抗凋亡蛋白Bcl-2在自噬调控以及细胞生存中的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:抗凋亡蛋白Bcl-2在急性饥饿时,通过与自噬关键蛋白Beclin1的相互作用,抑制Beclin1诱导的自噬,但是在某些情况下,Bcl-2的过表达并不能抑制自噬活性,因此抗凋亡蛋白Bcl-2和自噬之间的关系有待进一步研究。本研究的目的是探讨抗凋亡蛋白Bcl-2在自噬调控中的作用及其在细胞生存和死亡中的意义。
     方法:利用血清饥饿和自噬激动剂雷帕霉素(Rapamycin)在人神经母细胞瘤SH-SY5Y中,激活自噬,Western检测自噬相关蛋白Beclin1,LC3,p62和CathepsinD,确定自噬激活模型成功;检测Bcl-2家族蛋白变化;利用siRNA Knockdown Bcl-2,或者应用Bcl-2的小分子抑制剂拮抗Bcl-2的功能,用MTT法检测细胞在饥饿下的活力变化,用Annexin-V/PI检测细胞凋亡的改变;加入自噬不同阶段的抑制剂,3-MA,E64D和Bafilomycin A1,检测在Bcl-2被下调或被小分子抑制剂拮抗时,血清饥饿诱导的自噬对细胞活力的影响。
     结果:利用血清饥饿SH-SY5Y细胞6,12,24,36,48小时,Western检测自噬蛋白Beclin1,LC3,Cathepsin D和p62,结果显示Beclin1,LC3和Cathepsin D在血清饥饿时均上调,而自噬底物p62在6小时一过性下调,提示自噬被激活;用自噬激动剂雷帕霉素同样激活了自噬;在自噬被激活时,检测到抗凋亡蛋白Bcl-2上调;用siRNA干扰Bcl-2蛋白表达水平,检测到LC3无变化,加入溶酶体抑制剂氯化铵,LC3出现堆积,并且自噬底物p62被进一步降解,提示自噬流量进一步增强;在Bcl-2被下调时,或者应用小分子抑制剂HA14-1和ABT-737拮抗Bcl-2的功能活性时,MTT结果显示,血清饥饿进一步使细胞活力下降,Annexin V/PI结果显示细胞发生早期和晚期凋亡;泛caspase抑制剂Z-VAD阻断细胞死亡证实部分细胞死亡是凋亡性的;应用自噬不同阶段的抑制剂,E64D和巴普洛霉素(Bafilomycin A1)抑制自噬,可以挽救血清饥饿导致的部分细胞死亡。这些结果表明,伴随自噬激活而上调的Bcl-2蛋白能够限制自噬的过度激活和保护营养应激下的细胞死亡,当Bcl-2被下调时,自噬进一步激活,并且细胞发生死亡,这种死亡是凋亡性的,同时又是自噬性,因为caspase的抑制剂和自噬的抑制剂都能够挽救部分细胞死亡。
     结论:营养剥夺诱导的自噬激活在生理条件下是保护性的,当Bcl-2下调时,抗凋亡蛋白与促凋亡蛋白,抗自噬蛋白与促自噬蛋白之间的力量对比发生变化,这时候,上调自噬活性可以导致营养应激条件下的细胞死亡,提示自噬的保护性作用依赖于抗凋亡蛋白Bcl-2,一旦Bcl-2下调或者功能受损,自噬的激活对细胞死亡有贡献。
Aims: Anti-apoptotic protein Bcl-2could inhibit essential autophagic proteinBeclin1-dependent autophagy through the interaction with Beclin1under acute starvationcondition. However, autophagy induction has also been observed under the condition ofBcl-2overexpression. Our aim was to study the mechanism of Bcl-2in autophagicregulation and cell survival under starvation condition.
     Methods: Autophagy was induced with serum starvation and rapamycin inneuroblastoma SH-SY5Y cells. Western blot analysis was used to detect changes inautophagy related proteins Beclin1, LC3, Cathepsin D and p62and Bcl-2proteins. MTTassay was used to detect cell viability under serum starvation after knockdown of Bcl-2with siRNA duplex, or inhibition of Bcl-2function with small molecular inhibitors.Annexin V/PI and Western blot analysis were used to detect the change of apoptosis.Changes in autophagic flux when Bcl-2was knocked down were examined with Westernblot analysis. The contribution of autophagy to starvation-induced cell death was assessedwith the autophagic inhibitors,3-methyladenine, E64D or Bafilomycin A1and apoptoticinhibitor, Z-VAD.
