E3泛素连接酶TRIM4和TRIM21调节细胞抗病毒天然免疫信号转导的机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞抗病毒天然免疫反应是细胞抵御病毒感染的第一道防线。病毒感染细胞以后,细胞内模式识别受体(pattern recognition receptors, PRRs)通过识别病原相关分子模式(pathogen-associated molecular patterns, PAMPs)激活下游信号通路,诱导Ⅰ型干扰素和炎症细胞因子的表达,从而启动整个天然免疫应答。
     病毒在感染与复制的过程中,病毒的许多保守组分,比如病毒的dsRNA,会被细胞的PRRs如RIG-Ⅰ样受体(RIG-I like receptors, RLRs)识别。RLRs在识别病毒dsRNA以后,招募其下游接头蛋白VISA。 VISA—方面通过与TRAF3, MITA(?)(?)TBK1结合形成复合物,从而激活转录因子IRF3;另一方面,VISA通过对TRAF2/6的招募驱动IKK复合物激活另一个转录因子NF-κB。活化后的IRF3和NF-κB进入细胞核,共同作用启动Ⅰ型干扰素的表达。
     蛋白修饰在机体调控细胞抗病毒天然免疫反应过程中起着十分重要的作用,泛素化与去泛素化修饰是多种蛋白修饰中较为重要的调控方式。为了寻找新的参与调控细胞抗病毒天然免疫反应的蛋白,我们通过报告基因实验筛选了352个泛素相关单克隆文库,我们发现,E3泛素连接酶TRIM4在过量表达的情况下能有效的激活NF-κB、ISRE和IFNβ启动子,并在仙台病毒刺激下协同仙台病毒诱导Ⅰ型干扰素的表达。通过shRNA干扰技术下调内源性的TRIM4表达能抑制病毒感染诱导的Ⅰ型干扰素产生。在免疫共沉淀的实验中,TRIM4(?)能够与RIG-Ⅰ病毒感染依赖性的相互作用。进一步的研究表明,TRIM4能够促进RIG-Ⅰ K63链接的泛素化,从而促进RIG-Ⅰ介导的Ⅰ型干扰素的产生。从我们的研究中产生了一些新的问题,例如TRIM25是一个能够介导RIG-I K63链接泛素化的E3泛素连接酶,那么TRMI4是否能够与TRIM25相关联而发挥其作用呢。此外,我们还将构建TRIM4基因敲除小鼠来验证我们的结论。
     另一个TRIM蛋白家族成员TRIM21被报道在IRF3介导的信号通路中发挥着重要作用。然而,两个独立的研究组却得到了完全相反的结论。Yang研究组发现TRIM21(?)能通过与Pinl的相互作用增力(?)IRF3的稳定性,从而增加其对Ⅰ型干扰素的诱导。而在Higgs研究组研究中,TRIM21通过驱动IRF3的泛素化和降解来抑制Ⅰ型干扰素的产生。因此,我们构建了TRIM21基因敲除小鼠,希望能更直接的揭示TRIM21在抗病毒信号通路中的作用。我们的研究发现,TRIM21缺陷小鼠胚胎成纤维细胞相对于野生型细胞在仙台病毒感染下会产生更多的IFN-(3及其RANTES。我们的研究证明,生理情况下TRIM21能够抑制病毒诱导Ⅰ型干扰素的产生。而其中具体的分子机制还有待我们进一步的研究。而且之后对TRIM21缺陷型小鼠的全面表型分析将给我们提供更多的信息。
Antiviral immunity is the front line of host defence upon viral infection. The pattern recognition receptors (PRRs) activate downstream signaling in virus infection through pathogen-associated molecular patterns (PAMPs), and induce the production of type I interferons (IFNs) and proinfiammatory cytokines, which then cause the activation of innate immunity response.
     In the infection and replication of virus, various viral components such as dsRNA can be recongnized by PRRs such as RIG-Ⅰ like receptors (RLRs). RLRs recognize the viral dsRNA, and then recruit a central adapter protein, designated virus-induced signaling adapter (VISA, also known as IPS-1, MAVS and CARDIF), which signals to different pathways. VISA associates with TRAF3, MITA and TBK1to activate IRF3by phosphorylation while VISA contemporarily interacts with TRAF2/TRAF6to activate IKK complex, leading to subsequent activation of another transcription factor, NF-κB. Activated IRF3and NF-κB translocate in nuclear and collaboratively trigger the expression of type ⅠIFN genes.
     The regulation mechanism of host antiviral response is mediated by the modifications of cellular proteins, the major of which are ubiquitination and deubiquitination. To identify some new proteins which are involved in the regulation of cellular antiviral signaling through ubiquitination and deubiquitination, we chose pGL3-NF-κB as a reporter gene for screening a gene library. We found that transiently transfection of an E3ubiquitin ligase, TRIM4led to the significant activation of the NF-κB, ISRE, and IFNβ reporters, and increased the induction of type I interferons in SeV infection. Consistently, knockdown of endogenous TRIM4remarkably inhibited the production of SeV-induced type I interferons. Endogenous coimmunoprecipitation experiments also indicated that TRIM4associated with RIG-I, and the interaction of them was increased by the induction of viral infection. Further study showed that TRIM4collaboratively triggered the production of IFNs by the associating with RIG-Ⅰ and subsequently catalyzing the K63-linked ubiquitination of RIG-I. There are some new questions from our study, such as whether TRIM25, which was identified as an E3ubiquitin ligase which target RIG-Ⅰ for K63-linked ubiquitination of RIG-Ⅰ, could associate with TRIM4. Moreover, knockout mice of TRIM4should be generated to support our conclusion.
     Another TRIM family member, TRIM21was identified playing a role as a regulator of IRF3signaling. However, two independent groups received the opposite conclusions. Yang et al demonstrated that TRIM21increases the stability of IRF3to enhance type I interferons induction by interaction with Pinl, a negative regulator of antiviral responses that mediates the ubiquitination and degradation of IRF3during virus infection. In contrast, Higgs et al found that TRIM21interacts with IRF3and promotes the ubiquitination and degradation of IRF3to limit IFNβ induction. Thus, to reveal the function of TRIM21in antiviral pathway, we generated TRIM21deficient mice. In our study, the embryonic fibroblast cells derived from TRIM21deficient mice showed increased production of IFNP and downstream gene RANTES in SeV infection. Our study confirmed that TRIM21in vivo inhibits in virus-induced production of type I IFNs, and the physiological molecular mechanism needs our further study. And comprehensive phenotype analysis of TRIM21deficient mice could furnish more information to us.
引文
[1]AKIRA S, UEMATSU S, TAKEUCHI 0. Pathogen recognition and innate immunity [J]. Cell,2006,124(4):783-801.
    [2]BEUTLER B, EIDENSCHENK C, CROZAT K, et al. Genetic analysis of resistance to viral infection [J]. Nat Rev Immunol,2007,7(10):753-66.
    [3]MEDZHITOV R. Recognition of microorganisms and activation of the immune response [J]. Nature,2007,449(7164):819-26.
    [4]KANNEGANTI T D, LAMKANFI M, NUNEZ G. Intracellular NOD-like receptors in host defense and disease [J]. Immunity,2007,27(4):549-59.
    [5]PETRILLI V, DOSTERT C, MURUVE D A, et al. The inflammasome:a danger sensing complex triggering innate immunity [J]. Curr Opin Immunol,2007,19(6):615-22.
    [6]VILCEK J. Fifty years of interferon research:aiming at a moving target [J]. Immunity,2006,25(3):343-8.
    [7]PESTKA S, KRAUSE C D, WALTER M R. Interferons, interferon-like cytokines, and their receptors [J]. Immunol Rev,2004,202(8-32.
    [8]TANIGUCHI T, MANTEI N, SCHWARZSTEIN M, et al. Human leukocyte and fibroblast interferons are structurally related [J]. Nature,1980,285(5766):547-9.
    [9]WEISSMANN C, WEBER H. The interferon genes [J]. Progress in nucleic acid research and molecular biology,1986,33(251-300.
    [10]HONDA K, TAKAOKA A, TANIGUCHI T. Type I interferon [corrected] gene induction by the interferon regulatory factor family of transcription factors [J]. Immunity,2006, 25 (3):349-60.
