调控抗病毒天然免疫的miRNA筛选及其作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然免疫系统是宿主抵抗病原微生物的第一道防线,也是获得性免疫的基础。干扰素信号通路作为机体抵抗病毒感染所作出的重要应答机制,一直是病毒学和免疫学领域的研究热点。miRNA作为一种转录后水平的基因调控机制,广泛参与时序发育、神经元发育、细胞凋亡、细胞分化、脂肪代谢、激素分泌等多种生命过程。近年来的研究发现,miRNA在天然免疫系统中也发挥着重要的负反馈调控功能。本研究选择了抗病毒天然免疫信号通路中的几个关键信号分子作为对象,希望通过发掘靶向这些关键基因的miRNA,加深对miRNA参与的负调控机制的认识。为今后miRNA的功能研究和开发miRNA作为疾病诊断和治疗的靶标提供理论依据。具体研究内容包括以下几方面:
     1.筛选poly (d AT:d AT)诱导的差异表达miRNA及其功能研究
     dsRNA/DNA、细菌的内毒素脂多糖和细菌的鞭毛可以被宿主的免疫系统的模式识别受体识别并触发免疫反应。LPS和dsRNA触发的免疫反应所引起的miRNA差异表达及这些miRNA在免疫反应过程中的功能已经被发现和确定。但是,作为病毒在感染侵入宿主细胞复制过程中产生的中间产物,dsDNA刺激诱导的miRNA的差异表达研究尚不清楚。为了筛选dsDNA诱导的显著差异表达的miRNA,本研究选用dsDNA的模拟物poly(dAT:dAT)作为刺激物,通过:miRNA芯片技术,筛选了poly(dAT:dAT)刺激HEK-293细胞后差异表达的miRNA。发现miR-518b,miR-492,miR-181a和miR-331-3p等10条miRNA的表达显著上调;miR-383,miR-618,let-7a等5条miRNA的表达显著下调。利用miRNA特异性Real-Time PCR验证了芯片结果。通过靶基因预测和荧光素酶报告系统验证,发现其中上调表达的miR-181a可能通过靶向DAI基因负性调节干扰素信号通路。2.筛选调控IL-6基因表达的]miRNA及其机制研究
     白细胞介素6(IL-6)是一种重要的炎性细胞因子。细胞在受到致炎性刺激时,IL-6的表达量显著上调,并促进其它炎性细胞因子或者趋化因子的分泌,从而加重炎症反应,加速外源异物的清除。但是IL-6表达的紊乱对机体是有损害的,过量的IL-6会导致持续的炎症,并可能最终导致持续炎症组织发生癌变。因此,维持IL-6正常表达的负调控机制就显得至关重要。据此,本研究利用生物信息学方法,预测可能结合于IL-63’UTR区域的miRNA。利用荧光素酶报告系统,筛选到负调控IL-6表达的miR-365。通过构建IL-63’UTR突变体的报告质粒,确定了miR-365结合于IL-63’UTR的精细位点。利用ELISA方法,证实miR-365可以从蛋白水平对IL-6进行负调控,而且这种负调控是通过抑制IL-6蛋白的翻译而不是影响其mRNA的稳定性来实现的。对miR-365启动子区域的分析,发现NF-KB和Spl两个转录因子协同调控miR-365的转录。利用MAPK/ERK的抑制剂发现MAPK/ERK是miR-365上游重要的信号通路。进-步对miR-365潜在靶基因进行分析,发现miR-365还可能通过间接途径调控IL-6的表达。
     3.筛选靶向TBK-1的miRNA及其机制研究
     TBK-1是Ⅰ型干扰素信号通路中的重要信号分子,主要功能是磷酸化转录因子IRF3和IRF7,促进它们的转定位并最终启始IFN-p的转录。TLR或RIG-I/MDA5依赖的抗病毒信号通路在TBK-1/IRF3节段交汇,充分说明TBK-1激酶在整个抗病毒免疫系统中不可替代的重要性。为了发掘可能通过靶向TBK-1负调控干扰素信号通路的miRNA,本研究通过生物信息学预测miR-155可能靶向TBK-1,利用TBK-1-3’UTR的报告质粒证实了miR-155对TBK-1表达的抑制作用;过表达miR-155显著抑制TBK-1蛋白的表达,而miR-155抑制剂则增强TBK-1蛋白的表达,进一步证实了miR-155对TBK-1表达的负调控作用。利用TBK-13’UTR的突变体报告质粒,确定了miR-155与TBK-13’UTR区域的精确结合位点。在证实miR-155对TBK-1的负调控作用后,进一步利用IRF3、NF-κB和IFN-β的启动子荧光素报告质粒,证实miR-155过表达显著抑制IRF3和NF-κB的活性,并最终抑制IFN-β的转录。对TBK-1的Knockdown和Gain-of function assay的实验结果也证实miR-155负调控干扰素信号通路是通过靶向TBK-1而实现的。为了进一步证实miR-155对干扰素表达的抑制作用,检测了miR-155过表达对VSV和SEV增殖的影响,发现miR-155可通过抑制1poly(dAT:dAT)诱导的干扰素表达而促进VSV和SEV在HEK-293中的增殖。研究还发现poly(dAT:dAT)刺激显著诱导miR-155的表达,且NF-KB和MAPK是调控miR-155表达的重要通路。这些结果表明,可诱导的miR-155的表达在Ⅰ型干扰素信号通路中扮演着重要的负调控机制。4.筛选靶向JAK-1的miRNA及其机制研究
     JAK-STAT信号通路是连接干扰素和下游干扰素刺激基因的重要信号通路。JAK-1是Janus非受体型络氨酸激酶家族的成员之一。干扰素与细胞表面受体结合后,JAK-1磷酸化STAT家族中的两个成员STAT-1和STAT-2,促使其发生向细胞核的转定位并诱导干扰素刺激基因的转录激活。除干扰素之外,JAK-1在IL-2,IL-4,IL-6,IL-10,IL-13等细胞因子的信号转导通路中也发挥重要功能。到目前为止,还没有关于miRNA调控JAK-1表达的报道。为了发掘靶向JAK-1的miRNA,本研究预测并证实miR-23a通过直接与3’UTR结合的方式负调控JAK-1基因的表达。通过结合位点的突变分析,确定了miR-23a和JAK-1相互作用的精细位点。同时,发现miR-23a过表达显著抑制JAK-1的蛋白表达,且主要是通过降低mRNA的稳定性来实现的。过表达miR-23a对ISRE的活性及下游ISG的表达也有明显的抑制效应。用poly(dAT:dAT)刺激细胞,发现miR-23a的表达在刺激晚期显著上调,且NF-κB和MAPK/JNK信号通路可能是miR-23a上游的重要信号通路。这些结果表明,miR-23a可能在JAK-STAT信号通路中扮演着负反馈调控机制,以确保整条通路处于适度激活的状态。
The innate immunity is the first line to defense against invading pathogens and is also essential for the subsequent adaptive immune response. The interferon signaling represents the key aspect of the anti-viral immunity. Thus, the studies focused on the type I interferon have been the hot issues in both virology and immunology fields. As one of the post-transcriptional gene regulatory mechanism, miRNA was involved in a wide range of life processes which include development, neuron development, apoptosis, proliferation, fat metabolism and hormone secretion. In the recent years, growing evidences have demonstrated that miRNA plays a negative regulatory role in the innate immunity. The present study tries to discover novel miRNAs who regulate the expression of several key signal molecules in the anti-viral signaling. With this effort, we try to deepen the understanding of the miRNA based negative regulatory mechanism. This study will provide theoretical basis for the future miRNA study and the development of miRNA as a potential target for disease diagnosis and therapy. The detailed research includes the following aspects:
