伪狂犬病毒和猪传染性胃肠炎病毒诱导β干扰素产生的分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
病毒感染与宿主免疫的机制是当今病毒学研究最重要的前沿领域之一。病毒感染宿主细胞时,细胞表达的模式识别受体(pattern recognition receptors, PRRs)识别和递呈病毒的病原相关分子模式(pathogen-associated molecular patterns, PAMPs),经一系列的信号转导最终诱导I型干扰素(IFN-I)等细胞因子的表达。从感染细胞分泌的IFN-I与细胞膜上IFN-I共有的受体结合后,激活相应的信号转导,诱导其他抗病毒蛋白与免疫调节因子的表达,从而抑制病毒的复制与传播,并激活获得性免疫系统进一步清除入侵的病毒,在机体的抗病毒过程中起重要作用。
     尽管近年来的研究初步揭示了病毒感染诱导IFN-I产生的过程,但仍有很多未知的问题有待进一步探讨。例如,新发现的识别DNA和RNA的信号蛋白识别病毒并诱导IFN-I的分子机制还不清楚,而细胞中是否还存在其它可以激活IFN-I的蛋白,DNA病毒的识别受体及其介导IFN-I产生的机制是什么等等。因为具有低成本和高相似性等特点,猪的免疫系统逐渐成为人体免疫机制研究的模型。为了揭示病毒感染猪源细胞后诱导IFN-I产生的分子机制,本研究从猪源细胞中克隆了2个参与天然免疫的重要细胞信号分子,并分别以伪狂犬病毒(Pseudorabies Virus, PRV)和猪传染性胃肠炎病毒(Transmissible Gastroenteritis Virus, TGEV)为DNA病毒和RNA病毒的模型对其感染细胞后的天然免疫反应信号通路进行了研究。具体内容如下:1.猪DAI基因的克隆及其功能鉴定DAI(DNA-dependent activator of IFN-regulatory factors)是被发现的第一个介导细胞内dsDNA诱导天然免疫的受体蛋白,但研究发现DAI的作用可能存在细胞特异性和种属特异性。为此根据与人DAI基因有较高同源性的猪基因组序列设计引物,以猪外周血单核细胞的RNA为模板克隆得到猪DAI全长cDNA。序列分析表明,猪DAI开放阅读框全长为1320bp(GenBank收录号:FJ455510),编码439个氨基酸。进一步对推导的氨基酸序列进行分析发现,猪DAI基因编码蛋白结构域和人、牛、鼠一样,其N端都具有两个DNA结合区。组织表达谱分析表明猪DAI mRNA主要表达于脾脏、肺脏、肾脏和小肠中。为了分析猪DAI是否能诱导I型干扰素的产生,采用荧光素酶报告系统检测发现在不同猪源细胞中超表达猪DAI均能在不同程度上激活转录因子IRF3(interferon regulatory factor 3)和NF-κB(nuclear factor-kappaB),并诱导IFN-p的产生,其DNA结合区和C端对激活IFN-p都是非常重要的。而通过RNA干扰技术把猪DAI沉默后则显著抑伟dsDNA和PRV诱导的IFN-β。这些结果提示DAI是猪天然免疫系统中的一个dsDNA的模式识别受体,在I型干扰素诱导的信号通路中具有重要作用。2.猪STING基因的克隆及其功能鉴定
     继DAI后,国际上三个研究小组几乎同时报道了另一个参与细胞内dsDNA诱导IFN-I表达的信号分子-STING(stimulator of interferon genes),但不同研究对STING的亚细胞定位及其在dsRNA和RNA病毒诱导IFN-I中的作用存在着分歧。根据与人STING基因序列有较高同源性的猪EST序列进行拼接并设计引物,从猪外周血单核细胞中扩增并获得猪STING全长cDNA。序列分析表明,猪STING开放阅读框全长为1137bp(GenBank收录号:FJ455509),编码378个氨基酸,含有1个内质网滞留序列。通过组织表达谱分析发现猪STING主要表达于脾脏、淋巴结和肺脏中。结构预测表明猪STING含有4个跨膜区,利用绿荧光蛋白做标记进行研究发现其主要定位于内质网,但也有部分定位于线粒体。超表达猪STING能有效激活转录因子IRF3和NF-κB,并诱导IFN-β的产生。利用RNAi下调猪STING的表达则抑制RNA病毒和DNA病毒在细胞中所诱导的IFN-β的表达。这些结果提示STING是猪天然免疫系统中的一个重要的调节因子,为进一步阐明STING在天然免疫中的作用提供了依据。
     3.PRV诱导β干扰素产生的分子机制研究
     伪狂犬病毒(PRV)属于疱疹病毒科,为双链DNA病毒。以前的研究表明,PRV感染能有效诱导机体天然免疫。但是迄今为止对于PRV是否诱导p干扰素(IFN-β)的产生及其分子机制还不清楚。采用IFN-β启动子荧光素酶报告系统检测发现PRV感染PK-15细胞(porcine kidney cell line)后能显著诱导IFN-β的产生,荧光定量RT-PCR检测也得到了相似的结果。为了阐明PRV感染PK-15细胞激活IFN-β的分子机制,运用RNAi技术和显性负调控突变体分别研究了胞内信号通路和TLR信号通路在PRV激活IFN-p中的作用。结果显示PRV可通过TLR(Toll-like receptor)的接头分子MyD88(myeloid differentiation factor-88)和胞内信号分子RIG-I(retinoic acid-inducible gene I)和VISA(virus-induced signaling adaptor)激活IFN-β。有趣的是,RNAi实验表明PRV感染PK-15细胞诱导IFN-β的表达需要IRF1(interferon regulatory factor 1)、IRF5(interferon regulatory factor 5)和IRF7(interferon regulatory factor 7)参与,却不需要IRF3。IRF3是干扰素调节因子(interferon regulatory factors, IRFs)家族中的重要转录因子之一,并且在很多病毒诱导的干扰素基因表达和抗病毒天然免疫反应中都具有重要作用。为了进一步验证IRFs与PRV感染激活IFN-β产生的关系,将各个干扰素调节因子的负调控突变体转染人胚胎肾细胞系(human embryonic kidney cell line, HEK293),然后用PRV感染,结果证明PRV感染HEK293细胞激活IFN-β产生也不需要转录因子IRF3的参与。这些结果提示PRV通过一种独特的机制调节天然免疫。但是,很多问题仍然未知,如PRV如何被信号分子识别以及具体的信号传递网络等。对这些问题的研究将有助于进一步了解DNA病毒诱导的天然免疫机制。
     4. TGEV诱导p干扰素产生的分子机制研究
     猪传染性胃肠炎病毒(TGEV)属于冠状病毒科冠状病毒属,为不分节段的单股正链RNA病毒。以前的研究表明,TGEV诱导IFN-I的表达。但是对其诱导IFN-I产生的机制并不清楚。我们利用荧光素酶报告系统和荧光定量检测发现TGEV在PK-15细胞中能显著激活IFN-β。进一步对TLR信号通路和胞内信号通路相关信号分子在TGEV诱导IFN-β中的作用的研究发现,TGEV可通过TLR信号通路的接头分子MyD88诱导IFN-β同时还依赖RIG-I、MDA5(melanoma differentiation-associated gene 5、STING、HMGB1(High mobility group box 1)、HMGB2(High mobility group box 2)、IRF5和IRF7等胞内信号分子,但与TRIF(TIR domain-containing adaptor inducing IFN-β)、IRF1及IRF3无关。对TGEV各结构蛋白诱导猪IFN-β启动子能力的研究发现,M蛋白(membrane protein)和N蛋白(nucleocapsid protein)能极显著地诱导IFN-β启动子活化,提示了其可能在TGEV诱导IFN-β中起着重要的作用。其具体的分子机理有待于进一步研究。
The mechanism of viral infection and host immune response is one of the most important frontier research fields in virology. The host innate immune system senses invading viruses through specific molecular pattern recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs) and then initiate an immune response. Upon recognition, the PRRs initiates a series of signaling, this leads to expression of a number of cytokines such as type I interferon (IFN-I). The secreted IFN-I bind to the receptors and initiate signaling that activates transcription of thousands of genes. The produced proteins collaborate to inhibit viral replication and spread. On the other hand, IFN-I activate innate immune cells to induce adaptive immune response, resulting in clearance of invading virus. Thus, IFN-I play a vital role in host antiviral response.