    [11]FARRAR M A, SCHREIBER R D. The molecular cell biology of interferon-gamma and its receptor [J]. Annual review of immunology,1993,11(571-611.
    [12]KIM T, KIM T Y, LEE W G, et al. Signaling pathways to the assembly of an interferon-beta enhanceosome. Chemical genetic studies with a small molecule [J]. J Biol Chem,2000,275(22):16910-7.
    [13]RYALS J, DIERKS P, RAGG H, et al. A 46-nucleotide promoter segment from an IFN-alpha gene renders an unrelated promoter inducible by virus [J]. Cell,1985,41 (2): 497-507.
    [14]GYORYI, WU J, FEJER G, et al. PRDI-BF1 recruits the histone H3 methyltransferase G9a in transcriptional silencing [J]. Nat Immunol,2004,5(3):299-308.
    [15]AGALIOTI T, LOMVARDAS S, PAREKH B, et al. Ordered recruitment of chromatin modifying and general transcription factors to the IFN-beta promoter [J]. Cell,2000, 103 (4):667-78.
    [16]REIS L F, HO LEE T, VILCEK J. Tumor necrosis factor acts synergistically with autocrine interferon-beta and increases interferon-beta mRNA levels in human fibroblasts [J]. J Biol Chem,1989,264(28):16351-4.
    [17]LOMVARDAS S, THANOS D. Modifying gene expression programs by altering core promoter chromatin architecture [J]. Cell,2002,110(2):261-71.
    [18]YONEYAMA M, KIKUCHl M, NATSUKAWA T, et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses [J]. Nat Immunol,2004,5(7):730-7.
    [19]KANG D C, GOPALKRISHNAN R V, WU Q, et al. mda-5:An interferon-inducible putative RNA helicase with double-stranded RNA-dependent ATPase activity and melanoma growth-suppressive properties [J]. Proc Natl Acad Sci U S A,2002,99(2):637-42.
    [20]KOVACSOVICS M, MARTTNON F, MICHEAU 0, et al. Overexpression of Helicard, a CARD-containing helicase cleaved during apoptosis, accelerates DNA degradation [J]. Curr Biol,2002,12 (10):838-43.
    [21]YONEYAMA M, KIKUCHI M, MATSUMOTO K, et al. Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity [J]. J Immunol, 2005,175(5):2851-8.
    [22]ROTHENFUSSER S, GOUTAGNY N, DIPERNA G, et al. The RNA helicase Lgp2 inhibits TLR-independent sensing of viral replication by retinoic acid-inducible gene-I [J]. J Immunol,2005,175(8):5260-8.
    [23]KANG D C, GOPALKRISHNAN R V, LIN L, et al. Expression analysis and genomic characterization of human melanoma differentiation associated gene-5, mda-5:a novel type Ⅰ interferon-responsive apoptosis-inducing gene [J]. Oncogene,2004,23(9): 1789-800.
    [24]YOUNT J S, MORAN T M, LOPEZ C B. Cytokine-independent upregulation of MDA5 in viral infection [J]. J Virol,2007,81(13):7316-9.
    [25]SUMPTER R, JR., LOOYM, FOY E, et al. Regulating intracellular antiviral defense and permissiveness to hepatitis C virus RNA replication through a cellular RNA helicase, RIG-I [J]. J Virol,2005,79(5):2689-99.
    [26]CHEN L L, YANG L, CARMICHAEL G G. Molecular basis for an attenuated cytoplasmic dsRNA response in human embryonic stem cells [J]. Cell Cycle,2010,9(17):3552-64.
    [27]MA E, MACRAE I J, KIRSCH J F, et al. Autoinhibition of human dicer by its internal helicase domain [J]. J Mol Biol,2008,380(1):237-43.
    [28]LOO Y M, GALE M, JR. Immune signaling by RIG-I-like receptors [J]. Immunity, 2011,34(5):680-92.
    [29]SAITO T, HIRAI R, LOO Y M, et al. Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2 [J]. Proc Natl Acad Sci U S A,2007,104(2): 582-7.
    [30]VENKATARAMAN T, VALDES M, ELSBY R, et al. Loss of DExD/H box RNA helicase LGP2 manifests disparate antiviral responses [J]. J Immunol,2007,178(10):6444-55.
    [31]TAKEUCHI 0, AKIRA S. Innate immunity to virus infection [J]. Immunol Rev,2009, 227(1):75-86.
    [32]KATO H, SATO S, YONEYAMA M, et al. Cell type-specific involvement of RIG-I in antiviral response [J]. Immunity,2005,23(1):19-28.
    [33]KATO H, TAKEUCHI 0, SATO S, et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses [J]. Nature,2006,441(7089):101-5.
    [34]MELCHJORSEN J, JENSEN S B, MALMGAARD L, et al. Activation of innate defense against a paramyxovirus is mediated by RIG-I and TLR7 and TLR8 in a cell-type-specific manner [J]. J Virol,2005,79(20):12944-51.
    [35]GITLIN L, BARCHET W, GILFILLAN S, et al. Essential role of mda-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus [J]. Proc Natl Acad Sci U S A,2006,103(22):8459-64.
    [36]CHEN Z, BENUREAU Y, RIJNBRAND R, et al. GB virus B disrupts RIG-I signaling by NS3/4A-mediated cleavage of the adaptor protein MAVS [J]. J Virol,2007,81(2): 964-76.
    [37]SATOH T, KATO H, KUMAGAI Y, et al. LGP2 is a positive regulator of RIG-I-and MDA5-mediated antiviral responses [J]. Proc Natl Acad Sci U S A,2010,107(4):1512-7.
    [38]FREDERICKSEN B L, KELLER B C, FORNEK J, et al. Establishment and maintenance of the innate antiviral response to West Ni le Virus involves both RIG-I and MDA5 signaling through IPS-1 [J]. J Virol,2008,82(2):609-16.
    [39]LOO Y M, FORNEK J, CROCHET N, et al. Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity [J]. J Virol,2008,82(1):335-45.
    [40]SHINGAI M, EBIHARA T, BEGUM N A, et al. Differential type I IFN-inducing abilities of wild-type versus vaccine strains of measles virus [J]. J Immunol,2007, 179(9):6123-33.
    [41]BARRAL P M, MORRISON J M, DRAHOS J, et al. MDA-5 is cleaved in poliovirus-infected cells [J]. J Virol,2007,81(8):3677-84.
    [42]KATO H, TAKEUCHI 0, MIKAMO-SATOH E, et al. Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5 [J]. J Exp Med,2008,205(7):1601-10.
    [43]SAMANTA M, IWAKIRI D, TAKADA K. Epstein-Barr virus-encoded small RNA induces IL-10 through RIG-I-mediated IRF-3 signaling [J]. Oncogene,2008,27(30):4150-60.
    [44]SAMANTA M, IWAKIRI D, KANDA T, et al. EB virus-encoded RNAs are recognized by RIG-I and activate signaling to induce type I IFN [J]. EMBO J,2006,25(18):4207-14.
    [45]HORNUNG V, ELLEGAST J, KIM S, et al.5'-Triphosphate RNA is the ligand for RIG-I [J]. Science,2006,314(5801):994-7.
    [46]PICHLMAIR A, SCHULZ 0, TAN C P, et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates [J]. Science,2006,314(5801):997-1001.
    [47]SCHLEE M, HARTMANN G. The chase for the RIG-I ligand--recent advances [J]. Molecular therapy:the journal of the American Society of Gene Therapy,2010,18(7): 1254-62.
    [48]SAITO T, OWEN D M, JIANG F, et al. Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA [J]. Nature,2008, 454(7203):523-7.
    [49]KIM M J, HWANG S Y, IMAIZUMI T, et al. Negative feedback regulation of RIG-I-mediated antiviral signaling by interferon-induced ISG15 conjugation [J]. J Virol, 2008,82(3):1474-83.
    [50]BAUM A, SACHIDANANDAM R, GARCIA-SASTRE A. Preference of RIG-I for short viral RNA molecules in infected cells revealed by next-generation sequencing [J]. Proceedings of the National Academy of Sciences of the United States of America,2010,107(37): 16303-8.
