酿酒酵母中TRAPP复合体专一性亚基在囊泡运输和细胞自噬中的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
囊泡运输与细胞自噬是真核生物维持正常生命活动所必需的生理过程,其中囊泡运输是实现细胞内物质运输的重要途径,而细胞自噬则是维持细胞内生理平衡并帮助细胞度过逆境的一种细胞内物质降解途径。
     酿酒酵母(Saccharomyces cerevisiae)细胞中不同细胞器之间的囊泡运输受到Ypt/Rab家族小G蛋白(GTPases)的调控,而小G蛋白又受到鸟苷酸交换因子(GEFs)和GTPase激活蛋白(GAPs)的调节,使小G蛋白在GTP结合态(活性形态)和GDP结合态(非活性形态)之间循环。酿酒酵母中的TRAPP (Transport Protein Particle, TRAPP)复合体是多亚基大分子复合体,可作为GEFs激活小G蛋白Yptl和Ypt31/32。到目前为止,研究认为TRAPP复合体在细胞内存在三种类型,其中TRAPPⅡ复合体可以激活Yptl,调控着内质网到高尔基体的囊泡运输;TRAPPⅡ复合体可以激活Ypt31/32,调控着高尔基体到质膜及内涵体到高尔基体的囊泡运输;TRAPPⅢ复合体同样可激活Ypt1,但参与调控细胞自噬过程。Trs85是TRAPPⅢ复合体专一性亚基,在细胞自噬途径中发挥重要作用,但也有实验显示过量表达Trs85能恢复TRAPP复合体亚基Bet3和Bet5突变体在高温下生长,另有实验发现在GFP标记v-SNARE蛋白Snc1的菌株中敲除TRS85将导致GFP-Snc1的运输受阻,且表型与TRAPPⅡ复合体专一性亚基突变类似。这些遗传学上的实验证据表明Trs85也参与囊泡运输,但具体机制并不清楚。Trs130是TRAPPⅡ复合体的专一性亚基,大量实验数据表明,Trs130通过其所在的TRAPP复合体作为GEF调控Ypt31/32,参与囊泡运输,但并不清楚Trs130及其他TRAPPⅡ专一性亚基是否参与细胞自噬过程。近年发现小G蛋白Ypt31/32调控细胞自噬过程,那么作为GEF调控Ypt31/32的TRAPPⅡ复合体是否会调控细胞自噬过程?为了全面探讨含有专一性亚基的TRAPPⅢ和TRAPPⅡ复合体分别在囊泡运输与细胞自噬中的作用及机制,本研究在已有报道Trs85调控细胞自噬和Trs130调控囊泡运输的基础上,着重剖析Trs85在囊泡运输和Trs130在细胞自噬中的功能及作用机制,得到如下几方面的主要结果:
     1.Trs85调控细胞内内质网到高尔基体的物质运输
     在GFP标记Snc1蛋白的菌株中敲除TRS85,通过跟踪GFP-Snc1的运输来反映细胞内囊泡运输的情况。结果发现:(1)在GFP标记Sncl的菌株中敲除TRS85,引起菌株对高温敏感,计为trs85Δts。(2)高温处理该菌株后观察荧光,发现trs85Δts中GFP-Snc1不能被正常地运输到质膜上,而是积累在内质网,与ypt1ts中所出现的GFP-Snc1表型类似。这两种突变体在高温下所出现的GFP-Snc1表型不同于对应的另外两种突变体trs130ts和ypt31Δ/32ts中的GFP-Snc1表型。后两种突变体在高温下GFP-Sncl也不能被正常运输到质膜上,但积累在内涵体上。这些结果表明,Trs85与Yptl调控着囊泡从内质网到高尔基体的运输,而Trs130与Ypt31/32则调控着囊泡从内涵体到高尔基体的运输。
     2.过量表达Ypt1和Ypt31/32能分别恢复trs85Δts和trs130ts突变体的生长及囊泡运输缺陷
     GFP-Snc1在Trs85和Yptl的突变体中存在着相似的荧光表型。为了探讨Trs85及其所在的TRAPPⅢ复合体是否通过Yptl调控囊泡运输,本研究在trs85Δts和trs130ts突变体中过量表达Yptl和Ypt31/32,结果显示:过量表达Yptl能恢复trs85Δts突变体在高温下生长及解除GFP-Snc1运输受阻,而过量表达Ypt31/32则没有类似效果;相对应地,过量表达Ypt31/32能恢复trs130ts突变体在高温下生长及解除GFP-Snc1运输受阻,而过量表达Yptl则没有类似效果。这些结果表明,Trs85或其所在的TRAPPⅢ复合体通过调控Yptl参与内质网到高尔基体的囊泡运输,Trs130则是通过调控Ypt31/32参与内涵体到高尔基体的囊泡运输。
     3.Trs130调控细胞自噬过程中Atg8和Atg9从反式高尔基体向PAS的募集
     Pho8△60碱性磷酸酶的活性水平是检测细胞自噬是否正常的重要指标。本研究在TN124为背景的菌株中构建trs130ts突变体检测Pho8A60活性,发现在限制性温度下诱导细胞自噬,突变体中碱性磷酸酶的活性远低于野生型。通过Western blot定量分析,检测营养丰富或氮饥饿诱导细胞自噬的条件下prApel成熟与Atg8降解的情况,结果显示:在限制性温度下,trs130ts突变体中prApel在细胞内的成熟及Atg8在细胞内的降解受到阻碍。通过荧光观察GFP-Atg8的定位跟踪细胞内自噬过程,发现限制性温度下trs130ts突变体中GFP-Atg8不能被运输到液泡,并在细胞内积累形成多个绿色亮点。Atg9被认为是细胞自噬相关蛋白中唯一一个跨膜蛋白,Atg8的运输依赖于Atg9的功能。通过敲除ATG1后荧光观察Atg9的定位,发现限制性温度下trs130ts突变体中Atg9往PAS位点的顺向运输同样受阻。以上结果都表明trs130ts突变体中细胞自噬过程受阻。
     细胞自噬相关蛋白Atg11和Atg17作为脚手架蛋白,招募其它细胞自噬相关蛋白至PAS位点。通过敲除ATG11和ATG17发现,GFP-Atg8在trs130ts突变体细胞内依然会积累成多个亮点,表型与基因敲除前相似,说明Trs130作用于Atg8被招募至PAS位点之前。Sec7是分泌过程中的重要蛋白,通过Sec7-DsRed定位反式高尔基体来分析GFP-Atg8和Atg9-GFP在反式高尔基体上的分布情况,发现限制性温度下trs130ts突变体中一部分的Atg8和Atg9蛋白会与Sec7重合,不同于野生型菌株中很少有积累的情况,说明Trs130调控Atg8和Atg9从反式高尔基体到PAS的募集。
     4.Trs130通过Ypt31/32的活性介导细胞白噬
     至此,Trs130和Ypt31/32都参与细胞自噬过程。已知Trs130通过调控Ypt31/32的活性介导囊泡运输过程,但不清楚在细胞自噬过程中两者之间是否仍然存在类似关系?本研究发现,Trs130突变所造成的自噬缺陷表型可以通过过量表达小G蛋白Ypt32、Ypt31及GTP结合态的Ypt31得到恢复,而过量表达Yptl和GDP结合态的Ypt31则不能恢复。根据这一结果可以得出,细胞自噬中Trs130通过影响Ypt31/32的活性介导着细胞自噬过程,说明Trs130与Ypt31/32之间的GEF与GTPaes的对应关系同时存在于囊泡运输与细胞自噬过程中。
     本论文研究了酿酒酵母中TRAPP复合体专一性亚基Trs85和Trs130分别参与囊泡运输和细胞自噬的过程,研究结果为全面阐述TRAPPⅢ和TRAPPⅡ复合体及其专一性亚基在囊泡运输与细胞自噬这两大生理过程中的功能及作用机制提供了充分的实验依据,为进一步研究不同类型TRAPP复合体之间的联系提供了坚实的理论基础。
