian-18 library during gland forming stage [J]. Colloids Surf B Biointerfaces, 2007, 60(2): 258-263.
    [32]晨李,闫晓红,周新安,等.大豆种子不同发育时期全长均一化cDNA文库的构建[J].中国农业科学, 2010, 43(2): 462-467.
    [33]Gutjahr C, Paszkowski U. Weights in the balance: jasmonic acid and salicylic acid signaling in root-biotroph interactions [J]. Mol Plant Microbe Interact, 2009, 22(7): 763-772.
    [34]De Vos M, Van Zaanen W, Koornneef A et al. Herbivore-induced resistance against microbial pathogens in Arabidopsis [J]. Plant Physiol, 2006, 142(1): 352-363.
    [35]Enyedi A J, Yalpani N, Silverman P et al. Localization, conjugation, and function ofsalicylic acid in tobacco during the hypersensitive reaction to tobacco mosaic virus [J]. Proc Natl Acad Sci U S A, 1992, 89(6): 2480-2484.
    [36]Martinez C, Baccou J C, Bresson E et al. Salicylic acid mediated by the oxidative burst is a key molecule in local and systemic responses of cotton challenged by an avirulent race of Xanthomonas campestris pv malvacearum [J]. Plant Physiol, 2000, 122(3): 757-766.
    [37]Grant M, Lamb C. Systemic immunity [J]. Curr Opin Plant Biol, 2006, 9(4): 414-420.
    [38]Potlakayala S D, Reed D W, Covello P S et al. Systemic acquired resistance in canola is linked with pathogenesis-related gene expression and requires salicylic Acid [J]. Phytopathology, 2007, 97(7): 794-802.
    [39]Maleck K, Levine A, Eulgem T et al. The transcriptome of Arabidopsis thaliana during systemic acquired resistance [J]. Nat Genet, 2000, 26(4): 403-410.
    [40]Maniatis T, Fritsch E F, Sambrook J. Molecular Cloning: A Laboratory Manual (3rd ed). Cold Spring Harbor, NY, Cold Spring Harbor Laboratory [M]. 1987.
    [41]Jones L R, Zandomeni R O, Weber E L. A long distance RT-PCR able to amplify the Pestivirus genome [J]. J Virol Methods, 2006, 134(1-2): 197-204.
    [42]Fujita M, Fujita Y, Noutoshi Y et al. Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks [J]. Curr Opin Plant Biol, 2006, 9(4): 436-442.
    [43]Kunkel B N, Brooks D M. Cross talk between signaling pathways in pathogen defense [J]. Curr Opin Plant Biol, 2002, 5(4): 325-331.
    [44]Pastori G M, Foyer C H. Common components, networks, and pathways of cross-tolerance to stress. The central role of "redox" and abscisic acid-mediated controls [J]. Plant Physiol, 2002, 129(2): 460-468.
    [45]Udvardi M K, Kakar K, Wandrey M et al. Legume transcription factors: global regulators of plant development and response to the environment [J]. Plant Physiol, 2007, 144(2): 538-549.
    [46]Hu H, Dai M, Yao J et al. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice [J]. Proc Natl Acad Sci U S A, 2006, 103(35): 12987-12992.
    [47]Singh K, Foley R C, Onate-Sanchez L. Transcription factors in plant defense and stress responses [J]. Curr Opin Plant Biol, 2002, 5(5): 430-436.
    [48]Du H, Zhang L, Liu L et al. Biochemical and molecular characterization of plant MYB transcription factor family [J]. Biochemistry (Mosc), 2009, 74(1): 1-11.
    [49]Olsen A N, Ernst H A, Leggio L L et al. NAC transcription factors: structurally distinct, functionally diverse [J]. Trends Plant Sci, 2005, 10(2): 79-87.
    [50]Oh S K, Yi S Y, Yu S H et al. CaWRKY2, a chili pepper transcription factor, is rapidly induced by incompatible plant pathogens [J]. Mol Cells, 2006, 22(1): 58-64.