    [51]MARQUES J T, DEVOSSE T, WANG D, et al. A structural basis for discriminating between self and nonself double-stranded RNAs in mammalian cells [J]. Nature biotechnology,2006,24(5):559-65.
    [52]SCHLEE M, ROTH A, HORNING V, et al. Recognition of 5'triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus [J]. Immunity,2009,31(1):25-34.
    [53]GRUNBERG-MANAGO M, ORITZ P J,OCHOA S. Enzymatic synthesis of nucleic acidlike polynucleotides [J]. Science,1955,122(3176):907-10.
    [54]AGOL V I, PAUL A V, WIMMER E. Paradoxes of the replication of picornaviral genomes [J]. Virus Res,1999,62(2):129-47.
    [55]PATTNAIK A K, BALL L A, LEGRONE A, et al. The termini of VSV DI particle RNAs are sufficient to signal RNA encapsidation, replication, and budding to generate infectious particles [J]. Virology,1995,206(1):760-4.
    [56]UZRI D, GEHRKE L. Nucleotide sequences and modifications that determine RIG-I/RNA binding and signaling activities [J]. Journal of virology,2009,83(9): 4174-84.
    [57]GONDAI T, YAMAGUCHI K, MIYANO-KUROSAKI N, et al. Short-hairpin RNAs synthesized by T7 phage polymerase do not induce interferon [J]. Nucleic acids research,2008,36(3): e18.
    [58]ABLASSER A, BAUERNFEIND F, HARTMANN G, et al. RIG-Ⅰ-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase Ⅲ-transcribed RNA intermediate [J]. Nat Immunol,2009,10(10):1065-72.
    [59]CHIU Y H, MACMILLAN J B, CHEN Z J. RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-Ⅰ pathway [J]. Cell,2009,138(3):576-91.
    [60]KUMAR H, KAWAI T, KATO H, et al. Essential role of IPS-1 in innate immune responses against RNA viruses [J]. J Exp Med,2006,203(7):1795-803.
    [61]MONROE K M, MCWHIRTER S M, VANCE R E. Identification of host cytosolic sensors and bacterial factors regulating the type I interferon response to Legionella pneumophila [J]. PLoS pathogens,2009,5(11):e1000665.
    [62]MALATHI K, DONG B, GALE M, JR., et al. Small self-RNA generated by RNase L amplifies antiviral innate immunity [J]. Nature,2007,448(7155):816-9.
    [63]MALATHI K, SAITO T, CROCHET N, et al. RNase L releases a small RNA from HCV RNA that refolds into a potent PAMP [J]. RNA,2010,16(11):2108-19.
    [64]LUTHRA P, SUN D, SILVERMAN R H, et al. Activation of IFN-β expression by a viral mRNA through RNase L and MDA5 [J]. Proc Natl Acad Sci U S A,2011,108 (5):2118-23.
    [65]CUI S, EISENACHER K, KIRCHHOFER A, et al. The C-terminal regulatory domain is the RNA 5'-triphosphate sensor of RIG-I [J]. Mol Cell,2008,29(2):169-79.
    [66]TAKAHASI K, YONEYAMA M, NISHIHORI T, et al. Nonself RNA-sensing mechanism of RIG-I helicase and activation of antiviral immune responses [J]. Mol Cell,2008,29(4): 428-40.
    [67]LU C, XU H, RANJITH-KUMAR C T, et al. The structural basis of 5'triphosphate double-stranded RNA recognition by RIG-I C-terminal domain [J]. Structure,2010,18(8): 1032-43.
    [68]CUI Y, COSTA R M, MURPHY G G, et al. Neurofibromin regulation of ERK signaling modulates GABA release and learning [J]. Cell,2008,135(3):549-60.
    [69]TAKAHASI K, KUMETA H, TSUDUKI N, et al. Solution structures of cytosolic RNA sensor MDA5 and LGP2 C-terminal domains:identification of the RNA recognition loop in RIG-I-like receptors [J]. J Biol Chem,2009,284(26):17465-74.
    [70]LIX, LUC, STEWART M, et al. Structural basis of double-stranded RNA recognition by the RIG-1 like receptor MDA5 [J]. Archives of biochemistry and biophysics,2009, 488(1):23-33.
    [71]MURALI A, LI X, RANJITH-KUMAR C T, et al. Structure and function of LGP2, a DEX(D/H) helicase that regulates the innate immunity response [J]. J Biol Chem,2008, 283(23):15825-33.
    [72]PIPPIG D A, HELLMUTH J C, CUI S, et al. The regulatory domain of the RIG-I family ATPase LGP2 senses double-stranded RNA [J]. Nucleic Acids Res,2009,37(6):2014-25.
    [73]SCOTT I. The role of mitochondria in the mammalian antiviral defense system [J]. Mitochondrion,2010,10(4):316-20.
    [74]RANJITH-KUMAR C T, MURALI A, DONG W, et al. Agonist and antagonist recognition by RIG-I, a cytoplasmic innate immunity receptor [J]. J Biol Chem,2009,284(2):1155-65.
    [75]BAMMING D, HORVATH C M. Regulation of signal transduction by enzymatically inactive antiviral RNA helicase proteins MDA5, RIG-I, and LGP2 [J]. J Biol Chem,2009, 284(15):9700-12.
    [76]LI X, RANJITH-KUMAR C T, BROOKS M T, et al. The RIG-Ⅰ-like receptor LGP2 recognizes the termini of double-stranded RNA [J]. J Biol Chem,2009,284(20):13881-91.
    [77]SHOKOUHI B, COBAN C, HASIRCI V, et al. The role of multiple toll-like receptor signalling cascades on interactions between biomedical polymers and dendritic cells [J]. Biomaterials,2010,31(22):5759-71.
    [78]KAWAI T, AKIRA S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors [J]. Nat Immunol,2010,11(5):373-84.
    [79]BELL J K, ASKINS J, HALL P R, et al. The dsRNA binding site of human Toll-like receptor 3 [J]. Proc Natl Acad Sci U S A,2006,103(23):8792-7.
    [80]CHOE J, KELKER M S, WILSON I A. Crystal structure of human toll-like receptor 3 (TLR3) ectodomain [J]. Science,2005,309(5734):581-5.
    [81]LIU L, BOTOS I, WANG Y, et al. Structural basis of toll-like receptor 3 signaling with double-stranded RNA [J]. Science,2008,320(5874):379-81.
    [82]BARBALAT R, EWALD S E, MOUCHESS M L, et al. Nucleic acid recognition by the innate immune system [J]. Annual review of immunology,2011,29(185-214.
    [83]TAKAOKA A, WANG Z, CHOI M K, et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response [J]. Nature,2007,448(7152):501-5.
    [84]ISHII K J, KAWAGOE T, KOYAMA S, et al. TANK-binding kinase-1 delineates innate and adaptive immune responses to DNA vaccines [J]. Nature,2008,451(7179):725-9.
    [85]UNTERHOLZNER L, KEATING S E, BARAN M, et al. IFI16 is an innate immune sensor for intracellular DNA [J]. Nat Immunol,2010,11(11):997-1004.
    [86]BARBER G N. Innate immune DNA sensing pathways:STING, AIMII and the regulation of interferon production and inflammatory responses [J]. Curr Opin Immunol,2011,23(1): 10-20.
    [87]SAITOH T, FUJITA N, HAYASHI T, et al. Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response [J]. Proc Natl Acad Sci U S A, 2009,106(49):20842-6.
    [88]XU L G, WANG Y Y, HAN K J, et al. VISA is an adapter protein required for virus-triggered IFN-beta signal ing [J]. Mol Cell,2005,19(6):727-40.
    [89]KAWAI T, TAKAHASHI K, SATO S, et al. IPS-1, an adaptor triggering RIG-1-and Mda5-mediated type Ⅰ interferon induction [J]. Nat Immunol,2005,6(10):981-8.
    [90]SETH R B, SUN L, EA C K, et al. Identification and characterization of MAVS, amitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3 [J]. Cell, 2005,122(5):669-82.
    [91]MEYLAN E, CURRAN J, HOFMANN K, et al. Cardif is an adaptor protein in the RIG-Ⅰ antiviral pathway and is targeted by hepatitis C virus [J]. Nature,2005,437(7062): 1167-72.