     Results: Autophagy was induced by serum starvation and Rapamycin inneuroblastoma SH-SY5Y cells. Western Blotting detected elevations of autophagy relatedproteins, including Beclin1, LC3and lysosomal enzyme Cathepsin D, and autophagicsubstrate p62was detected to be down-regulated, indicting autophagy was induced in thiscell line. Anti-apoptotic protein Bcl-2was also up-regulated accompanying autophagyinduction. When knockdown of Bcl-2by siRNA duplex or blockade of Bcl-2function withthe small molecular inhibitors, HA14-1and ABT-737, serum starvation induced apoptoticcell death, as evidenced by the reduction in cell viability (MTT), the eversion ofphosphatidylserine/increased membrane permeability (Annexin V/PI) and the blockage ofcell death by pan-caspase inhibitor, Z-VAD. Knockdown of Bcl-2did not increase LC3 turnover induced by serum starvation, but enhanced down-regulation of autophagicsubstrate p62, and LC3-II accumulated in the present of lysosome inhibitor, NH4CL, thesedata indicted that autophagic flux was further increased. Using different stages of inhibitorsof autophagy, E64D or Bafilomycin A1, to inhibit autophagy, MTT results showed thatstarvation-induced cell death under serum starvation could be partially rescued, indictingautophagy is involved in the process of cell death.
     Conclusions: In normal conditions, serum starvation-induced autophagy wasprotective, however, when Bcl-2was down-regulated, and the balance betweenanti-autophagic and pro-autophagic was broken, in such case, enhance autophagic activitycould lead to cell death under starvation condition, suggesting Bcl-2plays an importantrole in preventing autophagy overactivation and promot cell survival by inhibitinginitiation of apoptosis.
引文
1. de Duve, et al. Functions of lysosomes. Annu.Rev.Physiol.1966;28:435-492.
    2. Seglen, P. O. in Lysosomes: Their Role in Protein Breakdown (eds Glaumann, H.&Ballard, F. J.)371–414(Academic Press, Florida,1987).
    3. Gordon, P. B.&Seglen, P. O. Prelysosomal convergence of autophagic and endocyticpathways. Biochem. Biophys. Res. Commun.1988;151:40–47.
    4. Takeshige, K., Baba, M., Tsuboi, S., Noda, T.&Ohsumi, Y. Autophagy in yeastdemonstrated with proteinase-deficient mutants and conditions for its induction. J. CellBiol.1992;119:301–311.
    5. Tsukada, M.&Ohsumi, Y. Isolation and characterization of autophagy-defectivemutants of Saccharomyces cerevisiae. FEBS Lett.1993;333:169–174.
    6. Matsuura, A., Tsukada, M., Wada, Y.&Ohsumi, Y. Apg1p, a novel protein kinaserequired for the autophagic process in Saccharomyces cerevisiae. Gene1997;192:245–250.
    7. Elizabeth L. Axe, Simon A. Walker et al. Autophagosome formation from membranecompartments enriched in phosphatidylinositol3-phosphate and dynamicallyconnected to the endoplasmic reticulum. J Cell Biol2008;182:685-701.
    8. Wei-Lien Yen, Takahiro Shintani et al. The conserved oligomeric Golgi complex isinvolved in double-membrane vesicle formation during autophagy. J Cell Biol2010;188:101-114.
    9. Yamamoto A, Masaki R, Tashiro Y. Characterization of the isolation membranes andthe limiting membranes of autophagosomes in rat hepatocytes by lectin cytochemistry.J Histochem Cytochem1990;38:573-580.
    10. Oledzka-Slotwinska H, Desmet V. Participation of the cell membrane in the formationof “au-tophagic vacuoles”. Virchows Arch B Cell Pathol1969;2:47-61.
    11. Dale W. Hailey, Angelika S. Rambold et al. Mitochondria supply membranes forautophagosome biogenesis during starvation. Cell2010;141:656-667.
    12. Hayashi-Nishino M, Fujita N et al. A subdomain of the endoplasmic reticulum forms acradle for autophagosome formation. Nat Cell Biol.2009;11:1433-1437.
    13. Ravikumar B, Moreau K, Rubinsztein DC. Plasma membrane helps autophagosomesgrow. Autophagy2010;6:1184-1186.
    14. Reunanen H, Punnonen E-L, Hirsim ki P. Studies on vinblastine-inducedautophagocytosis in mouse liver. V. A cytochemical study on the origin of membranes.Histochemistry1985;83:513-517.
    15. Fengsrud M, Erichsen ES, Berg TO et al. Ultrastructural characterization of thedelimiting mem-branes of isolated autophagosomes and amphisomes byfreeze-fracture electron microscopy. Eur J Cell Biol2000;79:871-882.
    16. Mizushima N, Yamamoto A, Hatano M et al. Dissection of autophagosome formationusing Apg5-deficient mouse embryonic stem cells. J Cell Biol2001;152:657-667.
    17. Kabeya Y, Mizushima N, Ueno T et al. LC3, a mammalian homologue of yeast Apg8p,is localized in autophagosome membranes after processing. EMBO J2000;19:5720-5728.
    18. Kabeya Y, Mizushima N, Okamoto S et al. Mammalian LC3family: processing andlocalization to autophagosome membranes. Abstr3rd Internat Symp Autophagy, Osaka,Japan2002;105.
    19. Fengsrud M, Roos N, Berg T et al. Ultrastructural and immunocytochemicalcharacterization of autophagic vacuoles in isolated hepatocytes: Effects of vinblastineand asparagine on vacuole distri-butions. Exp Cell Res1995;221:504-519.