    [51]Park C J, Shin Y C, Lee B J et al. A hot pepper gene encoding WRKY transcription factor is induced during hypersensitive response to Tobacco mosaic virus and Xanthomonas campestris [J]. Planta, 2006, 223(2): 168-179.
    [52]Youm J W, Jeon J H, Choi D et al. Ectopic expression of pepper CaPF1 in potato enhances multiple stresses tolerance and delays initiation of in vitro tuberization [J]. Planta, 2008, 228(4): 701-708.
    [53]Kim S Y, Kim Y C, Lee J H et al. Identification of a CaRAV1 possessing an AP2/ERF andB3 DNA-binding domain from pepper leaves infected with Xanthomonas axonopodis pv. glycines 8ra by differential display [J]. Biochim Biophys Acta, 2005, 1729(3): 141-146.
    [54]Lee S C, Choi H W, Hwang I S et al. Functional roles of the pepper pathogen-induced bZIP transcription factor, CAbZIP1, in enhanced resistance to pathogen infection and environmental stresses [J]. Planta, 2006, 224(5): 1209-1225.
    [55]Borovsky Y, Oren-Shamir M, Ovadia R et al. The A locus that controls anthocyanin accumulation in pepper encodes a MYB transcription factor homologous to Anthocyanin2 of Petunia [J]. Theor Appl Genet, 2004, 109(1): 23-29.
    [56]Oh S K, Lee S, Yu S H et al. Expression of a novel NAC domain-containing transcription factor (CaNAC1) is preferentially associated with incompatible interactions between chili pepper and pathogens [J]. Planta, 2005, 222(5): 876-887.
    [57]Souer E, van Houwelingen A, Kloos D et al. The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries [J]. Cell, 1996, 85(2): 159-170.
    [58]Aida M, Ishida T, Fukaki H et al. Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant [J]. Plant Cell, 1997, 9(6): 841-857.
    [59]Olsen A N, Ernst H A, Leggio L L et al. NAC transcription factors: structurally distinct, functionally diverse [J]. Trends Plant Sci, 2005b, 10(2): 79-87.
    [60]Duval M, Hsieh T F, Kim S Y et al. Molecular characterization of AtNAM: a member of the Arabidopsis NAC domain superfamily [J]. Plant Mol Biol, 2002, 50(2): 237-248.
    [61]Ooka H, Satoh K, Doi K et al. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana [J]. DNA Res, 2003, 10(6): 239-247.
    [62]Ernst H A, Olsen A N, Larsen S et al. Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors [J]. EMBO Rep, 2004, 5(3): 297-303.
    [63]Olsen A N, Ernst H A, Leggio L L et al. DNA-binding specificity and molecular functions of NAC transcription factors [J]. Plant Science, 2005a, 169: 785-797.
    [64]Jeong J S, Park Y T, Jung H et al. Rice NAC proteins act as homodimers and heterodimers [J]. Plant Biotechnol Rep, 2009, 3: 127-134.
    [65]Fang Y, You J, Xie K et al. Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice [J]. Mol Genet Genomics, 2008, 280(6): 547-563.
    [66]Rushton P J, Bokowiec M T, Han S et al. Tobacco transcription factors: novel insights into transcriptional regulation in the Solanaceae [J]. Plant Physiol, 2008, 147(1): 280-295.
    [67]Hegedus D, Yu M, Baldwin D et al. Molecular characterization of Brassica napus NAC domain transcriptional activators induced in response to biotic and abiotic stress [J]. Plant Mol Biol, 2003, 53(3): 383-397.
    [68]Xie Q, Frugis G, Colgan D et al. Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development [J]. Genes Dev, 2000, 14(23): 3024-3036.
    [69]Tran L S, Nakashima K, Sakuma Y et al. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter [J]. Plant Cell, 2004, 16(9): 2481-2498.