Vesicle trafficking and autophagy are basic physiological processes in eukaryotes for cell survival. Vesicle trafficking is an important way for the transport of substances within the cell, while autophagy is an essential cellular degradation process that eliminates obsoletes or damaged cytoplasmic materials to maintain intracellular homeostasis.
     Vesicle transport among different organelles in yeast is regulated by a molecular switch named Ypt/Rab GTPases, which are activated by Guanine nucleotide exchange factors (GEFs) and inactivated by GTPase-activating proteins (GAPs) to cycle between GTP-bound form and GDP-bound form. TRAPP (Transport protein particle) complex is one of the large multisubunit complexes and is implicated in tethering vesicles. Three TRAPP complexes (Ⅰ, Ⅱ and Ⅲ) are reported in yeast for their GEF activities for GTPases Yptl and Ypt31/32. TRAPPI regulates endoplasmic reticulum(ER)-to-Golgi trafficking by activating Ypt1, TRAPPII regulates Golgi-to-plasma membrane and endosome-to-Golgi trafficking by activating Ypt31/32. TRAPPIII regulates autophagy by activating Yptl Trs85is a specific subunit of TRAPPIII complex which has important roles in autophagy. There are also data showing that the overexpression of Trs85can suppress the growth defect of bet3ts and bet5ts (Bet3and Bet5is the subunit of TRAPP complex) mutants at high temperature. Others further reported that the GFP-Sncl (Sncl is a v-SNARE protein) transport was blocked in trs85A mutant and the phenotype is similar to the mutant of TRAPPII-specific subunits. These genetic evidences indicate that Trs85participates in vesicle trafficking with unknown mechanism. Trs130is a specific subunit of TRAPPII complex, and some data suggest that Trs130is involved in the transport of substance to exit the Golgi. It is unknown whether Trs130and other TRAPPⅡ-specific subunits regulate autophagy. Recently, Ypt31/32was shown to regulate autophagy. It was speculated that TRAPPII complex may regulate autophagy through its substrate Ypt31/32. In order to globally elucidate the functions of TRAPPIII and TRAPPII (both with specific TRAPP subunits) in both vesicle trafficking and autophagy, this study focuses on the functions and mechanisms of Trs85in vesicle trafficking and Trsl30in autophagy. The main results are listed below:
     1. Trs85played a role in ER-to-Golgi vesicle trafficking in yeast
     GFP-Snc1was used as a probe to reflect the process of vesicle trafficking in yeast. Results found are:(1) GFP-Sncl tagged strains became temperature-sensitive when TRS85was deleted, the resulting strain designated as trs85Δts;(2) GFP-Sncl accumulated in the ER and did not recycle to the PM in trs85Δts mutant cells after incubated at high temperature treatment. Similar GFP-Sncl phenotype was found in yptlts mutant at the restrictive temperature. This internal GFP-Sncl phenotypes in both mutants were different from those in ypt31A/32ts and trs130ts mutant cells, in which GFP-Sncl accumulated in endosomes with defect to reach the PM at the restrictive temperature. Results suggest that Trs85and Yptl regulate ER-to-Golgi transport; whereas Trs130and Ypt31/32regulate endosome-to-Golgi transport.