    [92]POTTER J A, RANDALL R E, TAYLOR G L. Crystal structure of human IPS-1/MAVS/VISA/Cardif caspase activation recruitment domain [J]. BMC Struct Biol,2008, 8(11.
    [93]DIXIT E, BOULANT S, ZHANG Y, et al. Peroxisomes are signaling platforms for antiviral innate immunity [J]. Cell,2010,141(4):668-81.
    [94]SUN Q, SUN L, LIU H H, et al. The specific and essential role of MAVS in antiviral innate immune responses [J]. Immunity,2006,24(5):633-42.
    [95]HISCOTT J, LACOSTE J, LIN R. Recruitment of an interferon molecular signaling complex to the mitochondrial membrane:disruption by hepatitis C virus NS3-4A protease [J]. Biochemical pharmacology,2006,72(11):1477-84.
    [96]LIN R, LACOSTE J, NAKHAEI P, et al. Dissociation of a MAVS/IPS-1/VISA/Cardif-IKKepsilon molecular complex from the mitochondrial outer membrane by hepatitis C virus NS3-4A proteolytic cleavage [J]. Journal of virology,2006, 80(12):6072-83.
    [97]OHMAN T, RINTAHAKA J, KALKKINEN N, et al. Actin and RIG-I/MAVS signaling components translocate to mitochondria upon influenza A virus infection of human primary macrophages [J]. J Immunol,2009,182(9):5682-92.
    [98]LI X D, SUN L, SETH R B, et al. Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity [J]. Proc Natl Acad Sci U S A,2005,102(49):17717-22.
    [99]MOORE C B, BERGSTRALH D T, DUNCAN J A, et al. NLRX1 is a regulator of mitochondrial antiviral immunity [J]. Nature,2008,451(7178):573-7.
    [100]ISHIKAWA H, BARBER G N. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling [J]. Nature,2008,455(7213):674-8.
    [101]ZHONG B, YANG Y, LI S, et al. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation [J]. Immunity,2008,29(4):538-50.
    [102]MICHALLET M C, MEYLAN E, ERMOLAEVA M A, et al. TRADD protein is an essential component of the RIG-1 ike helicase antiviral pathway [J]. Immunity,2008,28(5):651-61.
    [103]HACKER H, REDECKE V, BLAGOEV B, et al. Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6 [J]. Nature,2006, 439(7073):204-7.
    [104]OGANESYAN G, SAHA S K, GUO B, et al. Critical role of TRAF3 in the Toll-like receptor-dependent and-independent antiviral response [J]. Nature,2006,439(7073): 208-11.
    [105]KAYAGAKI N, PHUNG Q, CHAN S, et al. DUBA:a deubiquitinase that regulates type 1 interferon production [J]. Science,2007,318(5856):1628-32.
    [106]FITZGERALD K A, MCWHIRTER S M, FA1A K L, et al. IKKepsilon and TBK1 are essential components of the 1RF3 signaling pathway [J]. Nat Immunol,2003,4(5):491-6.
    [107]PERRY A K, CHOW E K, GOODNOUGH J B, et al. Differential requirement for TANK-binding kinase-1 in type I interferon responses to toll-like receptor activation and viral infection [J]. J Exp Med,2004,199(12):1651-8.
    [108]HEMMI H, TAKEUCHI 0, SATO S, et al. The roles of two IkappaB kinase-related kinases in lipopolysaccharide and double stranded RNA signaling and viral infection [J]. J Exp Med,2004,199(12):1641-50.
    [109]HONDA K, YANAI 11, NEGISHI H, et al. IRF-7 is the master regulator of type-I interferon-dependent immune responses [J]. Nature,2005,434(7034):772-7.
    [110]SASAI M, SHINGAT M, FUNAMI K, et al. NAK-associated protein 1 participates in both the TLR3 and the cytoplasmic pathways in type Ⅰ IFN induction [J]. J Immunol, 2006,177(12):8676-83.
    [111]GUO B, CHENG G. Modulation of the interferon antiviral response by the TBKl/IKKi adaptor protein TANK [J]. J Biol Chem,2007,282(16):11817-26.
    [112]RYZHAKOV G, RANDOW F. SINTBAD, a novel component of innate antiviral immunity, shares a TBK1-binding domain with NAP1 and TANK [J]. EMBO J,2007,26(13): 3180-90.
    [113]TAKAHASHI K, KAWAI T, KUMAR H, et al. Roles of caspase-8 and caspase-10 in innate immune responses to double-stranded RNA [J]. J Immunol,2006,176(8):4520-4.
    [114]PICKART C M. Mechanisms underlying ubiquitination [J]. Annual review of biochemistry,2001,70(503-33.
    [115]SUN S C. Deubiquitylation and regulation of the immune response [J]. Nat Rev Immunol,2008,8(7):501-11.
    [116]HARHAJ E W, DIXIT V M. Deubiquitinases in the regulation of NF-kappaB signaling [J]. Cell research,2011,21(1):22-39.
    [117]DIKIC I, WAKATSUKI S, WALTERS K J. Ubiquitin-binding domains-from structures to functions [J]. Nature reviews Molecular cell biology,2009,10(10): 659-71.
    [118]CHEN Z J, SUN L J. Nonproteolytic functions of ubiquitin in cell signaling [J]. Mol Cell,2009,33(3):275-86.
    [119]XU P, DUONG D M, SEYFRIED N T, et al. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation [J]. Cell,2009, 137(1):133-45.
    [120]KIRISAKO T, KAMEI K, MURATA S, et al. A ubiquitin ligase complex assembles linear polyubiquitin chains [J]. EMBO J,2006,25(20):4877-87.
    [121]KERSCHER 0, FELBERBAUM R, HOCHSTRASSER M. Modification of proteins by ubiquitin and ubiquitin-like proteins [J]. Annual review of cell and developmental biology,2006,22(159-80.
    [122]YE Y, RAPE M. Building ubiquitin chains:E2 enzymes at work [J]. Nature reviews Molecular cell biology,2009,10(11):755-64.
    [123]PETROSKI M D, DESHAIES R J. Function and regulation of cullin-RING ubiquitin ligases [J]. Nature Rev Mol Cell Biol,2005,6(9-20.
    [124]KOWALINSKI E. Structural basis for the activation of innate immune pattern-recognition receptor RIG-1 by viral RNA [J]. Cell,2011,147(423-35.
    [125]LUO D. Structural insights into RNA recognition by RIG-1 [J]. Cell,2011, 147(409-22.
    [126]OSHIUMI H, MATSUMOTO M, HATAKEYAMA S, et al. Riplet/RNF135, a RING finger protein, ubiquitinates RIG-I to promote interferon-β induction during the early phase of viral infection [J]. J Biol Chem,2009,284(807-17.
    [127]ZENG W. Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity [J]. Cell,2010,141(315-30.
    [128]PERTEL T. TRIM5 is an innate immune sensor for the retrovirus capsid lattice [J]. Nature,2011,472(361-5.
    [129]CHANG L. The E3 ubiquitin ligase Itch couples JNK activation to TNF[alpha]-induced cell death by inducing c-FLIPL turnover [J]. Cell,2006,124(601-13.
    [130]MCNAB F W, RAJSBAUM R, STOYE J P, et al. Tripartite-motif proteins and innate immune regulation [J]. Curr Opin Immunol,2011,23(1):46-56.
    [131]MUNIR M. TRIM proteins:another class of viral victims [J]. Science signaling,2010,3(118):jc2.
    [132]GACK M U, KIRCHHOFER A, SHIN Y C, et al. Roles of RIG-I N-terminal tandem CARD and splice variant in TRIM25-mediated antiviral signal transduction [J]. Proc Natl Acad Sci U S A,2008,105(43):16743-8.
    [133]HOU F. MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response [J]. Cell,2011,146(448-61.
    [134]MAELFAIT J, BEYAERT R. Emerging role of ubiquitination in antiviral RIG-I signaling [J]. Microbiology and molecular biology reviews:MMBR,2012,76(1):33-45.
    [135]BOSANAC I. Ubiquitin binding to A20 ZnF4 is required for modulation of NF-κB signaling [J]. Mol Cell,2010,40(548-57.