    20. Kovács AL, Reith A, Seglen PO. Accumulation of autophagosomes after inhibition ofhepatocytic protein degradation by vinblastine, leupeptin or a lysosomotropic amine.Exp Cell Res1982;137:191-201.
    21. Hirsim ki Y, Hirsim ki P. Vinblastine-induced autophagocytosis: The effect ofdisorganization of microfilaments by cytochalasin B. Exp Mol Pathol1984;40:61-69.
    22. Grinde B. Autophagy and lysosomal proteolysis in the liver. Experientia1985;41:1090-1095.
    23. Arstila AU, Trump BF. Studies on cellular autophagocytosis. The formation ofautophagic vacuoles in the liver after glucagon administration. Am J Pathol1968;53:687-733.
    24. Kovács AL, Réz G, Pálfia Z et al. Autophagy in the epithelial cells of murine seminalvesicle in vitro—Formation of large sheets of nascent isolation membranes,sequestration of the nucleus and inhibition by wortmannin and3-methyladenine. CellTissue Res2000;302:253-261.
    25. Str mhaug PE, Berg TO, Fengsrud M et al. Purification and characterization ofautophagosomes from rat hepatocytes. Biochem J1998;335:217-224.
    26. Rabouille C, Strous GJ, Crapo JD et al. The differential degradation of two cytosolicproteins as a tool to monitor autophagy in hepatocytes by immunocytochemistry. JCell Biol1993;120:897-908.
    27. Liou W, Geuze HJ, Geelen MJH et al. The autophagic and endocytic pathwaysconverge at the nascent autophagic vacuoles. J Cell Biol1997;136:61-70.
    28. Ichimura Y, Kirisako T, Takao T et al. A ubiquitin-like system mediates proteinlipidation. Nature2000;408:488-492.
    29. Fengsrud M, Raiborg C, Berg TO et al. Autophagosome-associated variant isoforms ofcytosolic enzymes. Biochem J2000;352:773-781.
    30. H yvik H, Gordon PB, Berg TO et al. Inhibition of autophagic-lysosomal delivery andautophagic lactolysis by asparagine. J Cell Biol1991;113:1305-1312.
    31. Berg T, Gj en T, Bakke O. Physiological functions of endosomal proteolysis. BiochemJ1995;307:313-326.
    32. Gordon PB, H yvik H, Seglen PO. Prelysosomal and lysosomal connections betweenautophagy and endocytosis. Biochem J1992;283:361-369.
    33. Yokota S, Himeno M, Kato K. Formation of autophagosomes during degradation ofexcess peroxi-somes induced by di-(2-ethylhexyl)-phthalate treatment. III. Fusion ofearly autophagosomes with lysosomal compartments. Eur J Cell Biol1995;66:15-24.
    34. Berg TO, Fengsrud M, Str mhaug PE et al. Isolation and characterization of rat liveramphisomes: Evidence for fusion of autophagosomes with both early and lateendosomes. J Biol Chem1998;273:21883-21892.
    35. Mousavi SA, Kjeken R, Berg TO et al. Effects of inhibitors of the vacuolar protonpump on hepatic heterophagy and autophagy. Biochim Biophys Acta2001;1510:243-257.
    36. Réz G, Csák J, Fellinger E et al. Time course of vinblastine-induced autophagocytosisand changes in the endoplasmic reticulum in murine pancreatic acinar cells: Amorphometric and biochemical study. Eur J Cell Biol1996;71:341-350.
    37. Chang Y-Y, Neufeld TP. An Atg1/Atg13complex with multiple roles in TOR-mediatedautophagy regulation. Mol. Biol. Cell2009;20:2004–14.
    38. Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, Ohsumi Y. Tor-mediatedinduction of autophagy via an Apg1protein kinase complex. J. Cell Biol.2000;150:1507–1513.
    39. Cheong H, Nair U, Geng J, Klionsky DJ. The Atg1kinase complex is involved in theregulation of protein recruitment to initiate sequestering vesicle formation fornonspecific autophagy in Saccharomyces cerevisiae. Mol. Biol. Cell2008;19:668–681.
    40. Cheong H, Yorimitsu T, Reggiori F, Legakis JE, Wang C-W, Klionsky DJ. Atg17regulates the magnitude of the autophagic response.Mol. Biol. Cell2005;16:3438–3453.
    41. Lee SB, Kim S, Lee J, Park J, Lee G, et al. ATG1, an autophagy regulator, inhibits cellgrowth by negatively regulating S6kinase. EMBO Rep.2007;8:360–365.
    42. Hara T, Takamura A, Kishi C, Iemura S, Natsume T, et al. FIP200, a ULK-interactingprotein, is required for autophagosome formation in mammalian cells. J. Cell Biol.2008;181:497–510.
    43. Chan EYW, Longatti A, McKnight NC, Tooze SA. Kinase-inactivated ULK proteinsinhibit autophagy via their conserved C-terminal domains using an Atg13-independentmechanism. Mol. Cell. Biol.2009;29:157–171.