     1. Screening for dsDNA-induced differently expressed miRNA and function study.
     dsRNA, dsDNA, LPS and flagellin were recognized by the cell surface PRRs and trigger the cellular innate immunity. LPS and dsRNA induced differential miRNA expression have been well characterized. As the bypass products of viral replication in the host cells, dsDNA induced differently expressed miRNA remains largely unknown. Thus, we use miRNA microarray to screen for the differently expressed miRNAs in response to the dsDNA mimic poly(dAT:dAT) stimulation. We found ten up-rugulated miRNAs which include miR-518b, miR-492, miR-181a and miR-331-3p; five down-regulated miRNA which include miR-383, miR-618and let-7a. We utilized the miRNA specific Real-Time PCR to validate the result. Furthermore, we predicted miRNAs'targets and made validation by using luciferase repoter system. We found that miR-181a negatively regulate the interferon signaling by targeting receptor DAI.
     2. Screening for the miRNA who regulate IL-6expression and mechanism study
     Interleukin-6(IL-6) is a pleiotropic cytokine. Upon inflammatory stimulation, the IL-6expression was highly induced and promotes other pro-inflammatory cytokines and chemokines secretion. The induced IL-6expression will intensify the inflammation to eliminate the pathogens rapidly. However, the uncontrolled IL-6expression is harmful to body health. The sustained inflammation plays an important role in the carcinogenesis. Thus, the negative regulatory mechanism to make sure the appropriate IL-6expression is indispensable to the body health. We used a bioinformatics technique to predict miRNA targeting IL-6. We found miR-365negatively regulate IL-6expression by using luciferase gene reporter system. Mutagenesis analysis revealed the precise binding site for miR-365in TBK-1's3'UTR region. ELISA assay demonstrated that miR-365negatively regulate IL-6protein expression. Real-Time PCR showed that miR-365repress the expresson of IL-6without decreasing its mRNA stability. Analysis of the miR-365promoter showed that two transcription factors, Spl and NF-κB, cooperatively regulate the transcription of miR-365. We also demonstrate that the MAPK/ERK pathway contributes to the regulation of miR-365by using specific inhibitor. Furthermore, after analysis of potential targets of miR-365, we found that it is possible that miR-365can also regulate IL-6exprssion indirectly.
     3. Screening for the miRNA who regulate TBK-1expression and mechanism study
     TBK-1is the key signal molecule in the type I interferon signaling pathway. Its primary function is the phosphorylation of transcription factor IRF3and IRF7which lead their translocation into nucleus and the initiation of IFN-β transcription. TLR-and RIG-I-dependent anti-viral signaling converges at TBK-1-IRF3model emphasizes TBK-1's essential role in the anti-viral immunity. In order to discover potential miRNA which negatively regulate interferon signaling by targeting TBK-1, we predicted miRNAs which target TBK-1mRNA. We found miR-155out of the candidates inhibited reporter gene's expression. Ectopic expression of miR-155significantly repressed TBK-1protein expression. In contrast, miR-155inhibitor increased TBK-1protein expression. Both of the results demonstrated that miR-155negatively regulate TBK-1expression. Mutagenesis analysis revealed the precise binding site for miR-155in the TBK-1's3'UTR region. Furthermore, ectopic expression of miR-155decreased IRF3and NF-κB activity, which in turn blocked IFN-β transcription. TBK-1knockdown and gain-of function assay demonstrated that miR-155's inhibitory effect is achieved through blocking TBK-1expression.In order to evaluate the effect of miR-155on poly(dAT:dAT) induced interferon expression, we determined the miR-155's effect on VSV or SEV replication. We found that ectopic expression of miR-155promoted VSV and SEV replication in HEK-293by blocking interferon secretion. We also found that miR-155was induced by inflammatory stimulation. NF-κB and MAPK signaling are highly involved in the transcriptional regulation of miR-155. Our data showed that the inducible expression of miR-155may represent an important negative feedback regulation of interferon signaling pathway.
     4. Screening for the miRNA who regulate JAK-1expression and mechanism study
     JAK-STAT is one of the most important signaling which links interferon and interferon stimulating genes. JAK-1is a member of Janus non-receptor tyrosine kinas family. When interferons binding to its receptor in the cell surface. JAK-1phosphorylates STAT-1and STAT-2, two members of STAT family. Subsequently, they translocate from cytoplasm into nucleus and initiate the transcription of interferon stimulation genes. JAK-1also plays an important role in the cytokine signaling which include IL-2, IL-4, IL-6, IL-10and IL-13. Untill now, no miRNA was indentified as the regulator of JAK-1. In order to discover miRNA which target JAK-1, we screened and identified miR-23a as a novel regulator of JAK-1gene by binding to its3'UTR. Site-direct mutagenesis assay identified the precise binding region for miR-23a. Western-blot assay indicated that miR-23a could significantly repress the JAK-1protein expression and this is mainly through degrading JAK-1mRNA. Luciferase reporter gene based assay and Real-Time PCR result showed that miR-23a could inhibit interferon induced ISRE activity and interferon-stimulating gene expression. Our data also showed that miR-23a could be induced in the late phase after the immuno-stimulation. Pharmacological inhibitor assay showed that NF-κB and MAPK/JNK is involved in the transcriptional regulation of miR-23a. Our study indicated that the inducible miR-23a in response to interferon provides a negative feedback mechanism to keep the proper activity of JAK-STAT signaling.