    [136]OSHIUMI H, MATSUMOTO M, HATAKEYAMA S, et al. Riplet/RNF135, a RING finger protein, ubiquitinates RIG-I to promote interferon-beta induction during the early phase of viral infection [J]. J Biol Chem,2009,284(2):807-17.
    [137]GAO D, YANG Y K, WANG R P, et al. REUL is a novel E3 ubiquitin ligase and stimulator of retinoic-acid-inducible gene-I [J]. PLoS One,2009,4(6):e5760.
    [138]PANNE D. The enhanceosome [J]. Current opinion in structural biology,2008, 18(2):236-42.
    [139]YOSHIMURAA, NAKA T, KUBO M. SOCS proteins, cytokine signalling and immune regulation [J]. Nature Rev Immunol,2007,7(454-65.
    [140]XIA Z P, SUN L, CHEN X, et al. Direct activation of protein kinases by unanchored polyubiquitin chains [J]. Nature,2009,461(7260):114-9.
    [141]DAYAL S, SPARKS A, JACOB J, et al. Suppression of the deubiquitinating enzyme USP5 causes the accumulation of unanchored polyubiquitin and the activation of p53 [J]. J Biol Chem,2009,284(8):5030-41.
    [142]ZHANG M, LEE A J, WU X, et al. Regulation of antiviral innate immunity by deubiquitinase CYLD [J]. Cell Mol Immunol,2011,8(502-4.
    [143]SAHA S K. Regulation of antiviral responses by a direct and specific interaction between TRAF3 and Cardif [J]. EMBO J,2006,25(3257-63.
    [144]LI S, WANG L, BERMAN M, et al. Mapping a dynamic innate immunity protein interaction network regulating type I interferon production [J]. Immunity,2011, 35 (426-40.
    [145]SUZUKI H, CHIBA T, KOBAYASHI M, et al. IkappaBalpha ubiquitination is catalyzed by an SCF-like complex containing Skpl, cullin-1, and two F-box/WD40-repeat proteins, betaTrCPl and betaTrCP2 [J]. Biochem Biophys Res Commun,1999,256(1):127-32.
    [146]LIU S, CHEN Z J. Expanding role of ubiquitination in NF-kappaB signaling [J]. Cell research,2011,21(1):6-21.
    [147]MATSUI K, KUMAGAI Y, KATO H, et al. Cutting edge:Role of TANK-binding kinase 1 and inducible IkappaB kinase in IFN responses against viruses in innate immune cells [J]. J Immunol,2006,177(9):5785-9.
    [148]TENOEVER B R, NG S L, CHUA M A, et al. Multiple functions of the IKK-related kinase IKKepsilon in interferon-mediated antiviral immunity [J]. Science,2007, 315(5816):1274-8.
    [149]ZHAO T, YANG L, SUN Q, et al. The NEMO adaptor bridges the nuclear factor-kappaB and interferon regulatory factor signaling pathways [J]. Nat Immunol,2007, 8(6):592-600.
    [150]FUJITAF, TANIGUCHI Y, KATO T, et al. Identification of NAP1, a regulatory subunit of IkappaB kinase-related kinases that potentiates NF-kappaB signaling [J]. Molecular and cellular biology,2003,23(21):7780-93.
    [151]CHAU T L, GIOIA R, GATOT J S, et al. Are the IKKs and IKK-related kinases TBK1 and IKK-epsilon similarly activated? [J]. Trends in biochemical sciences,2008, 33(4):171-80.
    [152]ZENG W, XU M, LIU S, et al. Key role of Ubc5 and lysine-63 polyubiquitination in viral activation of IRF3 [J]. Mol Cell,2009,36(2):315-25.
    [153]GERLACH B, CORDIER S M, SCHMUKLE A C, et al. Linear ubiquitination prevents inflammation and regulates immune signalling [J]. Nature,2011,471(7340):591-6.
    [154]IKEDA F, DERIBE Y L, SKANLAND S S, et al. SHARPIN forms a linear ubiquitin ligase complex regulating NF-kappaB activity and apoptosis [J]. Nature,2011,471(7340): 637-41.
    [155]TOKUNAGA F, NAKAGAWA T, NAKAHARA M, et al. SHARPIN is a component of the NF-kappaB-activating linear ubiquitin chain assembly complex [J]. Nature,2011, 471(7340):633-6.
    [156]TOKUNAGA F, SAKATA S, SAEKI Y, et al. Involvement of linear polyubiquitylation of NEMO in NF-kappaB activation [J]. Nat Cell Biol,2009,11(2): 123-32.
    [157]VERHELST K, VERSTREPEN L, CARPENTIER I, et al. Linear ubiquitination in NF-kappaB signaling and inflammation:What we do understand and what we do not [J]. Biochemical pharmacology,2011,82(9):1057-65.
    [158]INN K S, GACK M U, TOKUNAGA F, et al. Linear ubiquitin assembly complex negatively regulates RIG-I-and TRIM25-mediated type I interferon induction [J]. Mol Cell,2011,41(3):354-65.
    [159]BERTRAND M J, MILUTINOVIC S, DICKSON K M, et al. cIAPl and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination [J]. Mol Cell,2008,30(6):689-700.
    [160]MAHONEY D J, CHEUNG H H, MRAD R L, et al. Both cIAPl and cIAP2 regulate TNFalpha-mediated NF-kappaB activation [J]. Proc Natl Acad Sci U S A,2008,105(33): 11778-83.
    [161]EA C K, DENG L, XIA Z P, et al. Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO [J]. Mol Cell, 2006,22(2):245-57.
    [162]BALACHANDRAN S, THOMAS E, BARBER G N. A FADD-dependent innate immune mechanism in mammalian cells [J]. Nature,2004,432(7015):401-5.
    [163]RAJPUT A, KOVALENKO A, BOGDANOV K, et al. RIG-I RNA helicase activation of IRF3 transcription factor is negatively regulated by caspase-8-mediated cleavage of the RIP1 protein [J]. Immunity,2011,34(3):340-51.
    [164]MAO A P, LI S, ZHONG B, et al. Virus-triggered ubiquitination of TRAF3/6 by cIAPl/2 is essential for induction of interferon-beta (IFN-beta) and cellular antiviral response [J]. J Biol Chem,2010,285(13):9470-6.
    [165]MIKKELSEN S S, JENSEN S B, CHILIVERU S, et al. RIG-I-mediated activation of p38 MAPK is essential for viral induction of interferon and activation of dendritic cells:dependence on TRAF2 and TAK1 [J]. J Biol Chem,2009,284(16):10774-82.
    [166]TANG E D, WANG C Y. TRAF5 is a downstream target of MAVS in antiviral innate immune signaling [J]. PLoS One,2010,5(2):e9172.
    [167]LAMOTHE B, WEBSTER W K, GOPINATHAN A, et al. TRAF6 ubiquitin ligase is essential for RANKL signaling and osteoclast differentiation [J]. Biochem Biophys Res Commun,2007,359(4):1044-9.
    [168]KONNO H, YAMAMOTO T, YAMAZAKI K, et al. TRAF6 establishes innate immune responses by activating NF-kappaB and IRF7 upon sensing cytosolic viral RNA and DNA [J]. PLoS One,2009,4(5):e5674.
    [169]YOSHIDA R, TAKAESU G, YOSHIDA H, et al. TRAF6 and MEKK1 play a pivotal role in the RIG-I-like helicase antiviral pathway [J]. J Biol Chem,2008,283(52):36211-20.
    [170]KAWAI T, SATO S, ISHII K J, et al. Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6 [J]. Nat Immunol,2004,5(10):1061-8.
    [171]PAZ S, VILASCO M, WERDEN S J, et al. A functional C-terminal TRAF3-binding site in MAVS participates in positive and negative regulation of the IFN antiviral response [J]. Cell research,2011,21(6):895-910.
    [172]SAHA S K, PIETRAS E M, HE J Q, et al. Regulation of antiviral responses by a direct and specific interaction between TRAF3 and Cardif [J]. EMBO J,2006,25(14): 3257-63.
    [173]TANG E D, WANG C Y. MAVS self-association mediates antiviral innate immune signaling [J]. J Virol,2009,83(8):3420-8.