    44. Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, et al. Nutrient-dependentmTORC1association with the ULK1-Atg13-FIP200complex required for autophagy.Mol. Biol. Cell2009;20:1981–1991.
    45. Mercer CA, Kaliappan A, Dennis PB. A novel, human Atg13binding protein, Atg101,interacts with ULK1and is essential for macroautophagy. Autophagy2009;5:649–662.
    46. Bj rk y G, Lamark T, Brech A, Outzen H, Perander M, et al. p62/SQSTM1formsprotein aggregates degraded by autophagy and has a protective effect onhuntingtin-induced cell death. J. Cell Biol.2005;171:603–614.
    47. Kim PK, Hailey DW, Mullen RT, Lippincott-Schwartz J. Ubiquitin signals autophagicdegrada-tion of cytosolic proteins and peroxisomes.Proc. Natl. Acad. Sci. USA2008;105:20567–20574.
    48. Farre JC, Manjithaya R, Mathewson RD, Subramani S. PpAtg30tags peroxisomes forturnover by selective autophagy. Dev. Cell2008;14:365–376.
    49. Itakura E, Kishi C, Inoue K, Mizushima N. Beclin1forms two distinctphosphatidylinositol3-kinase complexes with mammalian Atg14and UVRAG. Mol.Biol. Cell2008;19:5360–5372.
    50. Kihara A, Noda T, Ishihara N, Ohsumi Y. Two distinct Vps34phosphatidylinositol3-kinase complexes function in autophagy and carboxypeptidase Y sorting inSaccharomyces cerevisiae. J. Cell Biol.2001;152:519–530.
    51. Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, et al. Induction of autophagyand inhibition of tumorigenesis by beclin1. Nature1999;402:672–676.
    52. Nice DC, Sato TK, Stromhaug PE, Emr SD, Klionsky DJ. Cooperative binding of thecytoplasm to vacuole targeting pathway proteins, Cvt13and Cvt20, tophosphatidylinositol3-phosphate at the pre-autophagosomal structure is required forselective autophagy. J. Biol. Chem.2002;277:30198–30207.
    53. Suzuki K, Kirisako T, Kamada Y, Mizushima N, Noda T, Ohsumi Y. Thepre-autophagosomal structure organized by concerted functions of APGgenes isessential for autophagosome formation. EMBO J.2001;20:5971–5981.
    54. Geng J, Klionsky DJ. The Atg8and Atg12ubiquitin-like conjugation systems inmacroautophagy. EMBO Rep.2008;9:859–864.
    55. Mizushima N, Kuma A, Kobayashi Y, Yamamoto A, Matsubae M, et al. MouseApg16L, a novel WD-repeat protein, targets to the autophagic isolation membranewith the Apg12-Apg5conjugate. J. Cell Sci.2003;116:1679–1688.
    56. Mizushima N, Noda T, Ohsumi Y. Apg16p is required for the function of theApg12p-Apg5p conjugate in the yeast autophagy pathway. EMBO J.1999;18:3888–3896.
    57. Fujita N, Itoh T, Omori H, Fukuda M, Noda T, Yoshimori T. The Atg16L complexspecifies the site of LC3lipidation for membrane biogenesis in autophagy. Mol. Biol.Cell2008;19:2092–2100.
    58. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, et al. LC3, a mammalianhomologue of yeast Apg8p, is localized in autophagosome membranes after processing.EMBO J.2000;19:5720–5728.
    59. Xie Z, Nair U, Klionsky DJ. Atg8controls phagophore expansion duringautophagosome forma-tion. Mol. Biol. Cell2008;19:3290–3298.
    60. Itoh T, Fujita N, Kanno E, Yamamoto A, Yoshimori T, Fukuda M. Golgi-resident smallGTPase Rab33B interacts with Atg16L and modulates autophagosome formation. Mol.Biol. Cell2008;19:2916–2925.
    61. He C, Baba M, Cao Y, Klionsky DJ. Self-interaction is critical for Atg9transport andfunction at the phagophore assembly site during autophagy. Mol. Biol. Cell2008;19:5506–5516.
    62. Chang C-Y, Huang W-P. Atg19mediates a dual interaction cargo sorting mechanism inselective autophagy. Mol. Biol. Cell2007;18:919–929.
    63. Reggiori F, Tucker KA, Stromhaug PE, Klionsky DJ. The Atg1-Atg13complexregulates Atg9and Atg23retrieval transport from the pre-autophagosomal structure.Dev. Cell2004;6:79–90.
    64. Chan EYW, Longatti A, McKnight NC, Tooze SA. Kinase-inactivated ULK proteinsinhibit autophagy via their conserved C-terminal domains using an Atg13-independentmechanism. Mol. Cell. Biol.2009;29:157–171.
    65. Kirisako T, Ichimura Y, Okada H, Kabeya Y, Mizushima N, et al. The reversiblemodification regulates the membrane-binding state of Apg8/Aut7essential forautophagy and the cytoplasm to vacuole targeting pathway. J. Cell Biol.2000;151:263–276.