引文
1.马中良,杨怀义,田波.真核生物中的微小RNA及其功能研究进展.遗传学报,2003,30(7):693-696
    2.王芳,余佳,张俊武.小RNA(MicroRNA)研究方法.中国生物化学与分子生物学报,2006,22(10):772-779
    3.殷震,刘景华主编.动物病毒学(第二版).科学出版社,1997
    4. Ablasser, A., F. Bauernfeind, G. Hartmann, et al. RIG-Ⅰ-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase Ⅲ-transcribed RNA intermediate. Nat Immunol,2009,10(10):1065-72
    5. Akira, S. Pathogen recognition by innate immunity and its signaling. Proc Jpn Acad Ser B Phys Biol Sci,2009,85(4):143-56
    6. Akira, S., T. Hirano, T. Taga, et al. Biology of multifunctional cytokines:IL 6 and related molecules (IL 1 and TNF). FASEB J,1990,4(11):2860-7
    7. Akira, S. and K. Takeda. Toll-like receptor signalling. Nat Rev Immunol,2004,4(7): 499-511
    8. Alsaleh, G., G. Suffert, N. Semaan, et al. Bruton's tyrosine kinase is involved in miR-346-related regulation of IL-18 release by lipopolysaccharide-activated rheumatoid fibroblast-like synoviocytes. J Immunol,2009,182(8):5088-97
    9. Alvarez-Garcia, I. and E. A. Miska. MicroRNA functions in animal development and human disease. Development,2005,132(21):4653-62
    10. Ambros, V. The functions of animal microRNAs. Nature,2004,431(7006):350-5
    11. An, H., W. Zhao, J. Hou, et al. SHP-2 phosphatase negatively regulates the TRIF adaptor protein-dependent type Ⅰ interferon and proinflammatory cytokine production. Immunity,2006,25(6):919-28
    12. Andrejeva, J., K. S. Childs, D. F. Young, et al. The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-beta promoter. Proc Natl Acad Sci U S A,2004,101(49):17264-9
    13. Asagiri, M., T. Hirai, T. Kunigami, et al. Cathepsin K-dependent toll-like receptor 9 signaling revealed in experimental arthritis. Science,2008,319(5863):624-7
    14. Asangani, I. A., S. A. Rasheed, D. A. Nikolova, et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene,2008,27(15):2128-36
    15. Bach, E. A., M. Aguet and R. D. Schreiber. The IFN gamma receptor:a paradigm for cytokine receptor signaling. Annu Rev Immunol,1997,15:563-91
    16. Balachandran, S., C. N. Kim, W. C. Yeh, et al. Activation of the dsRNA-dependent protein kinase, PKR, induces apoptosis through FADD-mediated death signaling. EMBO J,1998,17(23):6888-902
    17. Barton, G. M., J. C. Kagan and R. Medzhitov. Intracellular localization of Toll-like receptor 9 prevents recognition of self DNA but facilitates access to viral DNA. Nat Immunol,2006,7(1):49-56
    18. Berger, A., S. R. A, I. Schuphan, et al. Metabolism of 4-n-nonylphenol by non-modified and CYP1A1-and CYP1A2-transgenic cell cultures of tobacco. Z Naturforsch C,2005,60(11-12):883-92
    19. Bernstein, E., S. Y. Kim, M. A. Carmell, et al. Dicer is essential for mouse development. Nat Genet,2003,35(3):215-7
    20. Bhaumik, D., G. K. Scott, S. Schokrpur, et al. MicroRNAs miR-146a/b negatively modulate the senescence-associated inflammatory mediators IL-6 and IL-8. Aging (Albany NY),2009,1(4):402-11
    21. Bhoj, V. G, Q. Sun, E. J. Bhoj, et al. MAVS and MyD88 are essential for innate immunity but not cytotoxic T lymphocyte response against respiratory syncytial virus. Proc Natl Acad Sci U S A,2008,105(37):14046-51
    22. Biron, C. A. Interferons alpha and beta as immune regulators--a new look. Immunity, 2001,14(6):661-4
    23. Biron, K. K. and G. B. Elion. Effect of acyclovir combined with other antiherpetic agents on varicella zoster virus in vitro. Am J Med,1982,73(1 A):54-7
    24. Biron, P., E. Koiw, W. Nowaczynski, et al. The Effects of Intravenous Infusions of Valine-5 Angiotensin Ii and Other Pressor Agents on Urinary Electrolytes and Corticosteroids, Including Aldosterone. J Clin Invest,1961,40(2):338-47
    25. Blatt, L. M., J. M. Davis, S. B. Klein, et al. The biologic activity and molecular characterization of a novel synthetic interferon-alpha species, consensus interferon. J Interferon Cytokine Res,1996,16(7):489-99
    26. Boehm, U., T. Klamp, M. Groot, et al. Cellular responses to interferon-gamma. Annu Rev Immunol,1997,15:749-95
    27. Bryant, C. and K. A. Fitzgerald. Molecular mechanisms involved in inflammasome activation. Trends Cell Biol,2009,19(9):455-64
    28. Burckstummer, T., C. Baumann, S. Bluml, et al. An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat Immunol,2009,10(3):266-72
    29. Calame, K. MicroRNA-155 function in B Cells. Immunity,2007,27(6):825-7
    30. Calin, G. A. and C. M. Croce. MicroRNA signatures in human cancers. Nat Rev Cancer,2006,6(11):857-66
    31. Cantin, E., B. Tanamachi and H. Openshaw. Role for gamma interferon in control of herpes simplex virus type 1 reactivation. J Virol,1999,73(4):3418-23
    32. Cantin, E., B. Tanamachi, H. Openshaw, et al. Gamma interferon (IFN-gamma) receptor null-mutant mice are more susceptible to herpes simplex virus type 1 infection than IFN-gamma ligand null-mutant mice. J Virol,1999,73(6):5196-200
    33. Care, A., D. Catalucci, F. Felicetti, et al. MicroRNA-133 controls cardiac hypertrophy. Nat Med,2007,13(5):613-8
    34. Carty, M., R. Goodbody, M. Schroder, et al. The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling. Nat Immunol, 2006,7(10):1074-81
    35. Ceppi, M., P. M. Pereira, I. Dunand-Sauthier, et al. MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells. Proc Natl Acad Sci U S A,2009,106(8):2735-40
    36. Chakraborty, N. G., L. Li, J. R. Sporn, et al. Emergence of regulatory CD4+T cell response to repetitive stimulation with antigen-presenting cells in vitro:implications in designing antigen-presenting cell-based tumor vaccines. J Immunol,1999,162(9): 5576-83
    37. Cheng, Y., R. Ji, J. Yue, et al. MicroRNAs are aberrantly expressed in hypertrophic heart:do they play a role in cardiac hypertrophy? Am J Pathol,2007,170(6):1831-40
    38. Chiu, Y. H., J. B. Macmillan and Z. J. Chen. RNA polymerase Ⅲ detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell,2009,138(3): 576-91
    39. Choi, M. K., Z. Wang, T. Ban, et al. A selective contribution of the RIG-I-like receptor pathway to type I interferon responses activated by cytosolic DNA. Proc Natl Acad Sci U S A,2009,106(42):17870-5
    40. Cimmino, A., G. A. Calin, M. Fabbri, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A,2005,102(39):13944-9
    41. Coban, C., Y. Igari, M. Yagi, et al. Immunogenicity of whole-parasite vaccines against Plasmodium falciparum involves malarial hemozoin and host TLR9. Cell Host Microbe,7(1):50-61
    42. Cobb, B. S., A. Hertweck, J. Smith, et al. A role for Dicer in immune regulation. J Exp Med,2006,203(11):2519-27
    43. Croce, C. M. and G. A. Calin. miRNAs, cancer, and stem cell division. Cell,2005, 122(1):6-7
    44. Cullen, B. R. Viruses and microRNAs. Nat Genet,2006,38 Suppl:S25-30
    45. Cusson-Hermance, N., S. Khurana, T. H. Lee, et al. Ripl mediates the Trif-dependent toll-like receptor 3-and 4-induced NF-{kappa}B activation but does not contribute to interferon regulatory factor 3 activation. J Biol Chem,2005,280(44):36560-6