     2. Grouping Yptl with Trs85and Ypt31/32with Trs130in vesicle trafficking
     There are similar GFP-Sncl phenotypes between trs85Δts and yptlts mutant. In order to know whether Trs85functions through Yptl in vesicular transport, Yptl and Ypt31/32were overexpressed in trs85Δts and trs130ts mutant cells. Results are:Yptl restored the intracellular trafficking of GFP-Sncl and the growth of trs85Δts mutant cells at the restrictive temperature, while Ypt31/32did not. In contrast, Ypt31/32, but not Yptl restored the intracellular trafficking of GFP-Sncl and the growth of trs130ts mutant cells at the restrictive temperature. These results suggest that Trs85or TRAPPIII regulates ER-to-Golgi transport through Yptl while Trs130regulates endosome-to-Golgi transport through Ypt31/32.
     3. Trs130regulated the recruitment of Atg8and Atg9from the trans-Golgi to the PAS in autophagy.
     The Pho8A60assay is a quantitative method to detect autophagy. When autophagy was induced at a non-permissive temperature (NPT), the Pho8Δ60activity in trs130ts mutant is much lower than that in wild-type. Immunoblot assay was further applied to determine GFP-Atg8degradation and prApe1maturation in the trs130ts mutant in the process of autophagy. Results showed that prApel maturation and GFP-Atg8degradation were impaired in trs130ts cells under both rich and starvation conditions at NPT. By fluorescence microscopy, GFP-Atg8was found to accumulate in the cytosol as multiple dots at NPT. The Atg9is the only transmembrane protein among Atg proteins and Atg8transport depends on Atg9. Using TAKA assay, we found that Atg9anterograde transport was defective in trs130ts mutant at NPT independent of culture medium. These results indicate that autophagy processes are blocked in trs130ts mutants.
     Atg-related protein Atg11and Atg17are scaffolding proteins, and both can recruit other Atg proteins to the PAS in the Cvt pathway and autophagy. GFP-Atg8in trs130ts mutant still accumulated as multiple dots in the absence of ATG11and ATG17. This indicates Trsl30functions upstream of the recruitment of Atg proteins to the PAS. Sec7is indispensable for secretion and localizes to the trans-Golgi. Using Sec7-DeRed as a trans-Golgi marker, Atg8and Atg9were found to be partially trapped in the trans-Golgi, not like the few localization of Atg8and Atg9in the trans-Golgi in wild-type. In summary, autophagy was impaired in trs130ts mutant and Trs130regulates the recruitment of Atg8and Atg9from the trans-Golgi to the PAS.
     4. Trs130mediates autophagy through the activity of Yptt31/32
     Untill now, both Trs130and Ypt31/32regulate autophagy. Trs130mediates vesicle trafficking through Ypt31/32, but it is unclear whether Trs130mediates autophagy through Ypt31/32. In this study, we found that the overexpression of Ypt32, Ypt31or the GTP-bound form of Ypt31, but not Yptl or the GTP-bound form of Ypt31, rescued autophagy defects in trs130ts mutant cells. We conclude that Trs130participates in autophagy through the activity of Ypt31/32and suggest that the GEF-GTPases relationship existing in both vesicle trafficking and autophagy.
     This study elucidate the functions and mechanisms of Trs85and Trs130in vesicle trafficking and autophagy respectively. The results obtained here provide comprehensive experimental evidence for the roles and mechanisms of TRAPPIII and TRAPPⅡ in vesicle trafficking and autophagy, which will facilate the studies of the functional relationships among TRAPP complexes.
引文
Abeliovich, H., Dunn, W. A., Jr., Kim, J., et al. (2000). Dissection of autophagosome biogenesis into distinct nucleation and expansion steps. J Cell Biol 151:1025-1034.
    Allan, B. B., Moyer, B. D. and Balch, W. E. (2000). Rabl recruitment of p115 into a cis-SNARE complex:programming budding COPII vesicles for fusion. Science 289:444-448.
    Andrei-Selmer, C., Knuppel, A., Satyanarayana, C., et al. (2001). A new class of mutants deficient in dodecamerization of aminopeptidase 1 and vacuolar transport. J Biol Chem 276:11606-11614.
    Ashford, T. P. and Porter, K. R. (1962). Cytoplasmic components in hepatic cell lysosomes. J Cell Biol 12:198-202.
    Baba, M., Osumi, M. and Ohsumi, Y. (1995). Analysis of the membrane structures involved in autophagy in yeast by freeze-replica method. Cell Struct Funct 20:465-471.
    Baba, M., Osumi, M., Scott, S. V., et al. (1997). Two distinct pathways for targeting proteins from the cytoplasm to the vacuole/lysosome. J Cell Biol 139:1687-1695.
    Baba, M., Takeshige, K., Baba, N., et al. (1994). Ultrastructural analysis of the autophagic process in yeast:detection of autophagosomes and their characterization. J Cell Biol 124:903-913.