    66. Jager S, Bucci C, Tanida I, Ueno T, Kominami E, et al. Role for Rab7in maturation oflate autophagic vacuoles. J. Cell Sci.2004;117:4837–4848.
    67. Tanaka Y, Guhde G, Suter A, Eskelinen E-L, Hartmann D, et al. Accumulation ofautophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature2000;406:902–906.
    68. Klionsky DJ. The molecular machinery of autophagy: unanswered questions. J. CellSci.2005;118:7–18.
    69. Epple UD, Suriapranata I, Eskelinen E-L, Thumm M. Aut5/Cvt17p, a putative lipaseessential for disintegration of autophagic bodies inside the vacuole. J. Bacteriol.2001;183:5942–5955.
    70. Tanida I, Minematsu-Ikeguchi N, Ueno T, Kominami E. Lysosomal turnover, but not acellular level, of endogenous LC3is a marker for autophagy. Autophagy2005;1:84–91.
    71. Yang Z, Huang J, Geng J, Nair U, Klionsky DJ. Atg22recycles amino acids to link thedegradative and recycling functions of autophagy. Mol. Biol. Cell2006;17:5094–5104.
    72. Ishihara N, Hamasaki M, Yokota S, Suzuki K, Kamada Y, et al. Autophagosomerequires specific early Sec proteins for its formation and NSF/SNARE for vacuolarfusion.Mol. Biol. Cell2001;12:3690–3702.
    73. Fader CM, Sanchez D, Furlan M, Colombo MI. Induction of autophagy promotesfusion of multivesicular bodies with autophagic vacuoles in k562cells.Traffic2008;9:230–250.
    74. Schworer CM, Mortimore GE. Glucagon-induced autophagy and proteolysis in ratliver: media-tion by selective deprivation of intracellular amino acids. Proc Natl AcadSci USA1979;76:3169-3173.
    75. Mortimore GE, P s AR, Lardeux BR. Mechanism and regulation of proteindegradation in liver. Diabetes Metab Rev1989;5:49-70.
    76. Mortimore GE, Hutson NJ, Surmacz CA. Quantitative correlation between proteolysisand macro-and microautophagy in mouse hepatocytes during starvation and refeeding.Proc Natl Acad Sci USA1983;80:2179-2183.
    77. Noda T, Ohsumi Y. Tor, a phosphatidylinositol kinase homologue, controls autophagyin yeast. J. Biol. Chem.1998;273:3963–3966.
    78. Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, et al. Bidirectional transportof amino acids regulates mTOR and autophagy. Cell2009;136:521–534.
    79. Lum JJ, Bauer DE, Kong M, Harris MH, Li C, et al. Growth factor regulation ofautophagy and cell survival in the absence of apoptosis.Cell2005;120:237–248.
    80. Kim E, Goraksha-Hicks P, Li L, Neufeld TP, Guan K-L. Regulation of TORC1by RagGTPases in nutrient response. Nat. Cell Biol.2008;10:935–945.
    81. Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, et al. The Rag GTPasesbind raptor and mediate amino acid signaling to mTORC1. Science2008;320:1496–1501.
    82. Fengsrud M, Roos N, Berg T et al. Ultrastructural and immunocytochemicalcharacterization of autophagic vacuoles in isolated hepatocytes: effects of vinblastineand asparagine on vacuole distri-butions. Exp Cell Res1995;221:504-519.
    83. P s AR, Mortimore GE. Requirement for alanine in the amino acid control ofdeprivation-induced protein degradation in liver. Proc Natl Acad Sci USA1984;81:4270-4274.
    84. Mortimore GE, Wert Jr JJ, Adams CE. Modulation of the amino acid control of hepaticprotein degradation by caloric deprivation. Two modes of alanine coregulation. J BiolChem1988;263:19545-19551.
    85. Blommaart PJE, Zonneveld D, Meijer AJ et al. Effects of intracellular amino acidsconcentrations, cyclic AMP, and dexamethasone on lysosomal proteolysis in primarycultures of perinatal rat hepa-tocytes. J Biol Chem1993;268:1610-1617.
    86. Yorimitsu T, He C, Wang K, Klionsky DJ. Tap42-associated protein phosphatase type2A negatively regulates induction of autophagy.Autophagy2009;5:616–624.
    87. Budovskaya YV, Stephan JS, Reggiori F, Klionsky DJ, Herman PK. TheRas/cAMP-dependent protein kinase signaling pathway regulates an early step of theautophagy process in Saccharomyces cere-visiae. J. Biol. Chem.2004;279:20663–20671.
    88. Budovskaya YV, Stephan JS, Deminoff SJ, Herman PK. An evolutionary proteomicsapproach identifies substrates of the cAMP-dependent protein kinase. Proc. Natl. Acad.Sci. USA2005;102:13933–13938.
    89. Zaman S, Lippman SI, Zhao X, Broach JR. How Saccharomyces responds to nutrients.Annu. Rev. Genet.2008;42:27–81.
    90. Lum JJ, Bauer DE, Kong M, Harris MH, Li C, et al. Growth factor regulation ofautophagy and cell survival in the absence of apoptosis. Cell2005;120:237–248.