    46. Czech, M. P. MicroRNAs as therapeutic targets. N Engl J Med,2006,354(11): 1194-5
    47. Deng, L., C. Wang, E. Spencer, et al. Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell,2000,103(2):351-61
    48. Deng, W., M. Shi, M. Han, et al. Negative regulation of virus-triggered IFN-beta signaling pathway by alternative splicing of TBK-1. J Biol Chem,2008,283(51): 35590-7
    49. Deonarain, R., A. Alcami, M. Alexiou, et al. Impaired antiviral response and alpha/beta interferon induction in mice lacking beta interferon. J Virol,2000,74(7): 3404-9
    50. Dostert, C., G. Guarda, J. F. Romero, et al. Malarial hemozoin is a Nalp3 inflammasome activating danger signal. PLoS One,2009,4(8):e6510
    51. Droz, J. P. and P. Biron. High-dose chemotherapy in tumours other than lymphomas and breast cancer. Eur J Cancer,1995,31A(5):811-2
    52. Durbin, J. E., R. Hackenmiller, M. C. Simon, et al. Targeted disruption of the mouse Statl gene results in compromised innate immunity to viral disease. Cell,1996,84(3): 443-50
    53. Eisenberg, I., A. Eran, I. Nishino, et al. Distinctive patterns of microRNA expression in primary muscular disorders. Proc Natl Acad Sci U S A,2007,104(43):17016-21
    54. Esau, C. C. and B. P. Monia. Therapeutic potential for microRNAs. Adv Drug Deliv Rev,2007,59(2-3):101-14
    55. Faraoni, I., F. R. Antonetti, J. Cardone, et al. miR-155 gene:a typical multifunctional microRNA. Biochim Biophys Acta,2009,1792(6):497-505
    56. Fernandes-Alnemri, T., J. W. Yu, P. Datta, et al. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature,2009,458(7237):509-13
    57. Fitzgerald, K. A., S. M. Mc Whirter, K. L. Faia, et al. IKKepsilon and TBK-1 are essential components of the IRF3 signaling pathway. Nat Immunol,2003,4(5):491-6
    58. Frankel, L. B., N. R. Christoffersen, A. Jacobsen, et al. Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem,2008,283(2):1026-33
    59. Friedman, C. S., M. A. O'Donnell, D. Legarda-Addison, et al. The tumour suppressor CYLD is a negative regulator of RIG-I-mediated antiviral response. EMBO Rep, 2008,9(9):930-6
    60. Fujii, Y., T. Shimizu, M. Kusumoto, et al. Crystal structure of an IRF-DNA complex reveals novel DNA recognition and cooperative binding to a tandem repeat of core sequences. EMBO J,1999,18(18):5028-41
    61. Fukui, R., S. Saitoh, F. Matsumoto, et al. Unc93B1 biases Toll-like receptor responses to nucleic acid in dendritic cells toward DNA-but against RNA-sensing. J Exp Med,2009,206(6):1339-50
    62. Gabhann, J. N., R. Higgs, K. Brennan, et al. Absence of SHIP-1 results in constitutive phosphorylation of tank-binding kinase 1 and enhanced TLR3-dependent IFN-beta production. J Immunol,184(5):2314-20
    63. Geijtenbeek, T. B. and S. I. Gringhuis. Signalling through C-type lectin receptors: shaping immune responses. Nat Rev Immunol,2009,9(7):465-79
    64. Ghoreschi, K., M. I. Jesson, X. Li, et al. Modulation of innate and adaptive immune responses by tofacitinib (CP-690,550). J Immunol,186(7):4234-43
    65. Gohda, J., T. Matsumura and J. Inoue. Cutting edge:TNFR-associated factor (TRAF) 6 is essential for MyD 88-dependent pathway but not toll/IL-1 receptor domain-containing adaptor-inducing IFN-beta (TRIF)-dependent pathway in TLR signaling. J Immunol,2004,173(5):2913-7
    66. Griffith, J. W., T. Sun, M. T. McIntosh, et al. Pure Hemozoin is inflammatory in vivo and activates the NALP3 inflammasome via release of uric acid. J Immunol,2009, 183(8):5208-20
    67. Gross, O., H. Poeck, M. Bscheider, et al. Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature,2009,459(7245):433-6
    68. Haas, T., J. Metzger, F. Schmitz, et al. The DNA sugar backbone 2' deoxyribose determines toll-like receptor 9 activation. Immunity,2008,28(3):315-23
    69. Hacker, H., V. Redecke, B. Blagoev, et al. Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature,2006,439(7073): 204-7
    70. Hansen, T., L. Olsen, M. Lindow, et al. Brain expressed microRNAs implicated in schizophrenia etiology. PLoS One,2007,2(9):e873
    71. Hao, S. and D. Baltimore. The stability of mRNA influences the temporal order of the induction of genes encoding inflammatory molecules. Nat Immunol,2009,10(3): 281-8
    72. He, L. and G. J. Hannon. MicroRNAs:small RNAs with a big role in gene regulation. Nat Rev Genet,2004,5(7):522-31
    73. He, M., Z. Xu, T. Ding, et al. MicroRNA-155 regulates inflammatory cytokine production in tumor-associated macrophages via targeting C/EBPbeta. Cell Mol Immunol,2009,6(5):343-52
    74. Hise, A. G., J. Tomalka, S. Ganesan, et al. An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans. Cell Host Microbe,2009,5(5):487-97
    75. Honda, K., Y. Ohba, H. Yanai, et al. Spatiotemporal regulation of MyD88-IRF-7 signalling for robust type-Ⅰ interferon induction. Nature,2005,434(7036):1035-40
    76. Honda, K., H. Yanai, T. Mizutani, et al. Role of a transductional-transcriptional processor complex involving MyD88 and IRF-7 in Toll-like receptor signaling. Proc Natl Acad Sci U S A,2004,101(43):15416-21
    77. Honda, K., H. Yanai, A. Takaoka, et al. Regulation of the type Ⅰ IFN induction:a current view. Int Immunol,2005,17(11):1367-78
    78. Hornung, V., A. Ablasser, M. Charrel-Dennis, et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature,2009, 458(7237):514-8
    79. Horvath, C. M. STAT proteins and transcriptional responses to extracellular signals. Trends Biochem Sci,2000,25(10):496-502
    80. Horvath, C. M., G. R. Stark, I. M. Kerr, et al. Interactions between STAT and non-STAT proteins in the interferon-stimulated gene factor 3 transcription complex. Mol Cell Biol,1996,16(12):6957-64
    81. Huang, J., T. Liu, L. G. Xu, et al. SIKE is an IKK epsilon/TBK-1-associated suppressor of TLR3- and virus-triggered IRF-3 activation pathways. EMBO J,2005, 24(23):4018-28
    82. Huang, R. S., G. Q. Hu, B. Lin, et al. MicroRNA-155 silencing enhances inflammatory response and lipid uptake in oxidized low-density lipoprotein-stimulated human THP-1 macrophages. J Investig Med,58(8):961-7
    83. Huppi, K., N. Volfovsky, M. Mackiewicz, et al. MicroRNAs and genomic instability. Semin Cancer Biol,2007,17(1):65-73
    84. Ikeda, S., S. W. Kong, J. Lu, et al. Altered microRNA expression in human heart disease. Physiol Genomics,2007,31(3):367-73
    85. Iliopoulos, D., H. A. Hirsch and K. Struhl. An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell,2009,139(4):693-706
    86. Imaizumi, T., H. Tanaka, A. Tajima, et al. IFN-gamma and TNF-alpha synergistically induce microRNA-155 which regulates TAB2/IP-10 expression in human mesangial cells. Am J Nephrol,32(5):462-8