     Although much progress has been made in understanding the virus-triggered IFN-I signaling pathways in recent years, there are a lot of questions remaining to be elucidated. For example, the detailed mechanisms about how the newly signal proteins recognize virus and induce IFN-I production are not known yet. Also, are there unknown proteins involved in virus-triggered IFN-I signaling? How the immune system recognizes DNA viruses to induce the expression of type I interferon, and so on. In recent years, there have been growing interests in the swine immune system, because of its potential as a model for the study of the human immune system with a lower cost and high similarity. To reveal the molecular mechanism of IFN-I induction after virus infection in swine, we cloned and characterized two important signaling proteins from porcine cells, and studied the signal pathways in innate immune responses during PRV infection and TGEV infection, as the model of DNA viruses and RNA viruses, respectively. The main research works were as following:
     1. Molecular cloning and functional characterization of porcine DNA-dependent activator of IFN-regulatory factors (DAI)
     The DNA-dependent activator of IFN-regulatory factors (DAI) is the first identified cytosolic DNA sensor for intracellular DNA that triggers a signal for the production of type I interferon. Different observations indicate that, in addition to acting in a cell type-specific way, the function of DAI might also show inter-species differences. In order to investigate the role of porcine DAI (poDAI) in the type I interferon signaling pathway, based on the porcine genomic sequence obtained from the BLAST search, we cloned and sequenced a DAI cDNA isolated from porcine peripheral blood mononuclear cells (PBMC). The full-length cDNA of poDAI contains 1320 bp and encodes 439 amino acid residues (GenBank accession number FJ455510). Structural analysis with the SMART program indicated that poDAI contains two putative N-terminal DNA-binding domains. Similar DNA-binding domains have been identified in cattle, human and mouse DAI. poDAI mRNA expression was mainly detected in spleen, lung, kidney and small intestine. To investigate whether poDAI is involved in the type I interferon signaling pathway, porcine IFN-P promoter luciferase reporter system assays showed Over-expression of poDAI activated transcription factors IRF3 and NF-κB and induced IFN-P in different porcine cell lines, but to varying degrees. Deletion mutant analysis revealed that both the DNA-binding domains and the C-terminus are required for full activation of IFN-β. siRNA targeting poDAI significantly decreased poly(dAT:dAT)-or Pseudorabies virus(PRV)-induced IFN-P activation. These results indicate that DAI is an important immuno-regulator of the porcine innate immune system.
     2. Molecular cloning and functional characterization of porcine stimulator of interferon genes (STING)
     The human stimulator of interferon genes (STING) has been proposed by three independent research groups as an adaptor that functions in cytosolic DNA signal pathway. Although the three groups concluded that STING is an important signaling sensor in the cytosolic DNA pathway, they also came to some significantly different conclusions. To investigate the role of porcine STING (poSTING) in the type I interferon signaling pathway, based on the porcine EST sequence obtained from the BLAST search, we cloned and sequenced poSTING cDNA isolated from porcine peripheral blood mononuclear cells. The full-length cDNA of poSTING contains 1137 bp and encodes 378 amino acid residues (GenBank accession number FJ455509), contains one endoplasmic reticulum(ER) retention motif, RAR. poSTING mRNA expression was mainly detected in the spleen, lymph node and lung. Structural analysis with the SMART program indicated that poSTING contains four putative transmembrane(TM) domains at its N-terminus. poSTING was found to reside predominantly in the ER, and also in the mitochondrial membrane in PK-15 cells. Over-expression of poSTING activated both IRF3 and NF-κB to induce IFN-βproduction, while knockdown of poSTING significantly inhibited DNA virus and RNA virus induced IFN-P promoter activation and IFN-P mRNA production. Altogether, these results indicate that STING is an important regulator of porcine innate immune signaling. The results will help better understand the biological role(s) of STING in innate immunity during evolution.
     3. Studies on the molecular mechanism that PRV induced type I interferon production
     Pseudorabies Virus (PRV) is a swine alpha herpesvirus owning double-stranded DNA genome. Previous studies have demonstrated PRV infection triggered efficient immune response. However, the mechanism that PRV induced type I interferon production is still unclear. Using Real-time PCR and porcine IFN-βpromoter luciferase reporter system, we demonstrated that PRV infection in PK-15 cells up-regulated IFN-βgene transcription. To evaluate the detailed molecular mechanisms, we investigated the roles of TLR signal pathway and cytosolic signal pathway in IFN-P induction during PRV infection, by RNAi technique and dominant negative mutants. Our results showed that PRV-induced IFN-βwas related with the adaptor MyD88 in TLR signal pathway and cytosolic signal proteins RIG-I, and VISA. RNAi experiments showed that PRV-induced IFN-βin PK-15 cells require IRF1, IRF5, and IRF7. Interestingly, IRF3, the very important transcription factor for type I interferon production after virus infection, is nonessential for PRV-induced IFN-βin PK-15. Further study demonstrated that IRF3 is nonessential for PRV-induced IFN-βin HEK293 cells, either. Altogether, these results suggest that a distinct pathway utilized by PRV to regulate innate immunity. However, there are many questions remain unknown, such as how the host recognize PRV to trigger IFN-I signal pathway and how about the detailed signal transduction networks.