    Barlowe, C, Orci, L., Yeung, T., et al. (1994). COPⅡ:a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell 77:895-907.
    Barrowman, J., Bhandari, D., Reinisch, K., et al. (2010). TRAPP complexes in membrane traffic: convergence through a common Rab. Nat Rev Mol Cell Biol 11:759-763.
    Barrowman, J., Sacher, M. and Ferro-Novick, S. (2000). TRAPP stably associates with the Golgi and is required for vesicle docking. EMBO J 19:862-869.
    Bentley, M., Liang, Y, Mullen, K., et al. (2006). SNARE status regulates tether recruitment and function in homotypic COPII vesicle fusion. J Biol Chem 281:38825-38833.
    Bonifacino, J. S. and Glick, B. S. (2004). The mechanisms of vesicle budding and fusion. Cell 116: 153-166.
    Bonifacino, J. S. and Lippincott-Schwartz, J. (2003). Coat proteins:shaping membrane transport. Nat Rev Mol Cell Biol 4:409-414.
    Broadie, K., Prokop, A., Bellen, H. J., et al. (1995). Syntaxin and synaptobrevin function downstream of vesicle docking in Drosophila. Neuron 15:663-673.
    Brunet., S., Noueihed., B., Shahrzad., N., et al. (2012). The SMS domain of Trs23p is responsible for the in vitro appearance of the TRAPP I complex in Saccharomyces cerevisiae. Cellular Logistics 2: 1-15.
    Cai, H., Reinisch, K. and Ferro-Novick, S. (2007). Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev Cell 12:671-682.
    Cai, H., Yu, S., Menon, S., et al. (2007). TRAPPI tethers COPII vesicles by binding the coat subunit Sec23. Nature 445:941-944.
    Cai, H., Zhang, Y., Pypaert, M., et al. (2005). Mutants in trsl20 disrupt traffic from the early endosome to the late Golgi. J Cell Biol 171:823-833.
    Cai, Y., Chin, H. F., Lazarova, D., et al. (2008). The structural basis for activation of the Rab Yptlp by the TRAPP membrane-tethering complexes. Cell 133:1202-1213.
    Cecconi, F. and Levine, B. (2008). The role of autophagy in mammalian development:cell makeover rather than cell death. Dev Cell 15:344-357.
    Chen, S. H., Chen, S., Tokarev, A. A., et al. (2005). Ypt31/32 GTPases and their novel F-box effector protein Rcy1 regulate protein recycling. Mol Biol Cell 16:178-192.
    Cheong, H., Yorimitsu, T., Reggiori, F., et al. (2005). Atg17 regulates the magnitude of the autophagic response. Mol Biol Cell 16:3438-3453.
    Choi, C., Davey, M., Schluter, C., et al. (2011). Organization and assembly of the TRAPPII complex. Traffic 12:715-725.
    Cox, R., Chen, S. H., Yoo, E., et al. (2007). Conservation of the TRAPPII-specific subunits of a Ypt/Rab exchanger complex. BMC Evol Biol 7:12.
    Darsow, T., Rieder, S. E. and Emr, S. D. (1997). A multispecificity syntaxin homologue, Vam3p, essential for autophagic and biosynthetic protein transport to the vacuole. J Cell Biol 138:517-529.
    Deter, R. L., Baudhuin, P. and De Duve, C. (1967). Participation of lysosomes in cellular autophagy induced in rat liver by glucagon. J Cell Biol 35:C11-16.
    Dirac-Svejstrup, A. B., Sumizawa, T. and Pfeffer, S. R. (1997). Identification of a GDI displacement factor that releases endosomal Rab GTPases from Rab-GDI. EMBO J 16:465-472.
    Feldmann, H. (2005). Yeast molecular biology, pp.166.
    Ferro-Novick, S., Novick, P., Field, C., et al. (1984). Yeast secretory mutants that block the formation of active cell surface enzymes. J Cell Biol 98:35-43.
    Galan, J. M., Wiederkehr, A., Seol, J. H., et al. (2001). Skp1p and the F-box protein Rcy1p form a non-SCF complex involved in recycling of the SNARE Snclp in yeast. Mol Cell Biol 21: 3105-3117.
    Gedeon, A. K., Colley, A., Jamieson, R., et al. (1999). Identification of the gene (SEDL) causing X-linked spondyloepiphyseal dysplasia tarda. Nat Genet 22:400-404.
    Geng, J. and Klionsky, D. J. (2008). The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy.'Protein modifications:beyond the usual suspects' review series. EMBO Rep 9: 859-864.
    Geng, J. and Klionsky, D. J. (2010). The Golgi as a potential membrane source for autophagy. Autophagy 6:950-951.
    Geng, J., Nair, U., Yasumura-Yorimitsu, K., et al. (2010). Post-Golgi sec proteins are required for autophagy in Saccharomyces cerevisiae. Mol Biol Cell 21:2257-2269.
    Gietz, D., St Jean, A., Woods, R. A., et al. (1992). Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 20:1425.
    Gillingham, A. K. and Munro, S. (2003). Long coiled-coil proteins and membrane traffic. Biochim Biophys Acta 1641:71-85.
    Glick, D., Barth, S. and Macleod, K. F. (2010). Autophagy:cellular and molecular mechanisms. J Pathol 221:3-12.
    Godi, A., Di Campli, A., Konstantakopoulos, A., et al. (2004). FAPPs control Golgi-to-cell-surface membrane traffic by binding to ARF and PtdIns(4)P. Nat Cell Biol 6:393-404.