    87. Ishii, K. J., T. Kawagoe, S. Koyama, et al. TANK-binding kinase-1 delineates innate and adaptive immune responses to DNA vaccines. Nature,2008,451(7179):725-9
    88. Ishikawa, H. and G. N. Barber. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature,2008,455(7213):674-8
    89. Ishikawa, H., Z. Ma and G. N. Barber. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature,2009,461(7265):788-92
    90. Jin, M. S., S. E. Kim, J. Y. Heo, et al. Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell,2007,130(6): 1071-82
    91. John, J., R. McKendry, S. Pellegrini, et al. Isolation and characterization of a new mutant human cell line unresponsive to alpha and beta interferons. Mol Cell Biol, 1991,11(8):4189-95
    92. Joly, S., N. Ma, J. J. Sadler, et al. Cutting edge:Candida albicans hyphae formation triggers activation of the Nlrp3 inflammasome. J Immunol,2009,183(6):3578-81
    93. Jones, M. R., L. J. Quinton, M. T. Blahna, et al. Zcchc11-dependent uridylation of microRNA directs cytokine expression. Nat Cell Biol,2009,11(9):1157-63
    94. Jopling, C. L., M. Yi, A. M. Lancaster, et al. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science,2005,309(5740):1577-81
    95. Jung, A., H. Kato, Y. Kumagai, et al. Lymphocytoid choriomeningitis virus activates plasmacytoid dendritic cells and induces a cytotoxic T-cell response via MyD88. J Virol,2008,82(1):196-206
    96. Kagan, J. C., T. Su, T. Horng, et al. TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta. Nat Immunol,2008,9(4):361-8
    97. Kang, J. Y, X. Nan, M. S. Jin, et al. Recognition of lipopeptide patterns by Toll-like receptor 2-Toll-like receptor 6 heterodimer. Immunity,2009,31(6):873-84
    98. Kapsimali, M., W. P. Kloosterman, E. de Bruijn, et al. MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system. Genome Biol,2007,8(8):R173
    99. Kato, H., S. Sato, M. Yoneyama, et al. Cell type-specific involvement of RIG-I in antiviral response. Immunity,2005,23(1):19-28
    100.Kato, H., O. Takeuchi, E. Mikamo-Satoh, et al. Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J Exp Med,2008,205(7):1601-10
    101.Kawai, T. and S. Akira. Innate immune recognition of viral infection. Nat Immunol, 2006,7(2):131-7
    102.Kawai, T., S. Sato, K. J. Ishii, et al. Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat Immunol,2004,5(10):1061-8
    103.Kawai, T., K. Takahashi, S. Sato, et al. IPS-1, an adaptor triggering RIG-I-and Mda5-mediated type I interferon induction. Nat Immunol,2005,6(10):981-8
    104.Ke, X. S., C. M. Liu, D. P. Liu, et al. MicroRNAs:key participants in gene regulatory networks. Curr Opin Chem Biol,2003,7(4):516-23
    105.Kearney, J. F., J. Bartels, A. M. Hamilton, et al. Development and function of the early B cell repertoire. Int Rev Immunol,1992,8(2-3):247-57
    106.Kim, H. M., B. S. Park, J. I. Kim, et al. Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist Eritoran. Cell,2007,130(5):906-17
    107.Kim, Y. M., M. M. Brinkmann, M. E. Paquet, et al. UNC93B1 delivers nucleotide-sensing toll-like receptors to endolysosomes. Nature,2008,452(7184): 234-8
    108.Kimura, T, Y. Kadokawa, H. Harada, et al. Essential and non-redundant roles of p48 (ISGF3 gamma) and IRF-1 in both type I and type II interferon responses, as revealed by gene targeting studies. Genes Cells,1996,1(1):115-24
    109.Kishore, N., Q. K. Huynh, S. Mathialagan, et al. IKK-i and TBK-1 are enzymatically distinct from the homologous enzyme IKK-2:comparative analysis of recombinant human IKK-i, TBK-1, and IKK-2. J Biol Chem,2002,277(16):13840-7
    110.Kloosterman, W. P., A. K. Lagendijk, R. F. Ketting, et al. Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development. PLoS Biol,2007,5(8):e203
    111.Kloosterman, W. P. and R. H. Plasterk. The diverse functions of microRNAs in animal development and disease. Dev Cell,2006,11(4):441-50
    112.Kloosterman, W. P., E. Wienholds, E. de Bruijn, et al. In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes. Nat Methods,2006, 3(1):27-9
    113.Kou, X., S. Qi, W. Dai, et al. Arctigenin inhibits lipopolysaccharide-induced iNOS expression in RAW264.7 cells through suppressing JAK-STAT signal pathway. Int Immunopharmacol,11(8):1095-102
    114.Koyama, S., K. J. Ishii, H. Kumar, et al. Differential role of TLR- and RLR-signaling in the immune responses to influenza A virus infection and vaccination. J Immunol, 2007,179(7):4711-20
    115.Krutzfeldt, J., N. Rajewsky, R. Braich, et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature,2005,438(7068):685-9
    116.Kuhen, K. L. and C. E. Samuel. Mechanism of interferon action:functional characterization of positive and negative regulatory domains that modulate transcriptional activation of the human RNA-dependent protein kinase Pkr promoter. Virology,1999,254(1):182-95
    117.Kumagai, Y., H. Kumar, S. Koyama, et al. Cutting Edge:TLR-Dependent viral recognition along with type I IFN positive feedback signaling masks the requirement of viral replication for IFN-{alpha} production in plasmacytoid dendritic cells. J Immunol,2009,182(7):3960-4
    118.Kumagai, Y., O. Takeuchi, H. Kato, et al. Alveolar macrophages are the primary interferon-alpha producer in pulmonary infection with RNA viruses. Immunity,2007, 27(2):240-52
    119.Kutty, R. K., C. N. Nagineni, W. Samuel, et al. Inflammatory cytokines regulate microRNA-155 expression in human retinal pigment epithelial cells by activating JAK/STAT pathway. Biochem Biophys Res Commun,402(2):390-5
    120.Lai, E. C. Micro RNAs are complementary to 3'UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet,2002,30(4):363-4
    121.Lai, E. C., P. Tomancak, R. W. Williams, et al. Computational identification of Drosophila microRNA genes. Genome Biol,2003,4(7):R42
    122.Latz, E., A. Schoenemeyer, A. Visintin, et al. TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat Immunol,2004,5(2):190-8
    123.Lau, J. F., J. P. Parisien and C. M. Horvath. Interferon regulatory factor subcellular localization is determined by a bipartite nuclear localization signal in the DNA-binding domain and interaction with cytoplasmic retention factors. Proc Natl Acad Sci U S A,2000,97(13):7278-83
    124.Lee, H. K., J. M. Lund, B. Ramanathan, et al. Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science,2007,315(5817):1398-401
    125.LeibundGut-Landmann, S., O. Gross, M. J. Robinson, et al. Syk-and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat Immunol,2007,8(6):630-8
    126.Leonard, W. J. and J. J. O'Shea. Jaks and STATs:biological implications. Annu Rev Immunol,1998,16:293-322
    127.Leung, S., S. A. Qureshi, I. M. Kerr, et al. Role of STAT2 in the alpha interferon signaling pathway. Mol Cell Biol,1995,15(3):1312-7
    128.Levy, D. E. Physiological significance of STAT proteins:investigations through gene disruption in vivo. Cell Mol Life Sci,1999,55(12):1559-67