    91. Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, et al. Characterization ofα3-phosphoinositide-dependent protein kinase which phosphorylates and activatesprotein kinase Ba. Curr. Biol.1997;7:261–269.
    92. Arico S, Petiot A, Bauvy C, Dubbelhuis PF, Meijer AJ, et al. The tumor suppressorPTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol3-kinase/protein kinase B pathway. J. Biol. Chem.2001;276:35243–35246.
    93. Manning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC. Identification of thetuberous sclerosis complex-2tumor suppressor gene product tuberin as a target of thephosphoinositide3-kinase/Akt pathway. Mol. Cell2002;10:151–162.
    94. Inoki K, Li Y, Xu T, Guan K-L. Rheb GTPase is a direct target of TSC2GAP activityand regulates mTOR signaling. Genes Dev.2003;17:1829–1834.
    95. Long X, Lin Y, Ortiz-Vega S, Yonezawa K, Avruch J. Rheb binds and regulates themTOR kinase. Curr. Biol.2005;15:702–713.
    96. Furuta S, Hidaka E, Ogata A, Yokota S, Kamata T. Ras is involved in the negativecontrol of autophagy through the class I PI3-kinase. Oncogene2004;23:3898–3904.
    97. Pattingre S, Bauvy C, Codogno P. Amino acids interfere with the ERK1/2-dependentcontrol of macroautophagy by controlling the activation of Raf-1in human coloncancer HT-29cells. J. Biol. Chem.2003;278:16667–16674.
    98. Inoki K, Zhu T, Guan K-L. TSC2mediates cellular energy response to control cellgrowth and survival. Cell2003;115:577–590.
    99. Liang J, Shao SH, Xu ZX, Hennessy B, Ding Z, et al. The energy sensingLKB1-AMPK pathway regulates p27kip1phosphorylation mediating the decision toenter autophagy or apop-tosis. Nat. Cell Biol.2007;9:218–224.
    100.Wang Z, Wilson WA, Fujino MA, Roach PJ. Antagonistic controls of autophagy andglycogen accumulation by Snf1p, the yeast homolog of AMP-activated protein kinase,and the cyclin-dependent kinase Pho85p. Mol. Cell. Biol.2001;21:5742–5752.
    101.Yorimitsu T, Nair U, Yang Z, Klionsky DJ. Endoplasmic reticulum stress triggersautophagy. J. Biol. Chem.2006;281:30299–30304.
    102.Bernales S, McDonald KL, Walter P. Autophagy counterbalances endoplasmicreticulum expan-sion during the unfolded protein response. PLoS Biol.2006;4:e423.
    103.Ma Y, Hendershot LM. The unfolding tale of the unfolded protein response. Cell2001;107:827–830.
    104.Li J, Ni M, Lee B, Barron E, Hinton DR, Lee AS. The unfolded protein responseregulator GRP78/BiP is required for endoplasmic reticulum integrity andstress-induced autophagy in mammalian cells.Cell Death Differ.2008;15:1460–1471.
    105.H yer-Hansen M, Bastholm L, Szyniarowski P, Campanella M, Szabadkai G, et al.Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-β, andBcl-2. Mol. Cell2007;25:193–205.
    106.Sakaki K, Wu J, Kaufman RJ. Protein kinase C θ is required for autophagy in responseto stress in the endoplasmic reticulum. J. Biol. Chem.2008;283:15370–15380.
    107.Azad MB, Chen Y, Henson ES, Cizeau J, McMillan-Ward E, et al. Hypoxia inducesautophagic cell death in apoptosis-competent cells through a mechanism involvingBNIP3. Autophagy2008;4:195–204.
    108.Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, et al. Mitochondrialautophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J. Biol.Chem.2008;283:10892–10903.
    109.Sandoval H, Thiagarajan P, Dasgupta SK, Schumacher A, Prchal JT, et al. Essentialrole for Nix in autophagic maturation of erythroid cells. Nature2008;454:232–235.
    110.Brugarolas J, Lei K, Hurley RL, Manning BD, Reiling JH, et al. Regulation of mTORfunction in response to hypoxia by REDD1and the TSC1/TSC2tumor suppressorcomplex. Genes Dev.2004;18:2893–2904.
    111.Chen Y, McMillan-Ward E, Kong J, Israels SJ, Gibson SB. Mitochondrialelectron-transport-chain inhibitors of complexes I and II induce autophagic cell deathmediated by reactive oxygen species. J. Cell Sci.2007;120:4155–4166.
    112.Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z. Reactive oxygenspecies are essential for autophagy and specifically regulate the activity of Atg4.EMBO J.2007;26:1749–1760.
    113.Suzuki K, Kubota Y, Sekito T, Ohsumi Y. Hierarchy of Atg proteins inpre-autophagosomal structure organization. Genes Cells2007;12:209–218.
    114.Munoz-Gamez JA, Rodriguez-Vargas JM, Quiles-Perez R, Aguilar-Quesada R,Martin-Oliva D, et al. PARP-1is involved in autophagy induced by DNA damage.Autophagy2009;5:61–74.