     4. Studies on the molecular mechanism that TGEV induced type I interferon production
     Transmissible Gastroenteritis Virus (TGEV), a member of coronavirus species, is an enveloped RNA virus. Previous studies have demonstrated TGEV is able to induce IFN-I production. However, the mechanisms that TGEV induced type I interferon production are still unclear. Using Real-time PCR and porcine IFN-βpromoter luciferase reporter system, we demonstrated that TGEV infection in PK-15 cells up-regulated IFN-βgene transcription. To evaluate the mechanisms behind this, we investigated IFN-βinduction in TLR signal pathway and cytosolic signal pathway during TGEV infection. Our results demonstrated that TGEV induced IFN-βwas related with the adaptor MyD88 in TLR signal pathway, as well as several cytosolic signal proteins, such as RIG-I, MDA5, STING, HMGB1, HMGB2, IRF5, and IRF7. Whereas unrelated with TRIF, IRF1, and IRF3. Further study demonstrated that TGEV membrance(M) protein and encleocapsid(N) protein can activate IFN-βpromoter, indicating that this two proteins may involve in TGEV induced IFN-P production.
引文
1.曹永浩,张仕坚,周元聪.干扰素调节因子家族和免疫调控.生命的化学,2006,26(5):387-389
    2.陈建忠,朱海红.干扰素调节因子3研究进展.国外医学(流行病学传染病学分册),2003,30(4):223-226
    3.邓仕伟,汪勇,薛春芳.我国伪狂犬病流行现状及新特点.动物医学进展,2006,27(9):105-107
    4.董加才.猪胃肠炎病毒的分离鉴定及S基因的克隆、序列分析与原核表达.[硕士论文].河南农业大学,2008
    5.董志珍,赵祥平,霍蕾等.对A72与PK-15进行猪传染性胃肠炎血清中和试验的对比观察.检验检疫科学,2005,(3):28-29
    6.郭洪.伪狂犬病毒IE180和EPO基因的表达调控.[博士论文].华中农业大学,2008
    7.郭晓强,李文婕,辛启亮.AIM2:一种先天免疫系统中的细胞质双链DNA感应蛋白.生命的化学,2009,29(5):683-686
    8.黄永清,马敏,马坚等.中国西部人群IRF6基因SNPs与非综合征型唇腭裂相关性的研究.实用口腔医学杂志,2010,(2):227-231
    9.李军,曾芸.病毒诱导Ⅰ型干扰素产生的机制.生命的化学,2006,(5):395-398
    10.李军,曾芸.干扰素调节因子3调控Ⅰ型干扰素机制的研究进展.黑龙江畜牧兽医,2007,(5):30-31
    11.李新梅,陈汉春.干扰素调节因子家族.生命科学研究,2002,6(1):8-12
    12.罗锐.PRRSV感染抑制Ⅰ型和Ⅲ型干扰素及激活NF-κB的分子机制研究.[博士论文].华中农业大学,2009
    13.房红莹,罗满林.猪传染性胃肠炎病毒反向遗传研究进展.畜牧与兽医,2008,40(4):87-97
    14.秦阳华.HMGB1与LPS协同刺激巨噬细胞产生致炎细胞因子的机制研究.[博士论文].第二军医大学,2009
    15.舒红兵.抗病毒天然免疫.北京:科学出版社,2009.
    16.童光志,陈焕春.伪狂犬病流行现状及我国应采取的防制措施.中国兽医学报,1999,(1):4-5
    17.徐丽,曹雪涛.DNA识别受体的研究进展.中国肿瘤生物治疗杂,2010,17(1):99-103
    18.袁章,郭万柱,余光勇等.猪伪狂犬病毒载体的研究进展.安徽农业科学,2007,35(6):1673-1674
    19.殷震,刘景华主编.动物病毒学(第二版).科学出版社,1997
    20.张伟娟,徐洁杰,徐薇等.DNA的识别分子及其识别模式.自然科学进展,2008,18(6):609-614
    21.钟波.MITA介导的细胞杭病毒反信号转导及其调节机制.[博士论文].武汉大学,2010
    22. A Y H, Aleyas A G, George J A, et al. Correlation between the nature of immunity induced by different immunogens and the establishment of latent infection by wild-type pseudorabies virus. Res Vet Sci,2007,83(1):73-81
    23. Ablasser A, Bauernfeind F, Hartmann G, et al. RIG-Ⅰ-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase Ⅲ-transcribed RNA intermediate. Nat Immunol,2009,10(10):1065-1072
    24. Agrawal N, Dasaradhi P V, Mohmmed A, et al. RNA interference:biology, mechanism, and applications. Microbiol Mol Biol Rev,2003,67(4):657-685
    25. Akira S, Takeda K. Toll-like receptor signaling. Nat Rev Immunol,2004,4(7): 499-511
    26. Albina E, Carrat C, Charley B. Interferon-alpha response to swine arterivirus(PoAV), the porcine reproductive and respiratory syndrome virus. J Interferon Cytokine Res, 1998,18(7):485-490
    27. Alexopoulou L, Holt A C, Medzhitov R, et al. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature,2001,413(6857): 732-738
    28. Alvarez B, Revilla C, Chamorro S, et al. Molecular cloning, characterization and tissue expression of porcine Toll-like receptor 4. Dev Comp Immunol,2006,30(4): 345-355
    29. Alves M P, Neuhaus V, Guzylack-Piriou L, et al. Toll-like receptor 7 and MyD88 knockdown by lentivirus-mediated RNA interference to porcine dendritic cell subsets. Gene Ther,2007,14(10):836-844
    30. Ank N, West H, Paludan S R. IFN-lambda:novel antiviral cytokines. J Interferon Cytokine Res,2006,26(6):373-379
    31. Barber G N. Innate immune DNA sensing pathways:STING, AIMII and the regulation of interferon production and inflammatory responses. Curr Opin Immunol, 2011,23(1):10-20
    32. Barnes B J, Moore P A, Pitha P M. Virus-specific activation of a novel interferon regulatory factor, IRF-5, results in the induction of distinct interferon alpha genes. J Biol Chem,2001,276(26):23382-23390
    33. Baudoux P, Carrat C, Besnardeau L, et al. Coronavirus pseudoparticles formed with recombinant M and E proteins induce alpha interferon synthesis by leukocytes. J Virol,1998,72(11):8636-8643
    34. Bernard S, Shirai J, Lantier I, et al. Lactogenic immunity to transmissible gastroenteritis(TGE) of swine induced by the attenuated Nouzilly strain of TGE virus: passive protection of piglets and detection of serum and milk antibody classes by ELISA. Vet Immunol Immunopathol,1990,24(1):37-47
    35. Beura L K, Sarkar S N, Kwon B, et al. Porcine reproductive and respiratory syndrome virus nonstructural protein lbeta modulates host innate immune response by antagonizing IRF3 activation. J Virol,2010,84(3):1574-1584
    36. Bianchi A T, Moonen-Leusen H W, van Milligen F J, et al. A mouse model to study immunity against pseudorabies virus infection:significance of CD4+and CD8+cells in protective immunity. Vaccine,1998,16(16):1550-1558
    37. Bianchi M E, Manfredi A A. High-mobility group box 1(HMGB1) protein at the crossroads between innate and adaptive immunity. Immunol Rev,2007,220:35-46
    38. Bianchi M E, Celona B. Ancient news:HMGBs are universal sentinels. J Mol Cell Biol,2010,2(3):116-117
    39. Bird L. Innate immunity:Ready, AIM, fire!. Nat Rev Immunol,2010,10(5):287
    40. Bonizzi G, Karin M. The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol,2004,25(6):280-288
    41. Bonjardim C A. Interferons (IFNs) are key cytokines in both innate and adaptive antiviral immune responses--and viruses counteract IFN action. Microbes Infect, 2005,7(3):569-578