    [70]Kim H S, Park B O, Yoo J H et al. Identification of a calmodulin-binding NAC protein as a transcriptional repressor in Arabidopsis [J]. J Biol Chem, 2007a, 282(50): 36292-36302.
    [71]Poon I K, Jans D A. Regulation of nuclear transport: central role in development and transformation? [J]. Traffic, 2005, 6(3): 173-186.
    [72]Vik A, Rine J. Membrane biology: membrane-regulated transcription [J]. Curr Biol, 2000, 10(23): R869-871.
    [73]Schwacke R, Schneider A, van der Graaff E et al. ARAMEMNON, a novel database for Arabidopsis integral membrane proteins [J]. Plant Physiol, 2003, 131(1): 16-26.
    [74]Seo P J, Kim S G, Park C M. Membrane-bound transcription factors in plants [J]. Trends Plant Sci, 2008, 13(10): 550-556.
    [75]Kim S Y, Kim S G, Kim Y S et al. Exploring membrane-associated NAC transcription factors in Arabidopsis: implications for membrane biology in genome regulation [J]. Nucleic Acids Res, 2007, 35(1): 203-213.
    [76]Kim Y S, Kim S G, Park J E et al. A membrane-bound NAC transcription factor regulates cell division in Arabidopsis [J]. Plant Cell, 2006, 18(11): 3132-3144.
    [77]Kim S G, Kim S Y, Park C M. A membrane-associated NAC transcription factor regulates salt-responsive flowering via FLOWERING LOCUS T in Arabidopsis [J]. Planta, 2007b, 226(3): 647-654.
    [78]Hoppe T, Rape M, Jentsch S. Membrane-bound transcription factors: regulated release by RIP or RUP [J]. Curr Opin Cell Biol, 2001, 13(3): 344-348.
    [79]Hoppe T, Matuschewski K, Rape M et al. Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing [J]. Cell, 2000, 102(5): 577-586.
    [80]Kim S Y, Kim S G, Kim Y S et al. Exploring membrane-associated NAC transcription factors in Arabidopsis: implications for membrane biology in genome regulation [J]. Nucleic Acids Res, 2007c, 35(1): 203-213.
    [81]He X J, Mu R L, Cao W H et al. AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development [J]. Plant J, 2005, 44(6): 903-916.
    [82]Nikovics K, Blein T, Peaucelle A et al. The balance between the MIR164A and CUC2 genes controls leaf margin serration in Arabidopsis [J]. Plant Cell, 2006, 18(11): 2929-2945.
    [83]Hibara K, Karim M R, Takada S et al. Arabidopsis CUP-SHAPED COTYLEDON3 regulates postembryonic shoot meristem and organ boundary formation [J]. Plant Cell, 2006, 18(11): 2946-2957.
    [84]Vroemen C W, Mordhorst A P, Albrecht C et al. The CUP-SHAPED COTYLEDON3 gene is required for boundary and shoot meristem formation in Arabidopsis [J]. Plant Cell, 2003, 15(7): 1563-1577.
    [85]Balazadeh S, Riano-Pachon D M, Mueller-Roeber B. Transcription factors regulating leaf senescence in Arabidopsis thaliana [J]. Plant Biol (Stuttg), 2008, 10 Suppl 1: 63-75.
    [86]Buchanan-Wollaston V, Ainsworth C. Leaf senescence in Brassica napus: cloning of senescence related genes by subtractive hybridisation [J]. Plant Mol Biol, 1997, 33(5): 821-834.
    [87]Gregersen P L, Holm P B. Transcriptome analysis of senescence in the flag leaf of wheat (Triticum aestivum L.) [J]. Plant Biotechnol J, 2007, 5(1): 192-206.
    [88]Guo Y, Gan S. AtNAP, a NAC family transcription factor, has an important role in leafsenescence [J]. Plant J, 2006, 46(4): 601-612.
    [89]Balazadeh S, Kwasniewski M, Caldana C et al. ORS1, an H2O2-Responsive NAC Transcription Factor, Controls Senescence in Arabidopsis thaliana [J]. Mol Plant, 2011.