    129.Lewis, B. P., I. H. Shih, M. W. Jones-Rhoades, et al. Prediction of mammalian microRNA targets. Cell,2003,115(7):787-98
    130.Lewis, B. P., I. H. Shih, M. W. Jones-Rhoades, et al. Prediction of mammalian microRNA targets. Cell,2003,115(7):787-98
    131.Liang, D., Y. Gao, X. Lin, et al. A human herpesvirus miRNA attenuates interferon signaling and contributes to maintenance of viral latency by targeting IKKepsilon. Cell Res,21(5):793-806
    132.Lim, L. P., M. E. Glasner, S. Yekta, et al. Vertebrate microRNA genes. Science,2003, 299(5612):1540
    133.Lim, L. P., N. C. Lau, P. Garrett-Engele, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature,2005,433(7027): 769-73
    134.Lim, L. P., N. C. Lau, E. G. Weinstein, et al. The microRNAs of Caenorhabditis elegans. Genes Dev,2003,17(8):991-1008
    135.Liu, L., I. Botos, Y. Wang, et al. Structural basis of toll-like receptor 3 signaling with double-stranded RNA. Science,2008,320(5874):379-81
    136.Loffler, D., K. Brocke-Heidrich, G. Pfeifer, et al. Interleukin-6 dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer. Blood,2007,110(4):1330-3
    137.Lossner, C., J. Meier, U. Warnken, et al. Quantitative proteomics identify novel miR-155 target proteins. PLoS One,6(7):e22146
    138. Lu, B., C. Ebensperger, Z. Dembic, et al. Targeted disruption of the interferon-gamma receptor 2 gene results in severe immune defects in mice. Proc Natl Acad Sci U S A, 1998,95(14):8233-8
    139.Lu, J., G. Getz, E. A. Miska, et al. MicroRNA expression profiles classify human cancers. Nature,2005,435(7043):834-8
    140.Ma, F., X. Liu, D. Li, et al. MicroRNA-4661 upregulates IL-10 expression in TLR-triggered macrophages by antagonizing RNA-binding protein tristetraprolin-mediated IL-10 mRNA degradation. J Immunol,184(11):6053-9
    141.Mabbott, D. J., E. Monsalves, B. J. Spiegler, et al. Longitudinal evaluation of neurocognitive function after treatment for central nervous system germ cell tumors in childhood. Cancer,117(23):5402-11
    142.Marie, I., J. E. Durbin and D. E. Levy. Differential viral induction of distinct interferon-alpha genes by positive feedback through interferon regulatory factor-7. EMBO J,1998,17(22):6660-9
    143.Martin, M. M., J. A. Buckenberger, J. Jiang, et al. The human angiotensin Ⅱ type 1 receptor+1166 A/C polymorphism attenuates microrna-155 binding. J Biol Chem, 2007,282(33):24262-9
    144.Martinon, E, A. Mayor and J. Tschopp. The inflammasomes:guardians of the body. Annu Rev Immunol,2009,27:229-65
    145.Martinon, F., V. Petrilli, A. Mayor, et al. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature,2006,440(7081):237-41
    146.Matsumoto, F., S. Saitoh, R. Fukui, et al. Cathepsins are required for Toll-like receptor 9 responses. Biochem Biophys Res Commun,2008,367(3):693-9
    147.McCoy, C. E., S. Carpenter, E. M. Palsson-McDermott, et al. Glucocorticoids inhibit IRF3 phosphorylation in response to Toll-like receptor-3 and -4 by targeting TBK-1 activation. J Biol Chem,2008,283(21):14277-85
    148.McManus, M. T. MicroRNAs and cancer. Semin Cancer Biol,2003,13(4):253-8
    149.Meng, F., R. Henson, H. Wehbe-Janek, et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology, 2007,133(2):647-58
    150.Miska, E. A. How microRNAs control cell division, differentiation and death. Curr Opin Genet Dev,2005,15(5):563-8
    151.Moffett, H. F. and C. D. Novina. A small RNA makes a Bic difference. Genome Biol, 2007,8(7):221
    152.Mogensen, K. E., M. Lewerenz, J. Reboul, et al. The type Ⅰ interferon receptor: structure, function, and evolution of a family business. J Interferon Cytokine Res, 1999,19(10):1069-98
    153.Morgan, M., A. Iaconcig and A. E Muro. CPEB2, CPEB3 and CPEB4 are coordinately regulated by miRNAs recognizing conserved binding sites in paralog positions of their 3'-UTRs. Nucleic Acids Res,38(21):7698-710
    154.Moschos, S. A., A. E. Williams, M. M. Perry, et al. Expression profiling in vivo demonstrates rapid changes in lung microRNA levels following lipopolysaccharide-induced inflammation but not in the anti-inflammatory action of glucocorticoids. BMC Genomics,2007,8:240
    155.Muller, U., U. Steinhoff, L. F. Reis, et al. Functional role of type Ⅰ and type Ⅱ interferons in antiviral defense. Science,1994,264(5167):1918-21
    156.Neely, L. A., S. Patel, J. Garver, et al. A single-molecule method for the quantitation of microRNA gene expression. Nat Methods,2006,3(1):41-6
    157.Neurath, M. F. and S. Finotto. IL-6 signaling in autoimmunity, chronic inflammation and inflammation-associated cancer. Cytokine Growth Factor Rev,22(2):83-9
    158.Ng, G., K. Sharma, S. M. Ward, et al. Receptor-independent, direct membrane binding leads to cell-surface lipid sorting and Syk kinase activation in dendritic cells. Immunity,2008,29(5):807-18
    159.Nguyen, H., J. Hiscott and P. M. Pitha. The growing family of interferon regulatory factors. Cytokine Growth Factor Rev,1997,8(4):293-312
    160.Nowaczynski, W., E. Koiw, P. Biron, et al. Effects of angiotensin infusions on urinary excretion of compound Ⅲ and substances other than aldosterone. Can J Biochem Physiol,1962,40:727-38
    161.0'Connell, R. M., A. A. Chaudhuri, D. S. Rao, et al. Inositol phosphatase SHIP1 is a primary target of miR-155. Proc Natl Acad Sci U S A,2009,106(17):7113-8
    162.O'Connell, R. M., D. Kahn, W. S. Gibson, et al. MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity, 33(4):607-19
    163.O'Connell, R. M., D. S. Rao, A. A. Chaudhuri, et al. Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol,10(2):111-22
    164.O'Connell, R. M., K. D. Taganov, M. P. Boldin, et al. MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci U S A,2007, 104(5):1604-9
    165.Oganesyan, G., S. K. Saha, B. Guo, et al. Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature,2006,439(7073): 208-11
    166.O'Neill, L. A. Immunology. After the toll rush. Science,2004,303(5663):1481-2
    167.O'Neill, L. A. When signaling pathways collide:positive and negative regulation of toll-like receptor signal transduction. Immunity,2008,29(1):12-20
    168.O'Neill, L. A., F. J. Sheedy and C. E. McCoy. MicroRNAs:the fine-tuners of Toll-like receptor signalling. Nat Rev Immunol,11(3):163-75
    169.Otsuka, M., N. Kato, M. Moriyama, et al. Interaction between the HCV NS3 protein and the host TBK-1 protein leads to inhibition of cellular antiviral responses. Hepatology,2005,41(5):1004-12
    170.Pan, Q. W., S. D. Henry, B. J. Scholte, et al. New therapeutic opportunities for hepatitis C based on small RNA. World J Gastroenterol,2007,13(33):4431-6
    171.Parganas, E., D. Wang, D. Stravopodis, et al. Jak2 is essential for signaling through a variety of cytokine receptors. Cell,1998,93(3):385-95