    115.Pattingre, S. et al. Bcl-2anti-apoptotic proteins inhibit Beclin1-dependent autophagy.Cell200;122,927–939.
    116.Aita, V. M. et al. Cloning and genomic organization of beclin1, a candidate tumorsuppressor gene on chromosome17q21. Genomics199;59:59–65.
    117.Qu, X. et al. Promotion of tumorigenesis by heterozygous disruption of the beclin1autophagy gene. J. Clin. Invest.200;112:1809–1820.
    118.Yue, Z., Jin, S., Yang, C., Levine, A. J.&Heintz, N. Beclin1, an autophagy geneessential for early embryonic development, is a haploinsufficient tumor suppressor.Proc. Natl Acad. Sci. USA2003;100,15077–15082.
    119.Degenhardt, K. et al. Autophagy promotes tumor cell survival and restricts necrosis,inflammation, and tumorigenesis. Cancer Cell2006;10:51–64.
    120.Mathew, R. et al. Autophagy suppresses tumor progression by limiting chromosomalinstability. Genes Dev.2007;21:1367–1381.
    121.Mathew, R. et al. Autophagy suppresses tumorigenesis through elimination of p62.Cell2009;137,1062–1075.
    122.Amaravadi, R. K. et al. Autophagy inhibition enhances therapy-induced apoptosis in aMyc-induced model of lymphoma. J. Clin. Invest.2007;117:326–336.
    123.Ravikumar, B., Duden, R.&Rubinsztein, D. C. Aggregate-prone proteins withpoly-glutamine and polyalanine expansions are degraded by autophagy. Hum. Mol.Genet.2002;11:1107–1117.
    124.Ravikumar, B. et al. Inhibition of mTOR induces autophagy and reduces toxicity ofpolyglutamine expansions in fly and mouse models of Huntington disease. Nat. Genet.2004;36:585–595.
    125.Komatsu, M. et al. Homeostatic levels of p62control cytoplasmic inclusion bodyformation in autophagy-deficient mice. Cell2007;131:1149–1163.
    126.Yang, Z.&Klionsky, D. J. Mammalian autophagy: core molecular machinery andsignaling regulation. Curr. Opin. Cell Biol.2009;22:124–131.
    127.Donati, A. et al. Age-related changes in the regulation of autophagic proteolysis in ratisolated hepatocytes. J. Gerontol. A Biol. Sci..Med. Sci.2001;56:B288–293.
    128.Meléndez, A. et al. Autophagy genes are essential for dauer development and life-spanextension in C. elegans. Science2003;301:1387–1391.
    129.Juhasz, G., Erdi, B., Sass, M.&Neufeld, T. P. Atg7-dependent autophagy promotesneuronal health, stress tolerance and longevity but is dispensable for metamorphosis inDrosophila. Genes Dev.2007;21:3061–3066.
    130.Bergamini, E. Targets for antiageing drugs. Expert Opin. Ther. Targets2005;9:77–82.
    131. J. F. R. Kerr, A. H. Wyllie, A. R. Currie, Br. J. Cancer1972;26:239.
    132.Sulston JE, Horvitz HR. Post-embryonic cell lineages of the nematode, Caenorhabditiselegans. Dev. Biol.1977;56:110-156.
    133.Wyllie AH, Kerr JF, Currie AR. Cell death: the significance of apoptosis. Int. Rev.Cytol.1980;68:251-306.
    134.Hengartner MO, Horvitz HR. The C. elegans cell survival gene ced-9encodes afunctional homolog of the mammalian proto-oncogene bcl-2. Cell.1994;76:665-676.
    135.Tsujimoto Y, Cossman J, Jaffe E, Croce C. Involvement of the Bcl-2gene in humanfollicular lymphoma. Science.1985;228:1440-1443.
    136.Bakhshi, A. et al. Cloning the chromosomal breakpoint of t(14;18) human lymphomas:clustering around JH on chromosome14and near a transcriptional unit on18. Cell1985;41:899–906.
    137.Vaux, D. L., Cory, S.&Adams, J. M. Bcl-2gene promotes haemopoietic cell survivaland cooperates with c-myc to immortalize pre-B cells. Nature1988;335:440–442.
    138.Adams, J. M.&Cory, S. The Bcl-2apoptotic switch in cancer development andtherapy. Oncogene2007;26:1324–1337.
    139.Strasser, A., Harris, A. W., Bath, M. L.&Cory, S. Novel primitive lymphoid tumoursinduced in transgenic mice by cooperation between myc and bcl-2. Nature1990;348:331–333.
    140.Danial, N.N., and Korsmeyer, S.J. Cell death: Critical control points. Cell2004;116:205–219.
    141.Reed, J.C. Bcl-2family proteins. Oncogene1998;17:3225–3236.
    142.Hakem, R. et al. Differential requirement for caspase9in apoptotic pathways in vivo.Cell1998;94:339–352.
    143.Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S.M., Ahmad, M., Alnemri, E.S., andWang, X. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9complexinitiates an apoptotic protease cascade. Cell1997;91:479–489.