    [90]Balazadeh S, Siddiqui H, Allu A D et al. A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence [J]. Plant J, 2010, 62(2): 250-264.
    [91]Yoon H K, Kim S G, Kim S Y et al. Regulation of leaf senescence by NTL9-mediated osmotic stress signaling in Arabidopsis [J]. Mol Cells, 2008, 25(3): 438-445.
    [92]Kubo M, Udagawa M, Nishikubo N et al. Transcription switches for protoxylem and metaxylem vessel formation [J]. Genes Dev, 2005, 19(16): 1855-1860.
    [93]Zhong R, Richardson E A, Ye Z H. Two NAC domain transcription factors, SND1 and NST1, function redundantly in regulation of secondary wall synthesis in fibers of Arabidopsis [J]. Planta, 2007, 225(6): 1603-1611.
    [94]Zhong R, Demura T, Ye Z H. SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis [J]. Plant Cell, 2006, 18(11): 3158-3170.
    [95]Mitsuda N, Iwase A, Yamamoto H et al. NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis [J]. Plant Cell, 2007, 19(1): 270-280.
    [96]Zhao C, Avci U, Grant E H et al. XND1, a member of the NAC domain family in Arabidopsis thaliana, negatively regulates lignocellulose synthesis and programmed cell death in xylem [J]. Plant J, 2008, 53(3): 425-436.
    [97]Yamaguchi M, Ohtani M, Mitsuda N et al. VND-INTERACTING2, a NAC domain transcription factor, negatively regulates xylem vessel formation in Arabidopsis [J]. Plant Cell, 2010, 22(4): 1249-1263.
    [98]Collinge M, Boller T. Differential induction of two potato genes, Stprx2 and StNAC, in response to infection by Phytophthora infestans and to wounding [J]. Plant Mol Biol, 2001, 46(5): 521-529.
    [99]Delessert C, Kazan K, Wilson I W et al. The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis [J]. Plant J, 2005, 43(5): 745-757.
    [100]Wu Y, Deng Z, Lai J et al. Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses [J]. Cell Res, 2009, 19(11): 1279-1290.
    [101]Jensen M K, Rung J H, Gregersen P L et al. The HvNAC6 transcription factor: a positive regulator of penetration resistance in barley and Arabidopsis [J]. Plant Mol Biol, 2007, 65(1-2): 137-150.
    [102]Lu P L, Chen N Z, An R et al. A novel drought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis [J]. Plant Mol Biol, 2007, 63(2): 289-305.
    [103]Seo P J, Kim M J, Park J Y et al. Cold activation of a plasma membrane-tethered NAC transcription factor induces a pathogen resistance response in Arabidopsis [J]. Plant J, 2010, 61(4): 661-671.
    [104]Xie Q, Sanz-Burgos A P, Guo H et al. GRAB proteins, novel members of the NAC domain family, isolated by their interaction with a geminivirus protein [J]. Plant Mol Biol,1999, 39(4): 647-656.
    [105]Selth L A, Dogra S C, Rasheed M S et al. A NAC domain protein interacts with Tomato leaf curl virus replication accessory protein and enhances viral replication [J]. Plant Cell, 2005, 17(1): 311-325.
    [106]Ren T, Qu F, Morris T J. HRT gene function requires interaction between a NAC protein and viral capsid protein to confer resistance to turnip crinkle virus [J]. Plant Cell, 2000, 12(10): 1917-1926.
    [107]Yang R, Deng C, Ouyang B et al. Molecular analysis of two salt-responsive NAC-family genes and their expression analysis in tomato [J]. Mol Biol Rep, 2011, 38(2): 857-863.
    [108]Nakashima K, Tran L S, Van Nguyen D et al. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice [J]. Plant J, 2007, 51(4): 617-630.
    [109]Zheng X, Chen B, Lu G et al. Overexpression of a NAC transcription factor enhances rice drought and salt tolerance [J]. Biochem Biophys Res Commun, 2009, 379(4): 985-989.