    172.Park, S. J., A. N. Lee and H. S. Youn. TBK-1-targeted suppression of TRIF-dependent signaling pathway of toll-like receptor 3 by auranofin. Arch Pharm Res,33(6):939-45
    173.Pedersen, I. M., G. Cheng, S. Wieland, et al. Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature,2007,449(7164):919-22
    174.Pillai, V., S. B. Ortega, C. K. Wang, et al. Transient regulatory T-cells:a state attained by all activated human T-cells. Clin Immunol,2007,123(1):18-29
    175.Piriyapongsa, J. and I. K. Jordan. A family of human microRNA genes from miniature inverted-repeat transposable elements. PLoS One,2007,2(2):e203
    176.Platanias, L. C, S. Uddin and O. R. Colamonici. Tyrosine phosphorylation of the alpha and beta subunits of the type I interferon receptor. Interferon-beta selectively induces tyrosine phosphorylation of an alpha subunit-associated protein. J Biol Chem, 1994,269(27):17761-4
    177.Prejean, C. and O. R. Colamonici. Role of the cytoplasmic domains of the type I interferon receptor subunits in signaling. Semin Cancer Biol,2000,10(2):83-92
    178.Pribul, P. K., J. Harker, B. Wang, et al. Alveolar macrophages are a major determinant of early responses to viral lung infection but do not influence subsequent disease development. J Virol,2008,82(9):4441-8
    179.Prins, K. C., W. B. Cardenas and C. F. Basler. Ebola virus protein VP35 impairs the function of interferon regulatory factor-activating kinases IKKepsilon and TBK-1. J Virol,2009,83(7):3069-77
    180.Qin, Z., P. Kearney, K. Plaisance, et al. Pivotal advance:Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded microRNA specifically induce IL-6 and IL-10 secretion by macrophages and monocytes. J Leukoc Biol,87(1):25-34
    181.Qureshi, S. A., S. Leung, I. M. Kerr, et al. Function of Stat2 protein in transcriptional activation by alpha interferon. Mol Cell Biol,1996,16(1):288-93
    182.Rambaldi, A., S. Bettoni, V. Rossi, et al. Transcriptional and post-transcriptional regulation of IL-1 beta, IL-6 and TNF-alpha genes in chronic lymphocytic leukaemia. Br J Haematol,1993,83(2):204-11
    183.Reni, M., A. J. Ferreri, N. Guha-Thakurta, et al. Clinical relevance of consolidation radiotherapy and other main therapeutic issues in primary central nervous system lymphomas treated with upfront high-dose methotrexate. Int J Radiat Oncol Biol Phys,2001,51(2):419-25
    184.Rivera, R., M. Hutchens, K. E. Luker, et al. Murine alveolar macrophages limit replication of vaccinia virus. Virology,2007,363(1):48-58
    185.Roberts, R. M., L. Liu, Q. Guo, et al. The evolution of the type I interferons. J Interferon Cytokine Res,1998,18(10):805-16
    186.Roberts, T. L., A. Idris, J. A. Dunn, et al. HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science,2009,323(5917): 1057-60
    187.Robinson, M. J., F. Osorio, M. Rosas, et al. Dectin-2 is a Syk-coupled pattern recognition receptor crucial for Th17 responses to fungal infection. J Exp Med,2009, 206(9):2037-51
    188.Rodig, S. J., M. A. Meraz, J. M. White, et al. Disruption of the Jakl gene demonstrates obligatory and nonredundant roles of the Jaks in cytokine-induced biologic responses. Cell,1998,93(3):373-83
    189.Rodriguez, A., E. Vigorito, S. Clare, et al. Requirement of bic/microRNA-155 for normal immune function. Science,2007,316(5824):608-11
    190.Sabbah, A., T. H. Chang, R. Harnack, et al. Activation of innate immune antiviral responses by Nod2. Nat Immunol,2009,10(10):1073-80
    191.Saitoh, T., N. Fujita, T. Hayashi, et al. Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proc Natl Acad Sci U S A, 2009,106(49):20842-6
    192.Saitoh, T., N. Fujita, M. H. Jang, et al. Loss of the autophagy protein Atgl6L1 enhances endotoxin-induced IL-lbeta production. Nature,2008,456(7219):264-8
    193.Samuel, C. E. Mechanisms of the antiviral action of interferons. Prog Nucleic Acid Res Mol Biol,1988,35:27-72
    194.Samuel, C. E. Antiviral actions of interferon. Interferon-regulated cellular proteins and their surprisingly selective antiviral activities. Virology,1991,183(1):1-11
    195.Samuel, C. E. The eIF-2 alpha protein kinases, regulators of translation in eukaryotes from yeasts to humans. J Biol Chem,1993,268(11):7603-6
    196.Samuel, C. E. Protein-nucleic acid interactions and cellular responses to interferon. Methods,1998,15(3):161-5
    197.Sancho, D., O. P. Joffre, A. M. Keller, et al. Identification of a dendritic cell receptor that couples sensing of necrosis to immunity. Nature,2009,458(7240):899-903
    198.Satoh, T, H. Kato, Y. Kumagai, et al. LGP2 is a positive regulator of RIG-I-and MDA5-mediated antiviral responses. Proc Natl Acad Sci U S A,107(4):1512-7
    199.Schindler, C. Cytokines and JAK-STAT signaling. Exp Cell Res,1999,253(1):7-14
    200.Schindler, C. and J. E. Darnell, Jr. Transcriptional responses to polypeptide ligands: the JAK-STAT pathway. Annu Rev Biochem,1995,64:621-51
    201.Schmechel, S., M. Chute, P. Skinner, et al. Preferential translation of reovirus mRNA by a sigma3-dependent mechanism. Virology,1997,232(1):62-73
    202.Schneider, R. J. and T. Shenk. Impact of virus infection on host cell protein synthesis. Annu Rev Biochem,1987,56:317-32
    203.Selleseth, D. W., C. L. Talarico, T. Miller, et al. Interactions of 1263W94 with other antiviral agents in inhibition of human cytomegalovirus replication. Antimicrob Agents Chemother,2003,47(4):1468-71
    204.Sepulveda, F. E., S. Maschalidi, R. Colisson, et al. Critical role for asparagine endopeptidase in endocytic Toll-like receptor signaling in dendritic cells. Immunity, 2009,31(5):737-48
    205.Seth, R. B., L. Sun, C. K. Ea, et al. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell, 2005,122(5):669-82
    206.Sethupathy, P., C. Borel, M. Gagnebin, et al. Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR13'untranslated region:a mechanism for functional single-nucleotide polymorphisms related to phenotypes. Am J Hum Genet,2007,81(2):405-13
    207.Sharma, A., M. Kumar, J. Aich, et al. Posttranscriptional regulation of interleukin-10 expression by hsa-miR-106a. Proc Natl Acad Sci U S A,2009,106(14):5761-6
    208.Sharma, S., B. R. tenOever, N. Grandvaux, et al. Triggering the interferon antiviral response through an IKK-related pathway. Science,2003,300(5622):1148-51
    209.Shaw, M. H., T. Reimer, C. Sanchez-Valdepenas, et al. T cell-intrinsic role of Nod2 in promoting type 1 immunity to Toxoplasma gondii. Nat Immunol,2009,10(12): 1267-74
    210.Shio, M. T., S. C. Eisenbarth, M. Savaria, et al. Malarial hemozoin activates the NLRP3 inflammasome through Lyn and Syk kinases. PLoS Pathog,2009,5(8): e1000559
    211.Shuai, K. The STAT family of proteins in cytokine signaling. Prog Biophys Mol Biol, 1999,71(3-4):405-22
    212.Siegal, F. P., N. Kadowaki, M. Shodell, et al. The nature of the principal type 1 interferon-producing cells in human blood. Science,1999,284(5421):1835-7