    [174]PEREZ DE DIEGO R, SANCHO-SHIMIZU V, LORENZO L, et al. Human TRAF3 adaptor molecule deficiency leads to impaired Toll-like receptor 3 response and susceptibility to herpes simplex encephalitis [J]. Immunity,2010,33(3):400-11.
    [175]LIAO G, ZHANG M, HARHAJ E W, et al. Regulation of the NF-kappaB-inducing kinase by tumor necrosis factor receptor-associated factor 3-induced degradation [J]. J Biol Chem,2004,279(25):26243-50.
    [176]SUN S C. Non-canonical NF-kappaB signal ing pathway [J]. Cell research,2011, 21(1):71-85.
    [177]VALLABHAPURAPU S, MATSUZAWA A, ZHANG W, et al. Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-kappaB signaling [J]. Nat Immunol,2008,9(12):1364-70.
    [178]ZARNEGAR B J, WANG Y, MAH0NEY D J, et al. Noncanonical NF-kappaB activation requires coordinated assembly of a regulatory complex of the adaptors cIAPl, cIAP2, TRAF2 and TRAF3 and the kinase NIK [J]. Nat Immunol,2008,9(12):1371-8.
    [179]TANAKA T, GRUSBY M J, KAISHO T. PDLIM2-mediated termination of transcription factor NF-kappaB activation by intranuclear sequestration and degradation of the p65 subunit [J]. Nat Immunol,2007, 8(6):584-91.
    [180]TSENG P H, MATSUZAWA A, ZHANG W, et al. Different modes of ubiquitination of the adaptor TRAF3 selectively activate the expression of type I interferons and proinflammatory cytokines [J]. Nat Immunol,2010,11(1):70-5.
    [181]SUZUKI N, SUZUKI S, DUNCAN G S, et al. Severe impairment of interleukin-1 and Toll-like receptor signalling in mice lacking IRAK-4 [J]. Nature,2002,416(6882): 750-6.
    [182]KAWAGOE T, SATO S, JUNG A, et al. Essential role of IRAK-4 protein and its kinase activity in Toll-like receptor-mediated immune responses but not in TCR signaling [J]. J Exp Med, 2007, 204(5):1013-24.
    [183]KAWAGOE T, SATO S, MATSUSHITA K, et al. Sequential control of Toll-like receptor-dependent responses by IRAK1 and IRAK2 [J]. Nat Immunol,2008,9(6):684-91.
    [184]KOBAYASHI K, HERNANDEZ L D, GALAN J E, et al. IRAK-M is a negative regulator of Toll-like receptor signaling [J]. Cell,2002,110(2):191-202.
    [185]CHEN Z J. Ubiquitin signalling in the NF-kappaB pathway [J]. Nat Cell Biol, 2005,7(8):758-65.
    [186]SATO S, SANJO H, TAKEDA K, et al. Essential function for the kinase TAK1 in innate and adaptive immune responses [J]. Nat Immunol,2005,6(11):1087-95.
    [187]YAMAMOTO M,OKAMOTO T, TAKEDA K, et al. Key function for the Ubcl3 E2 ubiquitin-conjugating enzyme in immune receptor signaling [J]. Nat Immunol,2006,7(9): 962-70.
    [188]YAMAMOTO M, SATO S, HEMMI H, et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway [J]. Science,2003,301(5633): 640-3.
    [189]YAMAMOTO M, SATO S, MORI K, et al. Cutting edge:a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-beta promoter in the Toll-like receptor signaling [J]. J Immunol,2002,169(12):6668-72.
    [190]OSHIUMI H, MATSUMOTO M, FUNAMI K, et al. TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction [J]. Nature immunology,2003,4(2):161-7.
    [191]SATOS, SUGIYAMA M, YAMAMOTO M, et al. Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-kappa 13 and IFN-regulatory factor-3, in the Toll-like receptor signaling [J].1 Immunol,2003, 171(8):4304-10.
    [192]MEYLAN E, BURNS K, HOFMANN K, et al. R1P1 is an essential mediator of Toll-like receptor 3-induced NF-kappa B activation [J]. Nature immunology,2004,5(5): 503-7.
    [193]ERMOLAEVA M A, MICHALLET M C, PAPADOPOULOU N, et al. Function of TRADD in tumor necrosis factor receptor 1 signaling and in TRIF-dependent inflammatory responses [J]. Nature immunology,2008,9(9):1037-46.
    [194]POBEZINSKAYA Y L, KIM Y S, CHOKSI S, et al. The function of TRADD in signaling through tumor necrosis factor receptor 1 and TRIF-dependent Toll-like receptors [J]. Nature immunology,2008,9(9):1047-54.
    [195]HONDA K, YANAI H, MIZUTANI T, et al. Role of a transductional-transcriptional processor complex involving MyD88 and IRF-7 in Toll-like receptor signaling [J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(43):15416-21.
    [196]HOSHINO K, SUGIYAMA T, MATSUMOTO M, et al. IkappaB kinase-alpha is critical for interferon-alpha production induced by Toll-like receptors 7 and 9 [J]. Nature,2006, 440(7086):949-53.
    [197]UEMATSU S, SATO S, YAMAMOTO M, et al. Interleukin-1 receptor-associated kinase-1 plays an essential role for Toll-like receptor (TLR)7-and TLR9-mediated interferon-{alpha} induction [J]. The Journal of experimental medicine,2005,201(6): 915-23.
    [198]TABETA K, HOEBE K, JANSSEN E M, et al. The Unc93bl mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3,7 and 9 [J]. Nature immunology,2006,7(2):156-64.
    [199]KIM Y M, BRINKMANN M M, PAQUET M E, et al. UNC93B1 delivers nucleotide-sensing toll-like receptors to endolysosomes [J]. Nature,2008,452(7184): 234-8.
    [200]CASROUGE A, ZHANG S Y, EIDENSCHENK C, et al. Herpes simplex virus encephalitis in human UNC-93B deficiency [J]. Science,2006,314(5797):308-12.
    [201]TAKAHASHI K, SHIBATA T, AKASHI-TAKAMURA S, et al. A protein associated with Toll-like receptor (TLR) 4 (PRAT4A) is required for TLR-dependent immune responses [J]. J Exp Med,2007,204(12):2963-76.
    [202]WAKABAYASHI Y, KOBAYASHI M, AKASHI-TAKAMURA S, et al. A protein associated with toll-like receptor 4 (PRAT4A) regulates cell surface expression of TLR4 [J]. J Immunol,2006,177(3):1772-9.
    [203]ASAGIRI M, HIRAI T, KUNIGAMI T, et al. Cathepsin K-dependent toll-like receptor 9 signaling revealed in experimental arthritis [J]. Science,2008,319(5863): 624-7.
    [204]MATSUMOTO F, SAITOH S, FUKUI R, et al. Cathepsins are required for Toll-like receptor 9 responses [J]. Biochem Biophys Res Commun,2008,367(3):693-9.
    [205]LEE H K, LUND J M, RAMANATHAN B, et al. Autophagy-dependent viral recognition by plasmacytoid dendritic cells [J]. Science,2007,315(5817):1398-401.
    [206]DENG L. Activation of the I κ B kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain [J]. Cell,2000, 103(351-61.
    [207]KANAYAMA A. TAB2 and TAB3 activate the NF-κB pathway through binding to polyubiquitin chains [J]. Mol Cell,2004,15(535-48.
    [208]WANG C. TAK1 is a ubiquitin-dependent kinase of MKK and IKK [J]. Nature, 2001,412(346-51.
    [209]EA C K, DENG L, XIA Z P, et al. Activation of IKK by TNFα requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO [J]. Mol Cell, 2006,22(245-57.
    [210]WU C J, CONZE D B, LI T, et al. Sensing of Lys 63-linked polyubiquitination by NEMO is a key event in NF-κB activation [J]. Nature Cell Biol,2006,8(398-406.
    [211]JIANG X, CHEN Z J. The role of ubiquitylation in immune defence and pathogen evasion [J]. Nat Rev Immunol,2012,12(1):35-48.
    [212]CHANG M, JIN W, SUN S C. Pelil facilitates TRIF-dependent Toll-like receptor signaling and proinflammatory cytokine production [J]. Nature Immunol,2009, 10(1089-95.
    [213]MEYLAN E. RIP1 is an essential mediator of Toll-like receptor 3-induced NF-κB activation [J]. Nature Immunol,2004,5(503-7.