    42. Bowzard J B, Ranjan P, Sambhara S, et al. Antiviral defense:RIG-Ing the immune system to STING. Cytokine Growth Factor Rev,2009,20(1):1-5
    43. Burckstummer T, Baumann C, Bluml S, et al. An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat Immunol,2009,10(3):266-272
    44. Calzada-Nova G, Schnitzlein W, Husmann R, et al. Characterization of the cytokine and maturation responses of pure populations of porcine plasmacytoid dendritic cells to porcine viruses and toll-like receptor agonists. Vet Immunol Immunopathol,2010, 135(1-2):20-33
    45. Cao X. New DNA-sensing pathway feeds RIG-I with RNA. Nat Immunol,2009, 10(10):1049-1051
    46. Charley B, Laude H. Induction of alpha interferon by transmissible gastroenteritis coronavirus:role of transmembrane glycoprotein El. J Virol,1988,62(1):8-11
    47. Charley B, Lavenant L, Lefevre F. Coronavirus transmissible gastroenteritis virus-mediated induction of IFN alpha-mRNA in porcine leukocytes requires prior synthesis of soluble proteins. Vet Res,1994,25(1):29-36
    48. Cheng G, Zhong J, Chung J, et al. Double-stranded DNA and double-stranded RNA induce a common antiviral signaling pathway in human cells. Proc Natl Acad Sci U S A,2007,104(21):9035-9040
    49. Chi H, Flavell R A. Immunology:sensing the enemy within. Nature,2007,448(7152): 423-424
    50. Chiu Y H, Zhao M, Chen Z J. Ubiquitin in NF-kappaB signaling. Chem Rev,2009a, 109(4):1549-1560
    51. Chiu Y H, Macmillan J B, Chen Z J. RNA polymerase Ⅲdetects cytosolic DNA and induces type I interferons through the RIG-Ⅰ pathway. Cell,2009b,138(3):576-591
    52. Choubey D, Walter S, Geng Y, et al. Cytoplasmic localization of the interferon-inducible protein that is encoded by the AIM2(absent in melanoma) gene from the 200-gene family. FEBS Lett,2000,474(1):38-42
    53. Deigendesch N, Koch-Nolte F, Rothenburg S. ZBP1 subcellular localization and association with stress granules is controlled by its Z-DNA binding domains. Nucleic Acids Res,2006,34(18):5007-5020
    54. DeYoung K L, Ray M E, Su Y A, et al. Cloning a novel member of the human interferon-inducible gene family associated with control of tumorigenicity in a model of human melanoma. Oncogene,1997,15(4):453-457
    55. Diebold S. Innate recognition of viruses. Immunol Lett,2010,128(1):17-20
    56. Diebold S S, Massacrier C, Akira S, et al. Nucleic acid agonists for Toll-like receptor 7 are defined by the presence of uridine ribonucleotides. Eur J Immunol,2006, 36(12):3256-3267
    57. Diebold S S. Activation of dendritic cells by toll-like receptors and C-type lectins. Handb Exp Pharmacol,2009, (188):3-30
    58. Enjuanes L, Sola I, Alonso S, et al. Coronavirus reverse genetics and development of vectors for gene expression. Coronavirus Replication and Reverse Genetics.2005: 161-197
    59. Enquist L W, Husak P J, Banfield B W, et al. Infection and spread of alphaherpesviruses in the nervous system. Adv Virus Res,1998,51:237-347
    60. Fernandes-Alnemri T, Yu J W, Datta P, et al. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature,2009,458(7237):509-513
    61. Fernandes-Alnemri T, Yu J W, Juliana C, et al. The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. Nat Immunol,2010,11(5):385-393
    62. Fischer T, Buttner M, Rziha H J. T helper 1-type cytokine transcription in peripheral blood mononuclear cells of pseudorabies virus(Suid herpesvirus 1)-primed swine indicates efficient immunization. Immunology,2000,101(3):378-387
    63. Fu Y, Comella N, Tognazzi K, et al. Cloning of DLM-1, a novel gene that is up-regulated in activated macrophages, using RNA differential display. Gene,1999, 240(1):157-163
    64. Fujita T, Onoguchi K, Onomoto K, et al. Triggering antiviral response by RIG-I-related RNA helicases. Biochimie,2007,89(6-7):754-760
    65. Garcia-Sastre A, Biron C A. Type 1 interferons and the virus-host relationship:a lesson in detente. Science,2006,312(5775):879-882
    66. Ghosh S, May M J, Kopp E B. NF-kappa B and Rel proteins:evolutionarily conserved mediators of immune responses. Annu Rev Immunol,1998,16:225-260
    67. Gilmore T D. Introduction to NF-kappaB:players, pathways, perspectives. Oncogene, 2006,25(51):6680-6684
    68. Goodwin G H, Sanders C, Johns E W. A new group of chromatin-associated proteins with a high content of acidic and basic amino acids. Eur J Biochem,1973,38(1): 14-19
    69. Granzow H, Klupp B G, Fuchs W, et al. Egress of alphaherpesviruses:comparative ultrastructural study. J Virol,2001,75(8):3675-3684
    70. Grimm D, Kay M A. Therapeutic application of RNAi:is mRNA targeting finally ready for prime time? J Clin Invest,2007,117(12):3633-3641
    71. Gu W, Pan F, Singer R H. Blocking beta-catenin binding to the ZBP1 promoter represses ZBP1 expression, leading to increased proliferation and migration of metastatic breast-cancer cells. J Cell Sci,2009,122(11):1895-1905
    72. Ha S C, Kim D, Hwang H Y, et al. The crystal structure of the second Z-DNA binding domain of human DAI (ZBP1) in complex with Z-DNA reveals an unusual binding mode to Z-DNA. Proc Natl Acad Sci U S A,2008,105(52):20671-20676
    73. Haas T, Metzger J, Schmitz F, et al. The DNA sugar backbone 2'deoxyribose determines toll-like receptor 9 activation. Immunity,2008,28(3):315-323
    74. Hacker H, Karin M. Regulation and function of IKK and IKK-related kinases. Sci STKE,2006,2006(357):e13
    75. Harada H, Takahashi E, Itoh S, et al. Structure and regulation of the human interferon regulatory factor 1(IRF-1) and IRF-2 genes:implications for a gene network in the interferon system. Mol Cell Biol,1994,14(2):1500-1509
    76. Hiscott J, Pitha P, Genin P, et al. Triggering the interferon response:the role of IRF-3 transcription factor. J Interferon Cytokine Res,1999,19(1):1-13