    213.Skalsky, R. L., M. A. Samols, K. B. Plaisance, et al. Kaposi's sarcoma-associated herpesvirus encodes an ortholog of miR-155. J Virol,2007,81(23):12836-45
    214.Sonkoly, E., T. Wei, P. C. Janson, et al. MicroRNAs:novel regulators involved in the pathogenesis of psoriasis? PLoS One,2007,2(7):e610
    215.Stark, G. R., I. M. Kerr, B. R. Williams, et al. How cells respond to interferons. Annu Rev Biochem,1998,67:227-64
    216.Starr, R., T. A. Willson, E. M. Viney, et al. A family of cytokine-inducible inhibitors of signalling. Nature,1997,387(6636):917-21
    217.Strebovsky, J., P. Walker and A. H. Dalpke. Suppressor of cytokine signaling proteins as regulators of innate immune signaling. Front Biosci,17:1627-39
    218.Sullivan, C. S., A. T. Grundhoff, S. Tevethia, et al. SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. Nature, 2005,435(7042):682-6
    219.Tabeta, K., K. Hoebe, E. M. Janssen, et al. The Unc93bl mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3,7 and 9. Nat Immunol,2006,7(2):156-64
    220.Taganov, K. D., M. P. Boldin, K. J. Chang, et al. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A,2006,103(33):12481-6
    221.Takaoka, A., Z. Wang, M. K. Choi, et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature,2007,448(7152):501-5
    222.Takaoka, A., Z. Wang, M. K. Choi, et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature,2007,448(7152):501-5
    223.Tamiya, T., I. Kashiwagi, R. Takahashi, et al. Suppressors of cytokine signaling (SOCS) proteins and JAK/STAT pathways:regulation of T-cell inflammation by SOCS1 and SOCS3. Arterioscler Thromb Vase Biol,31(5):980-5
    224.Tan, Z., G. Randall, J. Fan, et al. Allele-specific targeting of microRNAs to HLA-G and risk of asthma. Am J Hum Genet,2007,81(4):829-34
    225.Tang, B., B. Xiao, Z. Liu, et al. Identification of MyD88 as a novel target of miR-155, involved in negative regulation of Helicobacter pylori-induced inflammation. FEBS Lett,584(8):1481-6
    226.Tang, B., B. Xiao, Z. Liu, et al. Identification of MyD88 as a novel target of miR-155, involved in negative regulation of Helicobacter pylori-induced inflammation. FEBS Lett,584(8):1481-6
    227.Taniguchi, T. and A. Takaoka. A weak signal for strong responses: interferon-alpha/beta revisited. Nat Rev Mol Cell Biol,2001,2(5):378-86
    228.Thai, T. H., D. P. Calado, S. Casola, et al. Regulation of the germinal center response by microRNA-155. Science,2007,316(5824):604-8
    229.Tili, E., J. J. Michaille, A. Cimino, et al. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol,2007,179(8):5082-9
    230.Uematsu, S., S. Sato, M. Yamamoto, et al. Interleukin-1 receptor-associated kinase-1 plays an essential role for Toll-like receptor (TLR)7-and TLR9-mediated interferon-{alpha} induction. J Exp Med,2005,201(6):915-23
    231.Unterstab, G, S. Ludwig, A. Anton, et al. Viral targeting of the interferon-{beta}-inducing Traf family member-associated NF-{kappa}B activator (TANK)-binding kinase-1. Proc Natl Acad Sci U S A,2005,102(38):13640-5
    232.van de Veerdonk, F. L., R. J. Marijnissen, B. J. Kullberg, et al. The macrophage mannose receptor induces IL-17 in response to Candida albicans. Cell Host Microbe, 2009,5(4):329-40
    233.Vigorito, E., K. L. Perks, C. Abreu-Goodger, et al. microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity,2007,27(6): 847-59
    234.Volinia, S., G. A. Calin, C. G. Liu, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A,2006,103(7): 2257-61
    235.Wang, C., L. Deng, M. Hong, et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature,2001,412(6844):346-51
    236.Wang, P., J. Hou, L. Lin, et al. Inducible microRNA-155 feedback promotes type I IFN signaling in antiviral innate immunity by targeting suppressor of cytokine signaling 1. J Immunol,185(10):6226-33
    237.Wang, Y., L. Du, X. Li, et al. Functional homogeneity in microRNA target heterogeneity--a new sight into human microRNomics. OMICS,15(1-2):25-35
    238.Weaver, B. K., K. P. Kumar and N. C. Reich. Interferon regulatory factor 3 and CREB-binding protein/p300 are subunits of double-stranded RNA-activated transcription factor DRAF1. Mol Cell Biol,1998,18(3):1359-68
    239.Worm, J., J. Stenvang, A. Petri, et al. Silencing of microRNA-155 in mice during acute inflammatory response leads to derepression of c/ebp Beta and down-regulation of G-CSF. Nucleic Acids Res,2009,37(17):5784-92
    240.Wu, H., J. R. Neilson, P. Kumar, et al. miRNA profiling of naive, effector and memory CD8 T cells. PLoS One,2007,2(10):e1020
    241.Xing, Z., A. Zganiacz, J. Wang, et al. IL-12-independent Thl-type immune responses to respiratory viral infection:requirement of IL-18 for IFN-gamma release in the lung but not for the differentiation of viral-reactive Thl-type lymphocytes. J Immunol, 2000,164(5):2575-84
    242.Xu, L. G., Y. Y Wang, K. J. Han, et al. VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol Cell,2005,19(6):727-40
    243.Yamasaki, S., E. Ishikawa, M. Sakuma, et al. Mincle is an ITAM-coupled activating receptor that senses damaged cells. Nat Immunol,2008,9(10):1179-88
    244.Yanai, H., T. Ban, Z. Wang, et al. HMGB proteins function as universal sentinels for nucleic-acid-mediated innate immune responses. Nature,2009,462(7269):99-103
    245.Yang, K., A. Puel, S. Zhang, et al. Human TLR-7-,-8-, and -9-mediated induction of IFN-alpha/beta and-lambda Is IRAK-4 dependent and redundant for protective immunity to viruses. Immunity,2005,23(5):465-78
    246.Yoneyama, M., M. Kikuchi, K. Matsumoto, et al. Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol,2005,175(5):2851-8
    247.Yoneyama, M., M. Kikuchi, T. Natsukawa, et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol,2004,5(7):730-7
    248.Yoon, W. H., H. Meinhardt and D. J. Montell. miRNA-mediated feedback inhibition of JAK/STAT morphogen signalling establishes a cell fate threshold. Nat Cell Biol, 13(9):1062-9
    249.Zeng, Y., X. Cai and B. R. Cullen. Use of RNA polymerase Ⅱ to transcribe artificial microRNAs. Methods Enzymol,2005,392:371-80
    250.Zhao, Y., Y. Yao, H. Xu, et al. A functional MicroRNA-155 ortholog encoded by the oncogenic Marek's disease virus. J Virol,2009,83(1):489-92
    251.Zhou, H., X. Huang, H. Cui, et al. miR-155 and its star-form partner miR-155* cooperatively regulate type I interferon production by human plasmacytoid dendritic cells. Blood,116(26):5885-94
    252.Zhou, R., A. Tardivel, B. Thorens, et al. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol,11(2):136-40
    253.Zhu, H., J. P. Cong, G. Mamtora, et al. Cellular gene expression altered by human cytomegalovirus:global monitoring with oligonucleotide arrays. Proc Natl Acad Sci USA,1998,95(24):14470-5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700