    Goffeau, A., Barrell, B. G, Bussey, H., et al. (1996). Life with 6000 genes. Science 274:546,563-547.
    Goldstein, A. L. and McCusker, J. H. (1999). Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15:1541-1553.
    Grosshans, B. L., Ortiz, D. and Novick, P. (2006). Rabs and their effectors:achieving specificity in membrane traffic. Proc Natl Acad Sci U S A 103:11821-11827.
    Gwynn, B., Smith, R. S., Rowe, L. B., et al. (2006). A mouse TRAPP-related protein is involved in pigmentation. Genomics 88:196-203.
    Hammer, J. A.,3rd and Wu, X. S. (2002). Rabs grab motors:defining the connections between Rab GTPases and motor proteins. Curr Opin Cell Biol 14:69-75.
    Hanada, T., Noda, N. N., Satomi, Y., et al. (2007). The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem 282:37298-37302.
    He, C., Baba, M., Cao, Y, et al. (2008). Self-interaction is critical for Atg9 transport and function at the phagophore assembly site during autophagy. Mol Biol Cell 19:5506-5516.
    He, C. and Klionsky, D. J. (2007). Atg9 trafficking in autophagy-related pathways. Autophagy 3: 271-274.
    Hoffman, C. S. (2001). Preparation of yeast DNA. Curr Protoc Mol Biol Chapter 13:Unit13 11.
    Huang, W. P., Scott, S. V., Kim, J., et al. (2000). The itinerary of a vesicle component, Aut7p/Cvt5p, terminates in the yeast vacuole via the autophagy/Cvt pathways. J Biol Chem 275:5845-5851.
    Hunt, J. M., Bommert, K., Charlton, M. P., et al. (1994). A post-docking role for synaptobrevin in synaptic vesicle fusion. Neuron 12:1269-1279.
    Hutagalung, A. H. and Novick, P. J. (2011). Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev 91:119-149.
    Ichimura, Y., Kirisako, T., Takao, T., et al. (2000). A ubiquitin-like system mediates protein lipidation. Nature 408:488-492.
    Inoue, Y. and Klionsky, D. J. (2010). Regulation of macroautophagy in Saccharomyces cerevisiae. Semin Cell Dev Biol 21:664-670.
    Ishihara, N., Hamasaki, M., Yokota, S., et al. (2001). Autophagosome requires specific early Sec proteins for its formation and NSF/SNARE for vacuolar fusion. Mol Biol Cell 12:3690-3702.
    James, P., Halladay, J. and Craig, E. A. (1996). Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144:1425-1436.
    Jamieson, J. D. and Palade, G. E. (1968). Intracellular transport of secretory proteins in the pancreatic exocrine cell.3. Dissociation of intracellular transport from protein synthesis. J Cell Biol 39: 580-588.
    Jedd, G., Mulholland, J. and Segev, N. (1997). Two new Ypt GTPases are required for exit from the yeast trans-Golgi compartment. J Cell Biol 137:563-580.
    Jedd, G., Richardson, C., Litt, R., et al. (1995). The Yptl GTPase is essential for the first two steps of the yeast secretory pathway. J Cell Biol 131:583-590.
    Jones, S., Jedd, G, Kahn, R. A., et al. (1999). Genetic interactions in yeast between Ypt GTPases and Arf guanine nucleotide exchangers. Genetics 152:1543-1556.
    Jones, S., Newman, C., Liu, F., et al. (2000). The TRAPP complex is a nucleotide exchanger for Yptl and Ypt31/32. Mol Biol Cell 11:4403-4411.
    Kahn, R. A., Der, C. J. and Bokoch, G. M. (1992). The ras superfamily of GTP-binding proteins: guidelines on nomenclature. Faseb J 6:2512-2513.
    Kaneko, Y., Hayashi, N., Toh-e, A., et al. (1987). Structural characteristics of the PHO8 gene encoding repressible alkaline phosphatase in Saccharomyces cerevisiae. Gene 58:137-148.
    Kawamata, T., Kamada, Y., Kabeya, Y., et al. (2008). Organization of the pre-autophagosomal structure responsible for autophagosome formation. Mol Biol Cell 19:2039-2050.
    Kaytor, M. D. and Livingston, D. M. (1995). GSG1, a yeast gene required for sporulation. Yeast 11: 1147-1155.
    Khalfan, W. A. and Klionsky, D. J. (2002). Molecular machinery required for autophagy and the cytoplasm to vacuole targeting (Cvt) pathway in S. cerevisiae. Curr Opin Cell Biol 14:468-475.
    Kim, J., Huang, W. P. and Klionsky, D. J. (2001). Membrane recruitment of Aut7p in the autophagy and cytoplasm to vacuole targeting pathways requires Autlp, Aut2p, and the autophagy conjugation complex. J Cell Biol 152:51-64.
    Kim, Y. G., Raunser, S., Munger, C., et al. (2006). The architecture of the multisubunit TRAPP I complex suggests a model for vesicle tethering. Cell 127:817-830.
    Kirchhausen, T. (2000). Three ways to make a vesicle. Nat Rev Mol Cell Biol 1:187-198.
    Kirisako, T., Ichimura, Y., Okada, H., et al. (2000). The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J Cell Biol 151:263-276.
    Klionsky, D. J. (2005). The molecular machinery of autophagy:unanswered questions. J Cell Sci 118: 7-18.