    77. Hiscott J. Convergence of the NF-kappaB and IRF pathways in the regulation of the innate antiviral response. Cytokine Growth Factor Rev,2007,18(5-6):483-490
    78. Hoegen B, Saalmuller A, Rottgen M, et al. Interferon-gamma response of PBMC indicates productive pseudorabies virus (PRV) infection in swine. Vet Immunol Immunopathol,2004,102(4):389-397
    79. Honda K, Yanai H, Takaoka A, et al. Regulation of the type I IFN-Induction:a current view. Int Immunol,2005a,17(11):1367-1378
    80. Honda K, Yanai H, Negishi H, et al. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature,2005b,434(7034):772-777
    81. Honda K, Takaoka A, Taniguchi T. Type I interferon [corrected] gene induction by the interferon regulatory factor family of transcription factors. Immunity,2006a, 25(3):349-360
    82. Honda K, Taniguchi T. IRFs:master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nat Rev Immunol,2006b,6(9):644-658
    83. Hong Q, Qian P, Li X M, et al. A recombinant pseudorabies virus co-expressing capsid proteins precursor P1-2A of FMDV and VP2 protein of porcine parvovirus:a trivalent vaccine candidate. Biotechnology letters.2007,29(11):1677-1683
    84. Hornung V, Ablasser A, Charrel-Dennis M, et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature,2009,458(7237): 514-518
    85. Ishii K J, Akira S. Innate immune recognition of, and regulation by, DNA. Trends Immunol,2006,27(11):525-532
    86. Ishikawa H, Barber G N. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature,2008,455(7213):674-678
    87. Ishikawa H, Ma Z, Barber G N. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature,2009,461(7265):788-792
    88. Janeway C J. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol,1989,54(1):1-13
    89. Jiang Z, Mak T W, Sen G, et al. Toll-like receptor 3-mediated activation of NF-kappaB and IRF3 diverges at Toll-IL-1 receptor domain-containing adapter inducing IFN-beta. Proc Natl Acad Sci U S A,2004,101(10):3533-3538
    90. Jiang Y, Fang L, Xiao S, et al. Immunogenicity and protective efficacy of recombinant pseudorabies virus expressing the two major membrane-associated proteins of porcine reproductive and respiratory syndrome virus. Vaccine.2007,25(3): 547-560
    91. Jin L, Waterman P M, Jonscher K R, et al. MPYS, a novel membrane tetraspanner, is associated with major histocompatibility complex class Ⅱ and mediates transduction of apoptotic signals. Mol Cell Biol,2008,28(16):5014-5026
    92. Jordan L T, Derbyshire J B. Antiviral action of interferon-alpha against porcine transmissible gastroenteritis virus. Vet Microbiol,1995,45(1):59-70
    93. Kaiser W J, Upton J W, Mocarski E S. Receptor-interacting protein homotypic interaction motif-dependent control of NF-kappa B activation via the DNA-dependent activator of IFN regulatory factors. J Immunol,2008,181(9): 6427-6434
    94. Kaisho T, Akira S. Toll-like receptor function and signaling. J Allergy Clin Immunol, 2006,117(5):979-987,988
    95. Kamijo R, Harada H, Matsuyama T, et al. Requirement for transcription factor IRF-1 in NO synthase induction in macrophages. Science,1994,263(5153):1612-1615
    96. Kato H, Takeuchi O, Sato S, et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature,2006,441(7089):101-105
    97. Kato H, Takeuchi O, Mikamo-Satoh E, et al. Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J Exp Med,2008,205(7):1601-1610
    98. Kaufmann T, Schlipf S, Sanz J, et al. Characterization of the signal that directs Bcl-x(L), but not Bcl-2, to the mitochondrial outer membrane. J Cell Biol,2003, 160(1):53-64
    99. Kawai T, Takahashi K, Sato S, et al. IPS-1, an adaptor triggering RIG-I-and Mda5-mediated type I interferon induction. Nat Immunol,2005,6(10):981-988
    100.Kawai T, Akira S. Innate immune recognition of viral infection. Nat Immunol,2006, 7(2):131-137
    101.Kawai T, Akira S. Toll-like receptor and RIG-I-like receptor signaling. Ann N Y Acad Sci,2008,1143:1-20
    102.Kawai T, Akira S. The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol,2009,21(4):317-337
    103.Kimman T G, De Bruin T M, Voermans J J, et al. Development and antigen specificity of the lymphoproliferation responses of pigs to pseudorabies virus: dichotomy between secondary B-and T-cell responses. Immunology,1995,86(3): 372-378
    104.Klein U, Casola S, Cattoretti G, et al. Transcription factor IRF4 controls plasma cell differentiation and class-switch recombination. Nat Immunol,2006,7(7):773-782
    105.Klupp B G, Hengartner C J, Mettenleiter T C, et al. Complete, annotated sequence of the pseudorabies virus genome. J Virol,2004,78(1):424-440
    106.Kumar H, Kawai T, Akira S. Toll-like receptors and innate immunity. Biochem Biophys Res Commun,2009,388(4):621-625
    107.Kunzi M S, Pitha P M. Interferon research:a brief history. Methods Mol Med,2005, 116:25-35
    108.Laude H, Rasschaert D, Delmas B, et al. Molecular biology of transmissible gastroenteritis virus. Vet Microbiol,1990,23(1-4):147-154
    109.Laude H, Gelfi J, Lavenant L, et al. Single amino acid changes in the viral glycoprotein M affect induction of alpha interferon by the coronavirus transmissible gastroenteritis virus. J Virol,1992,66(2):743-749
    110.Laude H, Van Reeth K, Pensaert M. Porcine respiratory coronavirus:molecular features and virus-host interactions. Vet Res,1993,24(2):125-150
    111.Le Bon A, Tough D F. Links between innate and adaptive immunity via type I interferon.Curr Opin Immunol,2002,14(4):432-436
    112.Li J, Liu Y, Zhang X. Murine coronavirus induces type I interferon in oligodendrocytes through recognition by RIG-I and MDA5. J Virol,2010,84(13): 6472-6482