    [214]HACKER H. Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6 [J]. Nature,2006,439(204-7.
    [215]OGANESYAN G. Critical role of TRAF3 in the Toll-like receptor-dependent and-independent antiviral response [J]. Nature,2006,439(208-11.
    [216]GONZALEZ-NAVAJAS J M, LAW J, NGUYEN K P, et al. Interleukin 1 receptor signaling regulates DUBA expression and facilitates Toll-like receptor 9-driven antiinflammatory cytokine production [J]. J Exp Med,2010,207(13):2799-807.
    [217]KAGAN J C, SU T, HORNG T, et al. TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta [J]. Nat Immunol,2008,9(4):361-8.
    [218]TIKKAKOSKI T, KAMINSKI T, INGO S, et al. [Fatal tick-borne encephalitis] [J]. Duodecim; laaketieteellinen aikakauskirja,2011,127(10):1041-5.
    [219]MARIATHASAN S, WEISS D S, NEWTON K, et al. Cryopyrin activates the inflammasome in response to toxins and ATP [J]. Nature,2006,440(7081):228-32.
    [220]MARTINON F, PETRILLI V, MAYOR A, et al. Gout-associated uric acid crystals activate the NALP3 inflammasome [J]. Nature,2006,440(7081):237-41.
    [221]DOSTERT C, PETRILLI V, VAN BRUGGEN R, et al. Innate immune activation through Nalp3 inf lammasome sensing of asbestos and silica [J]. Science,2008,320(5876): 674-7.
    [222]EISENBARTH S C, COLEGIO 0 R, 0'CONNOR W, et al. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants [J]. Nature, 2008,453(7198):1122-6.
    [223]HORNUNG V, BAUERNFEIND F, HALLE A, et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization [J]. Nat Immunol, 2008,9(8):847-56.
    [224]MARIATHASAN S, NEWTON K, MONACK D M, et al. Differential activation of the inflammasome by caspase-1 adaptors ASC and I paf [J]. Nature,2004,430(6996):213-8.
    [225]FRANCHI L, AMHR A, BODY-MALAPEL M, et al. Cytosnlic flagellin requires Ipaf for activation of caspase-1 and interleukin lbeta in sal monolla-infected macrophages [J]. Nat Immunol,2006,7(6):576-82.
    [226]MIAO E A, ALPUCHE-ARANDA C M, DORS M, et al. Cytoplasmic flagellin activates caspase-1 and secretion of interleukin lbeta via Ipaf [J]. Nat Immunol,2006,7(6): 569-75.
    [227]KANNEGANTI T D, BODY-MALAPEL M, AMER A, et al. Critical role for Cryopyrin/Nalp3 in activation of caspase-1 in response to viral infection and double-stranded RNA [J]. J Biol Chem,2006,281(48):36560-8.
    [228]MURUVE D A, PETRILLI V, ZAISS A K, et al. The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response [J]. Nature, 2008,452(7183):103-7.
    [229]MERONI G, DIEZ-ROUX G. TRIM/RBCC, a novel class of'single protein RING finger'E3 ubiquitin ligases [J]. BioEssays:news and reviews in molecular, cellular and developmental biology,2005,27(11):1147-57.
    [230]NISOLE S, STOYE J P, SAIB A. TRIM family proteins:retroviral restriction and antiviral defence [J]. Nature reviews Microbiology,2005,3(10):799-808.
    [231]OZATO K, SHIN D M, CHANG T H, et al. TRIM family proteins and their emerging roles in innate immunity [J]. Nat Rev Immunol,2008,8(11):849-60.
    [232]SARDIELLO M, CAIRO S, FONTANELLA B, et al. Genomic analysis of the TRIM family reveals two groups of genes with distinct evolutionary properties [J]. BMC evolutionary biology,2008,8(225.
    [233]SHORT K M, COX T C. Subclassification of the RBCC/TRIM superfamily reveals a novel motif necessary for microtubule binding [J]. J Biol Chem,2006,281 (13):8970-80.
    [234]KAWAI T, AKIRA S. Regulation of innate immune signalling pathways by the tripartite motif (TRIM) family proteins [J]. EMBO molecular medicine,2011,3(9): 513-27.
    [235]CARTHAGENA L, BERGAMASCHI A, LUNA J M, et al. Human TRIM gene expression in response to interferons [J]. PLoS One,2009,4(3):e4894.
    [236]LERNER M, CORCORAN M, CEPEDA D, et al. The RBCC gene RFP2 (Leu5) encodes a novel transmembrane E3 ubiquitin ligase involved in ERAD [J]. Mol Biol Cell,2007, 18(5):1670-82.
    [237]REYMOND A, MERONI G, FANTOZZI A, et al. The tripartite motif family identifies cell compartments [J]. EMBO J,2001,20(9):2140-51.
    [238]BERNARDI R, PANDOLFI P P. Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies [J]. Nature reviews Molecular cell biology,2007, 8(12):1006-16.
    [239]CAMPBELL E M, DODDING M P, YAP M W, et al. TRIM5 alpha cytoplasmic bodies are highly dynamic structures [J]. Mol Biol Cell,2007,18(6):2102-11.
    [240]QUADERI N A, SCHWEIGER S, GAUDENZ K, et al. Opitz G/BBB syndrome, a defect of midline development, is due to mutations in a new RING finger gene on Xp22 [J]. Nature genetics,1997,17(3):285-91.
    [241]AVELA K, LIPSANEN-NYMAN M, IDANHEIMO N, et al. Gene encoding a new RJNG-B-box-Coiled-coil protein is mutated in mulibrey nanism [J]. Nature genetics,2000, 25(3):298-301.
    [242]FROSK P, WEILER T, NYLEN E, et al. Limb-girdle muscular dystrophy type 2H associated with mutation in TRIM32, a putative E3-ubiquitin-ligase gene [J]. American journal of human genetics,2002,70(3):663-72.
    [243]SACCONE V, PALMIERI M, PASSAMANO L, et al. Mutations that impair interaction properties of TRIM32 associated with limb-girdle muscular dystrophy 2H [J]. Human mutation,2008,29(2):240-7.
    [244]CHIANG A P, BECK J S, YEN H J, et al. Homozygosity mapping with SNP arrays identifies TRIM32, an E3 ubiquitin ligase, as a Bardet-Biedl syndrome gene (BBSll) [J]. Proc Natl Acad Sci U S A,2006,103(16):6287-92.
    [245]BODINE S C, LATRES E, BAUMHUETER S, et al. Identification of ubiquitin ligases required for skeletal muscle atrophy [J]. Science,2001,294(5547):1704-8.
    [246]DE THE H, LAVAU C, MARCHIO A, et al. The PML-RAR alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR [J]. Cell,1991,66(4):675-84.
    [247]HASEGAWA N, IWASHITA T, ASAI N, et al. A RING finger motif regulates transforming activity of the rfp/ret fusion gene [J]. Biochem Biophys Res Commun,1996, 225(2):627-31.
    [248]LE DOUARIN B, ZECHEL C, GARNIER J M, et al. The N-terminal part of TIF1, a putative mediator of the ligand-dependent activation function (AF-2) of nuclear receptors, is fused to B-raf in the oncogenic protein T18 [J]. EMBO J,1995,14(9): 2020-33.
    [249]BULLRICH F, FUJII H, CALIN G, et al. Characterization of the 13q14 tumor suppressor locus in CLL:identification of ALT1, an alternative splice variant of the LEU2 gene [J]. Cancer research,2001,61(18):6640-8.
    [250]CONSORTIUM F F. A candidate gene for familial Mediterranean fever [J]. Nature genetics,1997,17(1):25-31.
    [251]BEN-CHETRIT E, CHAN E K, SULLIVAN K F, et al. A 52-kD protein is a novel component of the SS-A/Ro antigenic particle [J]. J Exp Med,1988,167(5):1560-71.
    [252]BILLAUT-MULOT 0, COCUDE C, KOLESNITCHENKO V, et al. SS-56, a novel cellular target of autoantibody responses in Sjogren syndrome and systemic lupus erythematosus [J]. J Clin Invest,2001,108(6):861-9.