    [110]Fujita M, Fujita Y, Maruyama K et al. A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway [J]. Plant J, 2004, 39(6): 863-876.
    [111]Bu Q, Jiang H, Li C B et al. Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses [J]. Cell Res, 2008, 18(7): 756-767.
    [112]Kim S G, Lee A K, Yoon H K et al. A membrane-bound NAC transcription factor NTL8 regulates gibberellic acid-mediated salt signaling in Arabidopsis seed germination [J]. Plant J, 2008, 55(1): 77-88.
    [113]Hu H, You J, Fang Y et al. Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice [J]. Plant Mol Biol, 2008, 67(1-2): 169-181.
    [114]Tran L S, Nakashima K, Sakuma Y et al. Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis [J]. Plant J, 2007, 49(1): 46-63.
    [115]Yim Y S, Moak P, Sanchez-Villeda H et al. A BAC pooling strategy combined with PCR-based screenings in a large, highly repetitive genome enables integration of the maize genetic and physical maps [J]. BMC Genomics, 2007, 8: 47.
    [116]Varagona M J, Schmidt R J, Raikhel N V. Nuclear localization signal(s) required for nuclear targeting of the maize regulatory protein Opaque-2 [J]. Plant Cell, 1992, 4(10): 1213-1227.
    [117]Chung E, Kim S Y, Yi S Y et al. Capsicum annuum dehydrin, an osmotic-stress gene in hot pepper plants [J]. Mol Cells, 2003, 15(3): 327-332.
    [118]Lee S J, Lee M Y, Yi S Y et al. PPI1: a novel pathogen-induced basic region-leucine zipper (bZIP) transcription factor from pepper [J]. Mol Plant Microbe Interact, 2002, 15(6): 540-548.
    [119]Sun C, Palmqvist S, Olsson H et al. A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter [J]. Plant Cell, 2003, 15(9): 2076-2092.
    [120]Seo P J, Park C M. A membrane-bound NAC transcription factor as an integrator of biotic and abiotic stress signals [J]. Plant Signal Behav, 2010, 5(5).
    [121]Kachroo A, Kachroo P. Salicylic acid-, jasmonic acid- and ethylene-mediated regulation of plant defense signaling [J]. Genet Eng (N Y), 2007, 28: 55-83.
    [122]Glazebrook J. Genes controlling expression of defense responses in Arabidopsis--2001 status [J]. Curr Opin Plant Biol, 2001, 4(4): 301-308.
    [123]Dong X. SA, JA, ethylene, and disease resistance in plants [J]. Curr Opin Plant Biol, 1998, 1(4): 316-323.
    [124]Guo H S, Xie Q, Fei J F et al. MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for arabidopsis lateral root development [J]. Plant Cell, 2005, 17(5): 1376-1386.
    [125]Xiong L, Schumaker K S, Zhu J K. Cell signaling during cold, drought, and salt stress [J]. Plant Cell, 2002, 14 Suppl: S165-183.
    [126]Reymond P, Farmer E E. Jasmonate and salicylate as global signals for defense gene expression [J]. Curr Opin Plant Biol, 1998, 1(5): 404-411.
    [127]Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction [J]. Annu Rev Plant Biol, 2004, 55: 373-399.
    [128]Mine T, Hiyoshi T, Kasaoka K et al. CIP353 encodes an AP2/ERF-domain protein in potato (Solanum tuberosum L.) and responds slowly to cold stress [J]. Plant Cell Physiol, 2003, 44(1): 10-15.
    [129]Sakuma Y, Liu Q, Dubouzet J G et al. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression [J]. Biochem Biophys Res Commun, 2002, 290(3): 998-1009.
    [130]Wu L, Chen X, Ren H et al. ERF protein JERF1 that transcriptionally modulates the expression of abscisic acid biosynthesis-related gene enhances the tolerance under salinity and cold in tobacco [J]. Planta, 2007, 226(4): 815-825.