    113.Lin R, Heylbroeck C, Pitha P M, et al. Virus-dependent phosphorylation of the IRF-3 transcription factor regulates nuclear translocation, transactivation potential, and proteasome-mediated degradation. Mol Cell Biol,1998,18(5):2986-2996
    114.Lippmann J, Rothenburg S, Deigendesch N, et al. IFNbeta responses induced by intracellular bacteria or cytosolic DNA in different human cells do not require ZBP1(DLM-1/DAI). Cell Microbiol,2008,10(12):2579-2588
    115.Liu P, Li K, Garofalo R P, et al. Respiratory syncytial virus induces RelA release from cytoplasmic 100-kDa NF-kappa B2 complexes via a novel retinoic acid-inducible gene-I{middle dot}NF-kappa B-inducing kinase signaling pathway. J Biol Chem,2008,283(34):23169-23178
    116.Lohoff M, Mak T W. Roles of interferon-regulatory factors in T-helper-cell differentiation. Nat Rev Immunol,2005,5(2):125-135
    117.Mamane Y, Heylbroeck C, Genin P, et al. Interferon regulatory factors:the next generation. Gene,1999,237(1):1-14
    118.Maniatis T, Falvo J V, Kim T H, et al. Structure and function of the interferon-beta enhanceosome. Cold Spring Harb Symp Quant Biol,1998,63:609-620
    119.Marshak-Rothstein A. Toll-like receptors in systemic autoimmune disease. Nat Rev Immunol,2006,6(11):823-835
    120.Matsumoto M, Seya T. TLR3:interferon induction by double-stranded RNA including poly(I:C). Adv Drug Deliv Rev,2008,60(7):805-812
    121.Matsuyama T, Kimura T, Kitagawa M, et al. Targeted disruption of IRF-1 or IRF-2 results in abnormal type IIFN gene induction and aberrant lymphocyte development. Cell,1993,75(1):83-97
    122.McGeoch D J, Cook S. Molecular phylogeny of the alphaherpesvirinae subfamily and a proposed evolutionary timescale. J Mol Biol,1994,238(1):9-22
    123.Mettenleiter T C. Pseudorabies (Aujeszky's disease) virus:state of the art. August 1993. Acta Vet Hung,1994,42(2-3):153-177
    124.Mettenleiter T C. Immunobiology of pseudorabies (Aujeszky's disease). Vet Immunol Immunopathol,1996,54(1-4):221-229
    125.Mettenleiter T C. Aujeszky's disease (pseudorabies) virus:the virus and molecular pathogenesis-state of the art, June 1999. Vet Res,2000,31(1):99-115
    126.Meylan E, Burns K, Hofmann K, et al. RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappa B activation. Nat Immunol,2004,5(5):503-507
    127.Meylan E, Curran J, Hofmann K, et al. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature,2005,437(7062): 1167-1172
    128.Miller L C, Zanella E L, Waters W R, et al. Cytokine protein expression levels in tracheobronchial lymph node homogenates of pigs infected with pseudorabies virus. Clin Vaccine Immunol,2010,17(5):728-734
    129.Miyamoto M, Fujita T, Kimura Y, et al. Regulated expression of a gene encoding a nuclear factor, IRF-1, that specifically binds to IFN-beta gene regulatory elements. Cell,1988,54(6):903-913
    130.Muneta Y, Uenishi H, Kikuma R, et al. Porcine TLR2 and TLR6:identification and their involvement in Mycoplasma hyopneumoniae infection. J Interferon Cytokine Res,2003,23(10):583-590
    131.Naidoo D, Derbyshire J B. Interferon induction in porcine leukocytes with transmissible gastroenteritis virus. Vet Microbiol,1992,30(4):317-327
    132.Nakhaei P, Hiscott J, Lin R. STING-ing the antiviral pathway. J Mol Cell Biol,2010, 2(3):110-112
    133.Nelson N, Marks M S, Driggers P H, et al. Interferon consensus sequence-binding protein, a member of the interferon regulatory factor family, suppresses interferon-induced gene transcription. Mol Cell Biol,1993,13(1):588-599
    134.Onoguchi K, Yoneyama M, Fujita T. Retinoic acid-inducible gene-I-like receptors. J Interferon Cytokine Res,2011,31(1):27-31
    135.Ortego J, Escors D, Laude H, et al. Generation of a replication-competent, propagation-deficient virus vector based on the transmissible gastroenteritis coronavirus genome. Journal of Virology.2002,76(22):11518
    136.Oshiumi H, Matsumoto M, Funami K, et al. TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction. Nat Immunol, 2003,4(2):161-167
    137.Palombella V J, Maniatis T. Inducible processing of interferon regulatory factor-2. Mol Cell Biol,1992,12(8):3325-3336
    138.Parmar S, Platanias L C. Interferons:mechanisms of action and clinical applications. Curr Opin Oncol,2003,15(6):431-439
    139.Pensaert M, Cox E, van Deun K, et al. A sero-epizootiological study of porcine respiratory coronavirus in Belgian swine. Vet Q,1993,15(1):16-20
    140.Pestka S, Krause C D, Walter M R. Interferons, interferon-like cytokines, and their receptors. Immunol Rev,2004,202:8-32
    141.Pham H T, Park M Y, Kim K K, et al. Intracellular localization of human ZBP1: Differential regulation by the Z-DNA binding domain, Zalpha, in splice variants. Biochem Biophys Res Commun,2006,348(1):145-152
    142.Pichlmair A, Reis E S C. Innate recognition of viruses. Immunity,2007,27(3): 370-383
    143.Pippig D A, Hellmuth J C, Cui S, et al. The regulatory domain of the RIG-I family ATPase LGP2 senses double-stranded RNA. Nucleic Acids Res,2009,37(6): 2014-2025
    144.Pomeranz L E, Reynolds A E, Hengartner C J. Molecular biology of pseudorabies virus:impact on neurovirology and veterinary medicine. Microbiol Mol Biol Rev, 2005,69(3):462-500
    145.Rathinam V A, Jiang Z, Waggoner S N, et al. The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat Immunol,2010a, 11(5):395-402
    146.Rathinam V A, Sharma S, Fitzgerald K A. Catenin'on to nucleic acid sensing. Nat Immunol,2010b,11(6):466-468
    147.Ray N, Enquist L W. Transcriptional response of a common permissive cell type to infection by two diverse alphaherpesviruses. J Virol,2004,78(7):3489-3501
    148.Riffault S, Grosclaude J, Vayssier M, et al. Reconstituted coronavirus TGEV virosomes lose the virus ability to induce porcine interferon-alpha production. Vet Res,1997,28(1):77-86