    Klionsky, D. J. (2007). Autophagy:from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol 8:931-937.
    Klionsky, D. J., Cregg, J. M., Dunn, W. A., Jr., et al. (2003). A unified nomenclature for yeast autophagy-related genes. Dev Cell 5:539-545.
    Klionsky, D. J., Cueva, R. and Yaver, D. S. (1992). Aminopeptidase I of Saccharomyces cerevisiae is localized to the vacuole independent of the secretory pathway. J Cell Biol 119:287-299.
    Klionsky, D. J. and Emr, S. D. (1989). Membrane protein sorting:biosynthesis, transport and processing of yeast vacuolar alkaline phosphatase. EMBO J 8:2241-2250.
    Klionsky, D. J. and Emr, S. D. (2000). Autophagy as a regulated pathway of cellular degradation. Science 290:1717-1721.
    Klionsky, D. J. and Ohsumi, Y. (1999). Vacuolar import of proteins and organelles from the cytoplasm. Annu Rev Cell Dev Biol 15:1-32.
    Koumandou, V. L., Dacks, J. B., Coulson, R. M., et al. (2007). Control systems for membrane fusion in the ancestral eukaryote; evolution of tethering complexes and SM proteins. BMC Evol Biol 7:29.
    Krick, R., Bremer, S., Welter, E., et al. (2010). Cdc48/p97 and Shpl/p47 regulate autophagosome biogenesis in concert with ubiquitin-like Atg8. J Cell Biol 190:965-973.
    Kunz, J. B., Schwarz, H. and Mayer, A. (2004). Determination of four sequential stages during microautophagy in vitro. J Biol Chem 279:9987-9996.
    Lafourcade, C., Galan, J. M., Gloor, Y., et al. (2004). The GTPase-activating enzyme Gyp1p is required for recycling of internalized membrane material by inactivation of the Rab/Ypt GTPase Yptlp. Mol Cell Biol 24:3815-3826.
    Lazar, T, Gotte, M. and Gallwitz, D. (1997). Vesicular transport:how many Ypt/Rab-GTPases make a eukaryotic cell? Trends Biochem Sci 22:468-472.
    LeBlanc, M. A. and McMaster, C. R. (2010). Lipid binding requirements for oxysterol-binding protein Kesl inhibition of autophagy and endosome-trans-Golgi trafficking pathways. J Biol Chem 285: 33875-33884.
    Lee, M. C., Miller, E. A., Goldberg, J., et al. (2004). Bi-directional protein transport between the ER and Golgi. Annu Rev Cell Dev Biol 20:87-123.
    Letourneur, F., Gaynor, E. C., Hennecke, S., et al. (1994). Coatomer is essential for retrieval of dilysine-tagged proteins to the endoplasmic reticulum. Cell 79:1199-1207.
    Levine, B. and Klionsky, D. J. (2004). Development by self-digestion:molecular mechanisms and biological functions of autophagy. Dev Cell 6:463-477.
    Lewis, M. J., Nichols, B. J., Prescianotto-Baschong, C, et al. (2000). Specific retrieval of the exocytic SNARE Snc1p from early yeast endosomes. Mol Biol Cel1 11:23-38.
    Liang, Y., Morozova, N., Tokarev, A. A., et al. (2007). The role of Trs65 in the Ypt/Rab guanine nucleotide exchange factor function of the TRAPPⅡ complex. Mol Biol Cell 18:2533-2541.
    Lipatova, Z., Belogortseva, N., Zhang, X. Q., et al. (2012). Regulation of selective autophagy onset by a Ypt/Rab GTPase module. Proc Natl Acad Sci U S A 109:6981-6986.
    Livak, K. J. and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402-408.
    Loh, E., Peter, F., Subramaniam, V. N., et al. (2005). Mammalian Bet3 functions as a cytosolic factor participating in transport from the ER to the Golgi apparatus. J Cell Sci 118:1209-1222.
    Longtine, M. S., McKenzie, A.,3rd, Demarini, D. J., et al. (1998). Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14: 953-961.
    Lord, C., Bhandari, D., Menon, S., et al. (2011). Sequential interactions with Sec23 control the direction of vesicle traffic. Nature 473:181-186.
    Lynch-Day, M. A., Bhandari, D., Menon, S., et al. (2010). Trs85 directs a Yptl GEF, TRAPPⅢ, to the phagophore to promote autophagy. Proc Natl Acad Sci U S A 107:7811-7816.
    Lynch-Day, M. A. and Klionsky, D. J. (2010). The Cvt pathway as a model for selective autophagy. FEBS Lett 584:1359-1366.
    Ma, H., Kunes, S., Schatz, P. J., et al. (1987). Plasmid construction by homologous recombination in yeast. Gene 58:201-216.
    Majeski, A. E. and Dice, J. F. (2004). Mechanisms of chaperone-mediated autophagy. Int J Biochem Cell Biol 36:2435-2444.
    Malone, R. E. and Esposito, R. E. (1981). Recombinationless meiosis in Saccharomyces cerevisiae. Mol Cell Biol 1:891-901.
    Mari, M., Griffith, J., Rieter, E., et al. (2010). An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis. J Cell Biol 190:1005-1022.
    Massey, A., Kiffin, R. and Cuervo, A. M. (2004). Pathophysiology of chaperone-mediated autophagy. Int J Biochem Cell Biol 36:2420-2434.