    [131]Zhu Q, Zhang J, Gao X et al. The Arabidopsis AP2/ERF transcription factor RAP2.6 participates in ABA, salt and osmotic stress responses [J]. Gene, 2010, 457(1-2): 1-12.
    [132]Magnani E, Sjolander K, Hake S. From endonucleases to transcription factors: evolution of the AP2 DNA binding domain in plants [J]. Plant Cell, 2004, 16(9): 2265-2277.
    [133]Jofuku K D, den Boer B G, Van Montagu M et al. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2 [J]. Plant Cell, 1994, 6(9): 1211-1225.
    [134]Ohme-Takagi M, Shinshi H. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element [J]. Plant Cell, 1995, 7(2): 173-182.
    [135]Hao D, Ohme-Takagi M, Sarai A. Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor (ERF domain) in plant [J]. J Biol Chem, 1998, 273(41): 26857-26861.
    [136]Riechmann J L, Heard J, Martin G et al. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes [J]. Science, 2000, 290(5499): 2105-2110.
    [137]Okamuro J K, Caster B, Villarroel R et al. The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis [J]. Proc Natl Acad Sci U S A, 1997, 94(13): 7076-7081.
    [138]Nakano T, Suzuki K, Fujimura T et al. Genome-wide analysis of the ERF gene family in Arabidopsis and rice [J]. Plant Physiol, 2006, 140(2): 411-432.
    [139]Gutterson N, Reuber T L. Regulation of disease resistance pathways by AP2/ERFtranscription factors [J]. Curr Opin Plant Biol, 2004, 7(4): 465-471.
    [140]Liu Y, Zhao T J, Liu J M et al. The conserved Ala37 in the ERF/AP2 domain is essential for binding with the DRE element and the GCC box [J]. FEBS Lett, 2006, 580(5): 1303-1308.
    [141]Allen M D, Yamasaki K, Ohme-Takagi M et al. A novel mode of DNA recognition by a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA [J]. EMBO J, 1998, 17(18): 5484-5496.
    [142]Liu L, White M J, MacRae T H. Transcription factors and their genes in higher plants functional domains, evolution and regulation [J]. Eur J Biochem, 1999, 262(2): 247-257.
    [143]Fujimoto S Y, Ohta M, Usui A et al. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression [J]. Plant Cell, 2000, 12(3): 393-404.
    [144]Ohta M, Ohme-Takagi M, Shinshi H. Three ethylene-responsive transcription factors in tobacco with distinct transactivation functions [J]. Plant J, 2000, 22(1): 29-38.
    [145]Sato F, Kitajima S, Koyama T et al. Ethylene-induced gene expression of osmotin-like protein, a neutral isoform of tobacco PR-5, is mediated by the AGCCGCC cis-sequence [J]. Plant Cell Physiol, 1996, 37(3): 249-255.
    [146]Park J M, Park C J, Lee S B et al. Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco [J]. Plant Cell, 2001, 13(5): 1035-1046.
    [147]Lee J H, Hong J P, Oh S K et al. The ethylene-responsive factor like protein 1 (CaERFLP1) of hot pepper (Capsicum annuum L.) interacts in vitro with both GCC and DRE/CRT sequences with different binding affinities: possible biological roles of CaERFLP1 in response to pathogen infection and high salinity conditions in transgenic tobacco plants [J]. Plant Mol Biol, 2004, 55(1): 61-81.
    [148]Yi S Y, Kim J H, Joung Y H et al. The pepper transcription factor CaPF1 confers pathogen and freezing tolerance in Arabidopsis [J]. Plant Physiol, 2004, 136(1): 2862-2874.
    [149]van der Fits L, Memelink J. The jasmonate-inducible AP2/ERF-domain transcription factor ORCA3 activates gene expression via interaction with a jasmonate-responsive promoter element [J]. Plant J, 2001, 25(1): 43-53.