    149.Riffault S, Carrat C, van Reeth K, et al. Interferon-alpha-producing cells are localized in gut-associated lymphoid tissues in transmissible gastroenteritis virus(TGEV) infected piglets. Vet Res,2001,32(1):71-79
    150.Roberts T L, Sweet M J, Hume D A, et al. Cutting edge:species-specific TLR9-mediated recognition of CpG and non-CpG phosphorothioate-modified oligonucleotides. J Immunol,2005,174(2):605-608
    151.Romero C H, Meade P, Santagata J, et al. Genital infection and transmission of pseudorabies virus in feral swine in Florida, USA. Vet Microbiol,1997,55(1-4): 131-139
    152.Ronnblom L, Pascual V. The innate immune system in SLE:type I interferons and dendritic cells. Lupus,2008,17(5):394-399
    153.Rothenburg S, Schwartz T, Koch-Nolte F, et al. Complex regulation of the human gene for the Z-DNA binding protein DLM-1. Nucleic Acids Res,2002,30(4): 993-1000
    154.Sabbah A, Chang T H, Harnack R, et al. Activation of innate immune antiviral responses by Nod2. Nat Immunol,2009,10(10):1073-1080
    155.Saif L J, van Cott J L, Brim T A. Immunity to transmissible gastroenteritis virus and porcine respiratory coronavirus infections in swine. Vet Immunol Immunopathol, 1994,43(1-3):89-97
    156.Saitoh T, Fujita N, Hayashi T, et al. Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proc Natl Acad Sci U S A, 2009,106(21):8653-8658
    157.Samuel C E. Antiviral actions of interferons. Clin Microbiol Rev,2001,14(4): 778-809
    158.Sang Y, Yang J, Ross C R, et al. Molecular identification and functional expression of porcine Toll-like receptor(TLR) 3 and TLR7. Vet Immunol Immunopathol,2008, 125(1-2):162-167
    159.Sano K, Shirota H, Terui T, et al. Oligodeoxynucleotides without CpG motifs work as adjuvant for the induction of Th2 differentiation in a sequence-independent manner. J Immunol,2003,170(5):2367-2373
    160.Sato M, Tanaka N, Hata N, et al. Involvement of the IRF family transcription factor IRF-3 in virus-induced activation of the IFN-beta gene. FEBS Lett,1998,425(1): 112-116
    161.Sato M, Suemori H, Hata N, et al. Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-alpha/beta gene induction. Immunity, 2000,13(4):539-548
    162.Satoh T, Kato H, Kumagai Y, et al. LGP2 is a positive regulator of RIG-I- and MDA5-mediated antiviral responses. Proc Natl Acad Sci U S A,2010,107(4): 1512-1517
    163.Schulz O, Diebold S S, Chen M, et al. Toll-like receptor 3 promotes cross-priming to virus-infected cells. Nature,2005,433(7028):887-892
    164.Schwartz T, Behlke J, Lowenhaupt K, et al. Structure of the DLM-1-Z-DNA complex reveals a conserved family of Z-DNA-binding proteins. Nat Struct Biol,2001,8(9): 761-765
    165.Seth R B, Sun L, Ea C K, et al. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell, 2005,122(5):669-682
    166.Shahangian A, Chow E K, Tian X, et al. Type ⅠIFNs mediate development of postinfluenza bacterial pneumonia in mice. J Clin Invest,2009,119(7):1910-1920
    167.Sharf R, Azriel A, Lejbkowicz F, et al. Functional domain analysis of interferon consensus sequence binding protein(ICSBP) and its association with interferon regulatory factors. J Biol Chem,1995,270(22):13063-13069
    168.Shimosato T, Tohno M, Kitazawa H, et al. Toll-like receptor 9 is expressed on follicle-associated epithelia containing M cells in swine Peyer's patches. Immunol Lett,2005,98(1):83-89
    169.Shinkai H, Tanaka M, Morozumi T, et al. Biased distribution of single nucleotide polymorphisms (SNPs) in porcine Toll-like receptor 1(TLR1), TLR2, TLR4, TLR5, and TLR6 genes. Immunogenetics,2006,58(4):324-330
    170.Simon A K, Desrois M, Schmitt-Verhulst A M. Interferon-regulatory factors during development of CD4 and CD8 thymocytes. Immunology,1997,91(3):340-345
    171.Sims S H, Cha Y, Romine M F, et al. A novel interferon-inducible domain:structural and functional analysis of the human interferon regulatory factor 1 gene promoter. Mol Cell Biol,1993,13(1):690-702
    172.Sirinarumitr T, Kluge J P, Paul P S. Transmissible gastroenteritis virus induced apoptosis in swine testes cell cultures. Archives of Virology,1998,143(12):2471
    173.Skiba M, Glowinski F, Koczan D, et al. Gene expression profiling of Pseudorabies virus(PrV) infected bovine cells by combination of transcript analysis and quantitative proteomic techniques. Vet Microbiol,2010,143(1):14-20
    174.Stetson D B, Medzhitov R. Type Ⅰ interferons in host defense. Immunity,2006,25(3): 373-381
    175.Stros M, Polanska E, Struncova S, et al. HMGB1 and HMGB2 proteins up-regulate cellular expression of human topoisomerase Ⅱalpha. Nucleic Acids Res,2009,37(7): 2070-2086
    176.Stros M. HMGB proteins:interactions with DNA and chromatin. Biochim Biophys Acta,2010,1799(1-2):101-113
    177.Sun Q, Sun L, Liu H H, et al. The specific and essential role of MAVS in antiviral innate immune responses. Immunity,2006,24(5):633-642
    178.Sun W, Li Y, Chen L, et al. ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization. Proc Natl Acad Sci,2009,106(21): 8653-8658
    179.Takahasi K, Yoneyama M, Nishihori T, et al. Nonself RNA-sensing mechanism of RIG-I helicase and activation of antiviral immune responses. Mol Cell,2008,29(4): 428-440
    180.Takahasi K, Kumeta H, Tsuduki N, et al. Solution structures of cytosolic RNA sensor MDA5 and LGP2 C-terminal domains:identification of the RNA recognition loop in RIG-I-like receptors. J Biol Chem,2009,284(26):17465-17474
    181.Takahasi K, Horiuchi M, Fujii K, et al. Ser386 phosphorylation of transcription factor IRF-3 induces dimerization and association with CBP/p300 without overall conformational change. Genes Cells,2010,15(8):901-910
    182.Takaoka A, Yanai H, Kondo S, et al. Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature,2005,434(7030):243-249