    144.Cory S, Adams JM. The Bcl-2family:regulators of the cellular life-or-death switch.Nat. Rev. Cancer2002;2:647-656.
    145.Gian Maria Fimia, Anastassia Stoykova et al. Ambra1regulates autophagy anddevelopment of the nervous system. Nature2007;447:1121-1125.
    146.Flavie Strappazzon, Matteo Vietri-Rudan, Silvia Campello, Francesca Nazio, FulvioFlorenzano, Gian Maria Fimia, Mauro Piacentini, Beth Levine and Francesco Cecconi.Mitochondrial Bcl-2inhibits AMBRA1-induced autophagy. EMBO J.2011;30:1195-1208.
    147.Brian J. Altman, Jessica A. Wofford et al. Autophagy provides nutrients but can lead tochop-dependent induction of Bim to sensitize growth factor–deprived cells toapoptosis. Mol. Biol. Cell2009;20:1180-1191.
    148.Lum, J.J., Berardinis, R.J., and Thompson, C.B. Autophagy in metazoans: cell survivalin the land of plenty. Nat. Rev. Mol. Cell Biol.2005;6:439–448.
    149.Boya, P., Gonzalez-Polo, R.-A., Casares, N., Perfettini, J.-L., Dessen, P., Larochette,N., Metivier, D., Meley, D., Souquere, S., Yoshimori, T., et al. Inhibition ofmacroautophagy triggers apoptosis. Mol. Cell. Biol.2005;25:1025–1040.
    150.Kuma, A., Hatano, M., Matsui, M., Yamamoto, A., Nakaya, H., Yoshimori, T., Ohsumi,Y., Tokuhisa, T., and Mizushima, N. The role of autophagy during the early neonatalstarvation period. Nature2004;432:1032–1036.
    151.Levine, B., and Klionsky, D.J. Development by self-digestion: Molecular mechanismsand biological functions of autophagy. Dev. Cell2004;6:463–477.
    152.Liu, Y., Schiff, M., Talloczy, Z., Levine, B., and Dinesh-Kumar, S.P. Autophagy genesare essential for limiting the spread of programmed cell death associated with plantinnate immunity. Cell2005;120:567–577.
    153.Schin, K. S.&Clever, U. Lysosomal and free acid phosphatase in salivary glands ofChironomus tentans. Science1965;150:1053–1055.
    154.Nopanitaya, W.&Misch, D. W. Developmental cytology of the midgut in the flesh-fly,Sarcophaga bullata (Parker). Tissue Cell1974;6:487–502.
    155.Yu, L., Alva, A., Su, H., Freundt, P.D.E., Welsh, S., Baehrecke, E.H., and Lenardo, M.J.Regulation of an ATG7-beclin1program of autophagic cell death by caspase8.Science2004;304:1500–1502.
    156.Shimizu, S., Kanaseki, T., Mizushima, N., Mizuta, T., Arakawa-Kobayashi, S.,Thompson, C.B., and Tsujimoto, Y. Role of Bcl-2family proteins in a non-apoptoticprogrammed cell death depending on autophagy genes. Nat. Cell Biol.2004;6:1221–1228.
    157.Wang Y., et al. An autophagic mechanism is involved in apoptotic death of rat striatalneurons induced by the non-N-methyl-D-aspartate receptor agonist kainic acid.Autophagy2008;4:214-226.
    158.Wen Y.D., et al. Neuronal injury in rat model of permanent focal cerebral ischemia isassociated with activation of autophagic and lysosomal pathways. Autophagy2008;4:762-769.
    159.Zhang, X.D., Wang, Y., Wu, J.C. Lin, F., Han, R., Han, F., Fukunaga, K., Qin, Z.H.Down-regulation of Bcl-2enhances autophagy activation and cell death induced bymitochondrial dysfunction in rat striatum. J. Neurosci. Res.2009;87:3600-3610.
    160.Liang, X.H., et al. Protection against fatal Sindbis virus encephalitis by Beclin1, anovel Bcl-2-interacting protein. J. Virol.1998;72:8586-8596.
    161.Wei, Y.J., et al. JNK1-mediated phosphorylation of Bcl-2regulates starvation-inducedautophagy. Mol. Cell2008;30:678-688.
    162.Lam, M., Dubyak, G., Chen, L., Nunez, G., Miesfeld, R.L., and Distel horst, C.W.Evidence that BCL-2represses apoptosis by regulating endoplasmicreticulum-associated Ca2+fluxes. Proc. Natl. Acad. Sci. USA1994;91:6569–6573.
    163.Bingzhen Lin, Siva Kumar Kolluri, Feng Lin et al. Conversion of Bcl-2from protectorto killer by interaction with nuclear orphan receptor Nur77/TR3. Cell2004;116:527–540.
    164.Peter K. Kim et al. During apoptosis Bcl-2changes membrane topology at both theendoplasmic reticulum and mitochondria. Mol. Cell2004;14:523–529.
    165.Paulina J Dlugosz et al. Bcl-2changes conformation to inhibit Bax oligomerization.EMBO J.2006;25:2287–2296.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700