    Matanis, T., Akhmanova, A., Wulf, P., et al. (2002). Bicaudal-D regulates COPI-independent Golgi-ER transport by recruiting the dynein-dynactin motor complex. Nat Cell Biol 4:986-992.
    McMahon, H. T. and Mills, I. G. (2004). COP and clathrin-coated vesicle budding:different pathways, common approaches. Curr Opin Cell Biol 16:379-391.
    Meiling-Wesse, K., Epple, U. D., Krick, R., et al. (2005). Trs85 (Gsgl), a component of the TRAPP complexes, is required for the organization of the preautophagosomal structure during selective autophagy via the Cvt pathway. J Biol Chem 280:33669-33678.
    Michelsen, K., Mrowiec, T., Duderstadt, K. E., et al. (2006). A multimeric membrane protein reveals 14-3-3 isoform specificity in forward transport in yeast. Traffic 7:903-916.
    Miller, E. A., Beilharz, T. H., Malkus, P. N., et al. (2003). Multiple cargo binding sites on the COPⅡ subunit Sec24p ensure capture of diverse membrane proteins into transport vesicles. Cell 114: 497-509.
    Mir, A., Kaufman, L., Noor, A., et al. (2009). Identification of mutations in TRAPPC9, which encodes the NIK- and IKK-beta-binding protein, in nonsyndromic autosomal-recessive mental retardation. Am J Hum Genet 85:909-915.
    Mizushima, N. (2007). Autophagy:process and function. Genes Dev 21:2861-2873.
    Mizushima, N., Levine, B., Cuervo, A. M., et al. (2008). Autophagy fights disease through cellular self-digestion. Nature 451:1069-1075.
    Mochida, G. H., Mahajnah, M., Hill, A. D., et al. (2009). A truncating mutation of TRAPPC9 is associated with autosomal-recessive intellectual disability and postnatal microcephaly. Am J Hum Genet 85:897-902.
    Monastyrska, I., He, C., Geng, J., et al. (2008). Arp2 links autophagic machinery with the actin cytoskeleton. Mol Biol Cell 19:1962-1975.
    Monastyrska, I., Reggiori, F. and Klionsky, D. J. (2008). Harpooning the Cvt complex to the phagophore assembly site. Autophagy 4:914-916.
    Montpetit, B. and Conibear, E. (2009). Identification of the novel TRAPP associated protein Tca17. Traffic 10:713-723.
    Morishita, M., Mendonsa, R., Wright, J., et al. (2007). Snclp v-SNARE transport to the prospore membrane during yeast sporulation is dependent on endosomal retrieval pathways. Traffic 8: 1231-1245.
    Morozova, N., Liang, Y., Tokarev, A. A., et al. (2006). TRAPPⅡ subunits are required for the specificity switch of a Ypt-Rab GEF. Nat Cell Biol 8:1263-1269.
    Munz, C. (2010). Antigen processing via autophagy--not only for MHC class II presentation anymore? Curr Opin Immunol 22:89-93.
    Nair, U., Jotwani, A., Geng, J., et al. (2011). SNARE proteins are required for macroautophagy. Cell 146: 290-302.
    Nakatogawa, H., Ichimura, Y. and Ohsumi, Y. (2007). Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 130:165-178.
    Nakatogawa, H., Suzuki, K., Kamada, Y, et al. (2009). Dynamics and diversity in autophagy mechanisms:lessons from yeast. Nat Rev Mol Cell Biol 10:458-467.
    Nazarko, T. Y, Huang, J., Nicaud, J. M., et al. (2005). Trs85 is required for macroautophagy, pexophagy and cytoplasm to vacuole targeting in Yarrowia lipolytica and Saccharomyces cerevisiae. Autophagy 1:37-45.
    Noda, T., Kim, J., Huang, W. P., et al. (2000). Apg9p/Cvt7p is an integral membrane protein required for transport vesicle formation in the Cvt and autophagy pathways. J Cell Biol 148:465-480.
    Noda, T., Matsuura, A., Wada, Y, et al. (1995). Novel system for monitoring autophagy in the yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 210:126-132.
    Novick, P. and Brennwald, P. (1993). Friends and family:the role of the Rab GTPases in vesicular traffic. Cell 75:597-601.
    Novick, P. and Schekman, R. (1983). Export of major cell surface proteins is blocked in yeast secretory mutants. J Cell Biol 96:541-547.
    Obara, K., Sekito, T. and Ohsumi, Y. (2006). Assortment of phosphatidylinositol 3-kinase complexes--Atg14p directs association of complex I to the pre-autophagosomal structure in Saccharomyces cerevisiae. Mol Biol Cell 17:1527-1539.
    Ogier-Denis, E. and Codogno, P. (2003). Autophagy:a barrier or an adaptive response to cancer. Biochim Biophys Acta 1603:113-128.
    Ohashi, Y. and Munro, S. (2010). Membrane delivery to the yeast autophagosome from the Golgi-endosomal system. Mol Biol Cell 21:3998-4008.
    Owen, D. J., Collins, B. M. and Evans, P. R. (2004). Adaptors for clathrin coats:structure and function. Annu Rev Cell Dev Biol 20:153-191.
    Palade, G. (1975). Intracellular aspects of the process of protein synthesis. Science 189:867.
    Pearse, B. M. (1975). Coated vesicles from pig brain:purification and biochemical characterization. J Mol Biol 97:93-98.