    183.Takaoka A, Wang Z, Choi M K, et al. DAI(DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature,2007,448(7152):501-505
    184.Takaoka A, Taniguchi T. Cytosolic DNA recognition for triggering innate immune responses. Adv Drug Deliv Rev,2008,60(7):847-857
    185.Takeuchi O, Akira S. Innate immunity to virus infection. Immunol Rev,2009,227(1): 75-86
    186.Thanos D, Maniatis T. Virus induction of human IFN beta gene expression requires the assembly of an enhanceosome. Cell,1995,83(7):1091-1100
    187.Theofilopoulos A N, Baccala R, Beutler B, et al. Type I interferons(alpha/beta) in immunity and autoimmunity. Annu Rev Immunol,2005,23:307-336
    188.Thomas A V, Broers A D, Vandegaart H F, et al. Genomic structure, promoter analysis and expression of the porcine(Sus scrofa) TLR4 gene. Mol Immunol,2006,43(6): 653-659
    189.Tohno M, Shimazu T, Aso H, et al. Molecular cloning and functional characterization of porcine MyD88 essential for TLR signaling. Cell Mol Immunol,2007,4(5): 369-376
    190.Tohno M, Shimazu T, Aso H, et al. Molecular cloning and functional characterization of porcine nucleotide-binding oligomerization domain-1 (NOD1) recognizing minimum agonists, meso-diaminopimelic acid and meso-lanthionine. Mol Immunol, 2008a,45(6):1807-1817
    191.Tohno M, Ueda W, Azuma Y, et al. Molecular cloning and functional characterization of porcine nucleotide-binding oligomerization domain-2(NOD2). Mol Immunol, 2008b,45(1):194-203
    192.Trilling M, Le VT, Zimmermann A, et al. Gamma interferon-induced interferon regulatory factor 1-dependent antiviral response inhibits vaccinia virus replication in mouse but not human fibroblasts. J Virol,2009,83(8):3684-3695
    193.Uematsu S, Akira S. Toll-like receptors and innate immunity. J Mol Med,2006,84(9): 712-725
    194.van Rooij E M, de Bruin M G, de Visser Y E, et al. Vaccine-induced T cell-mediated immunity plays a critical role in early protection against pseudorabies virus(suid herpes virus type 1) infection in pigs. Vet Immunol Immunopathol,2004,99(1-2): 113-125
    195.Venkataraman T, Valdes M, Elsby R, et al. Loss of DExD/H box RNA helicase LGP2 manifests 201. Vollmer J, Weeratna R D, Jurk M, et al. Oligodeoxynucleotides lacking CpG dinucleotides mediate Toll-like receptor 9 dependent T helper type 2 biased immune stimulation. Immunology,2004,113(2):212-223
    196.von Landenberg P, Bauer S. Nucleic acid recognizing Toll-like receptors and autoimmunity. Curr Opin Immunol,2007,19(6):606-610
    197.Wang Z, Choi M K, Ban T, et al. Regulation of innate immune responses by DAI(DLM-1/ZBP1) and other DNA-sensing molecules. Proc Natl Acad Sci U S A, 2008,105(14):5477-5482
    198.Weber F, Wagner V, Rasmussen S B, et al. Double-stranded RNA is produced by positive-strand RNA viruses and DNA viruses but not in detectable amounts by negative-strand RNA viruses. J Virol,2006,80(10):5059-5064
    199.Wei F, Zhai Y, Jin H, et al. Development and immunogenicity of a recombinant pseudorabies virus expressing Sj26GST and SjFABP from Schistosoma japonicum. Vaccine.2010,28(32):5161-5166
    200.Williams B R. Transcriptional regulation of interferon-stimulated genes. Eur J Biochem,1991,200(1):1-11
    201.Xu L G, Wang Y Y, Han K J, et al. VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol Cell,2005,19(6):727-740
    202.Yamamoto M, Sato S, Mori K, et al. Cutting edge:a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-beta promoter in the Toll-like receptor signaling. J Immunol,2002,169(12):6668-6672
    203.Yamamoto M, Akira S. TIR domain-containing adaptors regulate TLR signaling pathways. Adv Exp Med Biol,2005,560:1-9
    204.Yanai H, Ban T, Wang Z, et al. HMGB proteins function as universal sentinels for nucleic-acid-mediated innate immune responses. Nature,2009,462(7269):99-103
    205.Yang P, An H, Liu X, et al. The cytosolic nucleic acid sensor LRRFIP1 mediates the production of type I interferon via a beta-catenin-dependent pathway. Nat Immunol, 2010,11(6):487-494
    206.Yie J, Senger K, Thanos D. Mechanism by which the IFN-beta enhanceosome activates transcription. Proc Natl Acad Sci U S A,1999,96(23):13108-13113
    207.Yoneyama M, Kikuchi M, Natsukawa T, et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol,2004,5(7):730-737
    208.Yoneyama M, Kikuchi M, Matsumoto K, et al. Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol,2005,175(5):2851-2858
    209.Yoneyama M, Fujita T. RIG-I family RNA helicases:cytoplasmic sensor for antiviral innate immunity. Cytokine Growth Factor Rev,2007,18(5-6):545-551
    210.Yoneyama M, Fujita T. Structural mechanism of RNA recognition by the RIG-I-like receptors. Immunity,2008,29(2):178-181
    211.Yoneyama M, Fujita T. RNA recognition and signal transduction by RIG-I-like receptors. Immunol Rev,2009,227(1):54-65
    212.Yoneyama M, Fujita T. Recognition of viral nucleic acids in innate immunity. Rev Med Virol,2010,20(1):4-22
    213.Zeng W, Chen Z J. MITAgating viral infection. Immunity,2008,29(4):513-515
    214.Zerangue N, Schwappach B, Jan Y N, et al. A new ER trafficking signal regulates the subunit stoichiometry of plasma membrane K(ATP) channels. Neuron,1999, 22:537-548.
    215.Zhang X, Wang C, Schook L B, et al. An RNA helicase, RHIV-1, induced by porcine reproductive and respiratory syndrome virus(PRRSV) is mapped on porcine chromosome 10q13. Microb Pathog,2000,28(5):267-278
    216.Zhang Y, Guo Y, Lv K, et al. Molecular cloning and functional characterization of porcine toll-like receptor 7 involved in recognition of single-stranded RNA virus/ssRNA. Mol Immunol,2008,45(4):1184-1190
    217.Zhong B, Yang Y, Li S, et al. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity,2008,29(4):538-550

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700