    [253]RAJSBAUM R, STOYE J P, O'GARRA A. Type I interferon-dependent and-independent expression of tripartite motif proteins in immune cells [J]. Eur J Immunol, 2008,38(3):619-30.
    [254]STREMLAU M, OWENS C M, PERRON M J, et al. The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys [J]. Nature,2004,427(6977): 848-53.
    [255]YAP M W, NISOLE S, LYNCH C, et al. Trim5alpha protein restricts both HIV-1 and murine leukemia virus [J]. Proc Natl Acad Sci U S A,2004,101(29):10786-91.
    [256]ELDIN P, PAPON L,OTEIZA A, et al. TRIM22 E3 ubiquitin ligase activity is required to mediate antiviral activity against encephalomyocarditis virus [J]. The Journal of general virology,2009,90 (Pt 3):536-45.
    [257]GAO B, DUAN Z, XU W, et al. Tripartite motif-containing 22 inhibits the activity of hepatitis B virus core promoter, which is dependent on nuclear-located RING domain [J]. Hepatology,2009,50(2):424-33.
    [258]KEEBLE A H, KHAN Z, FORSTER A, et al. TRIM21 is an IgG receptor that is structurally, thermodynamically, and kinetically conserved [J]. Proc Natl Acad Sci U S A,2008,105(16):6045-50.
    [259]MALLERY D L, MCEWAN W A, BIDGOOD S R, et al. Antibodies mediate intracellular immunity through tripartite motif-containing 21 (TRIM21) [J]. Proc Natl Acad Sci U S A,2010,107(46):19985-90.
    [260]WANG J, LIU B, WANG N, et al. TRIM56 is a virus-and interferon-inducible E3 ubiquitin ligase that restricts pestivirus infection [J]. J Virol,2011,85(8): 3733-45.
    [261]GEOFFROY M C, CHELBI-ALIX M K. Role of promyelocytic leukemia protein in host antiviral defense [J]. J Interferon Cytokine Res,2011,31(1):145-58.
    [262]WOLF D, GOFF S P. TRIM28 mediates primer binding site-targeted silencing of murine leukemia virus in embryonic cells [J]. Cell,2007,131 (1):46-57.
    [263]UCHIL P D, QUINLAN B D, CHAN W T, et al. TRIM E3 ligases interfere with early and late stages of the retroviral life cycle [J]. PLoS pathogens,2008,4(2):e16.
    [264]NAKASATO N, IKEDA K, URANO T, et al. A ubiquitin E3 ligase Efp is up-regulated by interferons and conjugated with ISG15 [J]. Biochem Biophys Res Commun, 2006,351 (2):540-6.
    [265]ZOU W, ZHANG D E. The interferon-inducible ubiquitin-protein isopeptide ligase (E3) EFP also functions as an ISG15 E3 ligase [J]. J Biol Chem,2006,281(7): 3989-94.
    [266]JEON Y J, Y00 H M, CHUNG C H. ISG15 and immune diseases [J]. Biochimica et biophysica acta,2010,1802(5):485-96.
    [267]SHI M, DENG W, BI E, et al. TRIM30 alpha negatively regulates TLR-mediated NF-kappa B activation by targeting TAB2 and TAB3 for degradation [J]. Nat Immunol,2008, 9(4):369-77.
    [268]TAREEN S U, EMERMAN M. Human Trim5alpha has additional activities that are uncoupled from retroviral capsid recognition [J]. Virology,2011,409(1):113-20.
    [269]GACK M U, SHIN Y C, J00 C H, et al. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity [J]. Nature,2007,446(7138):916-20.
    [270]GACK M U, ALBRECHT R A, URANO T, et al. Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I [J]. Cell Host Microbe,2009,5(5):439-49.
    [271]ZENG W, SUN L, JIANG X, et al. Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity [J]. Cell,2010, 141(2):315-30.
    [272]WANG P, ARJONA A, ZHANG Y, et al. Caspase-12 controls West Nile virus infection via the viral RNA receptor RIG-I [J]. Nat Immunol,2010,11(10):912-9.
    [273]TSUCHIDA T, ZOU J, SAITOH T, et al. The ubiquitin ligase TRIM56 regulates innate immune responses to intracellular double-stranded DNA [J]. Immunity,2010,33(5): 765-76.
    [274]ARIMOTO K, FUNAMI K, SAEKI Y, et al. Polyubiquitin conjugation to NEMO by triparite motif protein 23 (TRIM23) is critical in antiviral defense [J]. Proc Nat l Acad Sci U S A,2010,107(36):15856-61.
    [275]POOLE E, GROVES I, MACDONALD A, et al. Identification of TRIM23 as a cofactor involved in the regulation of NF-kappaB by human cytomegalovirus [J]. J Virol, 2009,83(8):3581-90.
    [276]YANGK, SHI H X, LIU X Y, et al. TRIM21 is essential to sustain IFN regulatory factor 3 activation during antiviral response [J]. J Immunol,2009,182(6):3782-92.
    [277]HIGGS R, NI GABHANN J, BEN LARBI N, et al. The E3 ubiquitin ligase Ro52 negatively regulates IFN-beta production post-pathogen recognition by polyubiquitin-mediated degradation of IRF3 [J]. J Immunol,2008,181(3):1780-6.
    [278]HIGGS R, LAZZARI E, WYNNE C, et al. Self protection from anti-viral responses--Ro52 promotes degradation of the transcription factor IRF7 downstream of the viral Toll-Like receptors [J]. PLoS One,2010,5(7):e11776.
    [279]YOUNG J A, SERMWITTAYAWONG D, KIM H J, et al. Fas-associated death domain (FADD) and the E3 ubiquitin-protein ligase TRIM21 interact to negatively regulate virus-induced interferon production [J]. J Biol Chem,2011,286(8):6521-31.
    [280]KONG H J, ANDERSON D E, LEE C H, et al. Cutting edge:autoantigen Ro52 is an interferon inducible E3 ligase that ubiquitinates IRF-8 and enhances cytokine expression in macrophages [J]. J Immunol,2007,179(1):26-30.
    [281]ESPINOSA A, DARDALHON V, BRAUNER S, et al. Loss of the lupus autoantigen Ro52/Trim21 induces tissue inflammation and systemic auto immunity by disregulating the IL-23-Th 17 pathway [J]. J Exp Med,2009,206(8):1661-71.
    [282]YOSHIMI R, CHANG T H, WANG H, et al. Gene disruption study reveals a nonredundant role for TRIM21/Ro52 in NF-kappaB-dependent cytokine expression in fibroblasts [J]. J Immunol,2009,182(12):7527-38.
    [283]ZHA J, HAN K J, XU L G, et al. The Ret finger protein inhibits signaling mediated by the noncanonical and canonical IkappaB kinase family members [J]. J Immunol, 2006,176(2):1072-80.
    [284]WADA K, NIIDA M, TANAKA M, et al. Ro52-mediated monoubiquitination of IKK{beta} down-regulates NF-{kappa}B signalling [J]. Journal of biochemistry,2009, 146(6):821-32.
    [285]CHAE J J, WOOD G, RICHARD K, et al. The familial Mediterranean fever protein, pyrin, is cleaved by caspase-1 and activates NF-kappaB through its N-terminal fragment [J]. Blood,2008,112(5):1794-803.
    [286]MATSUDA A, SUZUKI Y, HONDA G, et al. Large-scale identification and characterization of human genes that activate NF-kappaB and MAPK signaling pathways [J]. Oncogene,2003,22(21):3307-18.
    [287]ALBOR A, EL-HIZAWI S, HORN E J, et al. The interaction of Piasy with Trim32, an E3-ubiquitin ligase mutated in limb-girdle muscular dystrophy type 2H, promotes Piasy degradation and regulates UVB-induced keratinocyte apoptosis through NFkappaB [J]. J Biol Chem,2006,281(35):25850-66.
    [288]KUBOTA T, MATSUOKA M, XU S, et al. PIASy inhibits virus-induced and interferon-stimulated transcription through distinct mechanisms [J]. J Biol Chem,2011, 286(10):8165-75.
    [289]PERTEL T, HAUSMANA S, MORGER D, et al. TRIM5 is an innate immune sensor for the retrovirus capsid lattiee [J].Nature,2011,472(7343): 361-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700