    [150]Sasaki K, Mitsuhara I, Seo S et al. Two novel AP2/ERF domain proteins interact with cis-element VWRE for wound-induced expression of the Tobacco tpoxN1 gene [J]. Plant J, 2007, 50(6): 1079-1092.
    [151]Lorenzo O, Piqueras R, Sanchez-Serrano J J et al. ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense [J]. Plant Cell, 2003, 15(1): 165-178.
    [152]Berrocal-Lobo M, Molina A, Solano R. Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi [J]. Plant J, 2002, 29(1): 23-32.
    [153]Onate-Sanchez L, Singh K B. Identification of Arabidopsis ethylene-responsive element binding factors with distinct induction kinetics after pathogen infection [J]. Plant Physiol, 2002, 128(4): 1313-1322.
    [154]Zarei A, Korbes A P, Younessi P et al. Two GCC boxes and AP2/ERF-domaintranscription factor ORA59 in jasmonate/ethylene-mediated activation of the PDF1.2 promoter in Arabidopsis [J]. Plant Mol Biol, 2011, 75(4-5): 321-331.
    [155]Brown R L, Kazan K, McGrath K C et al. A role for the GCC-box in jasmonate-mediated activation of the PDF1.2 gene of Arabidopsis [J]. Plant Physiol, 2003, 132(2): 1020-1032.
    [156]Gu Y Q, Yang C, Thara V K et al. Pti4 is induced by ethylene and salicylic acid, and its product is phosphorylated by the Pto kinase [J]. Plant Cell, 2000, 12(5): 771-786.
    [157]Fischer U, Droge-Laser W. Overexpression of NtERF5, a new member of the tobacco ethylene response transcription factor family enhances resistance to tobacco mosaic virus [J]. Mol Plant Microbe Interact, 2004, 17(10): 1162-1171.
    [158]Zhang X, Zhang Z, Chen J et al. Expressing TERF1 in tobacco enhances drought tolerance and abscisic acid sensitivity during seedling development [J]. Planta, 2005, 222(3): 494-501.
    [159]Wang H, Huang Z, Chen Q et al. Ectopic overexpression of tomato JERF3 in tobacco activates downstream gene expression and enhances salt tolerance [J]. Plant Mol Biol, 2004, 55(2): 183-192.
    [160]Lee J H, Kim D M, Kim J et al. Functional characterization of NtCEF1, an AP2/EREBP-type transcriptional activator highly expressed in tobacco callus [J]. Planta, 2005, 222(2): 211-224.
    [161]Jung J, Won S Y, Suh S C et al. The barley ERF-type transcription factor HvRAF confers enhanced pathogen resistance and salt tolerance in Arabidopsis [J]. Planta, 2007, 225(3): 575-588.
    [162]Zhang G, Chen M, Li L et al. Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco [J]. J Exp Bot, 2009, 60(13): 3781-3796.
    [163]Xu Z S, Xia L Q, Chen M et al. Isolation and molecular characterization of the Triticum aestivum L. ethylene-responsive factor 1 (TaERF1) that increases multiple stress tolerance [J]. Plant Mol Biol, 2007, 65(6): 719-732.
    [164]Ohta M, Matsui K, Hiratsu K et al. Repression domains of class II ERF transcriptional repressors share an essential motif for active repression [J]. Plant Cell, 2001, 13(8): 1959-1968.
    [165]Pan I C, Li C W, Su R C et al. Ectopic expression of an EAR motif deletion mutant of SlERF3 enhances tolerance to salt stress and Ralstonia solanacearum in tomato [J]. Planta, 2010, 232(5): 1075-1086.
    [166]Yang Z, Tian L, Latoszek-Green M et al. Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses [J]. Plant Mol Biol, 2005, 58(4): 585-596.
    [167]Pandey G K, Grant J J, Cheong Y H et al. ABR1, an APETALA2-domain transcription factor that functions as a repressor of ABA response in Arabidopsis [J]. Plant Physiol, 2005, 139(3): 1185-1193.
    [168]Katagiri F. A global view of defense gene expression regulation--a highly interconnected signaling network [J]. Curr Opin Plant Biol, 2004, 7(5): 506-511.
    [169]van Loon L C, Rep M, Pieterse C M. Significance of inducible defense-related proteins in infected plants [J]. Annu Rev Phytopathol, 2006, 44: 135-162.
    [170]Ellis J, Dodds P, Pryor T. Structure, function and evolution of plant disease resistance genes [J]. Curr Opin Plant Biol, 2000, 3(4): 278-284.
    [171]Zhang H, Yang Y, Zhang Z et al. Expression of the ethylene response factor gene TSRF1 enhances abscisic acid responses during seedling development in tobacco [J]. Planta, 2008, 228(5): 777-787.
    [172]Zhang H, Zhang D, Chen J et al. Tomato stress-responsive factor TSRF1 interacts with ethylene responsive element GCC box and regulates pathogen resistance to Ralstonia solanacearum [J]. Plant Mol Biol, 2004, 55(6): 825-834.
    [173]Tang W, Charles T M, Newton R J. Overexpression of the pepper transcription factor CaPF1 in transgenic Virginia pine (Pinus Virginiana Mill.) confers multiple stress tolerance and enhances organ growth [J]. Plant Mol Biol, 2005, 59(4): 603-617.
    [174]Gu Y Q, Wildermuth M C, Chakravarthy S et al. Tomato transcription factors pti4, pti5, and pti6 activate defense responses when expressed in Arabidopsis [J]. Plant Cell, 2002, 14(4): 817-831.
    [175]Thomma B P, Eggermont K, Penninckx I A et al. Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens [J]. Proc Natl Acad Sci U S A, 1998, 95(25): 15107-15111.
    [176]Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens [J]. Annu Rev Phytopathol, 2005, 43: 205-227.
    [177]Turner J G, Ellis C, Devoto A. The jasmonate signal pathway [J]. Plant Cell, 2002, 14 Suppl: S153-164.
    [178]Harms K, Ramirez I I, Pena-Cortes H. Inhibition of wound-induced accumulation of allene oxide synthase transcripts in flax leaves by aspirin and salicylic acid [J]. Plant Physiol, 1998, 118(3): 1057-1065.
    [179]Li J, Brader G, Palva E T. The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense [J]. Plant Cell, 2004, 16(2): 319-331.
    [180]Peng J, Deng X, Huang J et al. Role of salicylic acid in tomato defense against cotton bollworm, Helicoverpa armigera Hubner [J]. Z Naturforsch C, 2004, 59(11-12): 856-862.
    [181]McGrath K C, Dombrecht B, Manners J M et al. Repressor- and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression [J]. Plant Physiol, 2005, 139(2): 949-959.
    [182]Wang Y, Bao Z, Zhu Y et al. Analysis of temperature modulation of plant defense against biotrophic microbes [J]. Mol Plant Microbe Interact, 2009, 22(5): 498-506.
    [183]Romero A M, Kousik C S, Ritchie D F. Temperature Sensitivity of the Hypersensitive Response of Bell Pepper to Xanthomonas axonopodis pv. vesicatoria [J]. Phytopathology, 2002, 92(2): 197-203.
    [184]Matsumoto K, Sawada H, Hamada H et al. The coat protein gene of tobamovirus P 0 pathotype is a determinant for activation of temperature-insensitive L 1a-gene-mediated resistance in Capsicum plants [J]. Arch Virol, 2008, 153(4): 645-650.
    [185]Wang W, Vinocur B, Shoseyov O et al. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response [J]. Trends Plant Sci, 2004, 9(5): 244-252.
    [186]Schramm F, Larkindale J, Kiehlmann E et al. A cascade of transcription factor DREB2Aand heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis [J]. Plant J, 2008, 53(2): 264-274.
    [187]Sakuma Y, Maruyama K, Qin F et al. Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression [J]. Proc Natl Acad Sci U S A, 2006, 103(49): 18822-18827.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700