    Perez-Victoria, F. J., Schindler, C., Magadan, J. G, et al. (2010). Ang2/fat-free is a conserved subunit of the Golgi-associated retrograde protein complex. Mol Biol Cell 21:3386-3395.
    Pfeffer, S. R. (2001). Rab GTPases:specifying and deciphering organelle identity and function. Trends Cell Biol 11:487-491.
    Philippe, O., Rio, M., Carioux, A., et al. (2009). Combination of linkage mapping and microarray-expression analysis identifies NF-kappaB signaling defect as a cause of autosomal-recessive mental retardation. Am J Hum Genet 85:903-908.
    Protopopov, V., Govindan, B., Novick, P., et al. (1993). Homologs of the synaptobrevin/VAMP family of synaptic vesicle proteins function on the late secretory pathway in S. cerevisiae. Cell 74:855-861.
    Reggiori, F. (2006).1. Membrane origin for autophagy. Curr Top Dev Biol 74:1-30.
    Reggiori, F. and Klionsky, D. J. (2005). Autophagosomes:biogenesis from scratch? Curr Opin Cell Biol 17:415-422.
    Reggiori, F. and Klionsky, D. J. (2006). Atg9 sorting from mitochondria is impaired in early secretion and VFT-complex mutants in Saccharomyces cerevisiae. J Cell Sci 119:2903-2911.
    Reggiori, F., Shintani, T., Nair, U., et al. (2005). Atg9 cycles between mitochondria and the pre-autophagosomal structure in yeasts. Autophagy 1:101-109.
    Reggiori, F., Tucker, K. A., Stromhaug, P. E., et al. (2004). The Atgl-Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure. Dev Cell 6:79-90.
    Rivera-Molina, F. E. and Novick, P. J. (2009). A Rab GAP cascade defines the boundary between two Rab GTPases on the secretory pathway. Proc Natl Acad Sci U S A 106:14408-14413.
    Roth, T. F. and Porter, K. R. (1964). Yolk Protein Uptake in the Oocyte of the Mosquito Aedes Aegypti. L.J Cell Biol 20:313-332.
    Rubinsztein, D. C., Shpilka, T. and Elazar, Z. (2012). Mechanisms of autophagosome biogenesis. Curr Biol 22:R29-34.
    Sacher, M., Barrowman, J., Schieltz, D., et al. (2000). Identification and characterization of five new subunits of TRAPP. Eur J Cell Biol 79:71-80.
    Sacher, M., Barrowman, J., Wang, W., et al. (2001). TRAPP I implicated in the specificity of tethering in ER-to-Golgi transport. Mol Cell 7:433-442.
    Sacher, M., Jiang, Y., Barrowman, J., et al. (1998). TRAPP, a highly conserved novel complex on the cis-Golgi that mediates vesicle docking and fusion. EMBO J 17:2494-2503.
    Sacher, M., Kim, Y. G, Lavie, A., et al. (2008). The TRAPP complex:insights into its architecture and function. Traffic 9:2032-2042.
    Schekman, R., Esmon, B., Ferro-Novick, S., et al. (1983). Yeast secretory mutants:isolation and characterization. Methods Enzymol 96:802-815.
    Schimmoller, F., Simon, I. and Pfeffer, S. R. (1998). Rab GTPases, directors of vesicle docking. J Biol Chem 273:22161-22164.
    Schmitt, M. E., Brown, T. A. and Trumpower, B. L. (1990). A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res 18:3091-3092.
    Sciorra, V. A., Audhya, A., Parsons, A. B., et al. (2005). Synthetic genetic array analysis of the PtdIns 4-kinase Piklp identifies components in a Golgi-specific Ypt31/rab-GTPase signaling pathway. Mol Biol Cell 16:776-793.
    Sclafani, A., Chen, S., Rivera-Molina, F., et al. (2010). Establishing a role for the GTPase Yptlp at the late Golgi. Traffic 11:520-532.
    Scott, S. V., Baba, M., Ohsumi, Y., et al. (1997). Aminopeptidase I is targeted to the vacuole by a nonclassical vesicular mechanism. J Cell Biol 138:37-44.
    Scott, S. V., Hefner-Gravink, A., Morano, K. A., et al. (1996). Cytoplasm-to-vacuole targeting and autophagy employ the same machinery to deliver proteins to the yeast vacuole. Proc Natl Acad Sci U S A 93:12304-12308.
    Seaman, M. N., McCaffery, J. M. and Emr, S. D. (1998). A membrane coat complex essential for endosome-to-Golgi retrograde transport in yeast. J Cell Biol 142:665-681.
    Segev, N. (2001). Ypt and Rab GTPases:insight into functions through novel interactions. Curr Opin Cell Biol 13:500-511.
    Segev, N. (2001). Ypt/rab gtpases:regulators of protein trafficking. Sci STKE 2001:re11.
    Segev, N., Mulholland, J. and Botstein, D. (1988). The yeast GTP-binding YPT1 protein and a mammalian counterpart are associated with the secretion machinery. Cell 52:915-924.
    Shintani, T., Huang, W. P., Stromhaug, P. E., et al. (2002). Mechanism of cargo selection in the cytoplasm to vacuole targeting pathway. Dev Cell 3:825-837.
    Shintani, T. and Klionsky, D. J. (2004). Autophagy in health and disease:a double-edged sword. Science 306:990-995.
    Shintani, T. and Klionsky, D. J. (2004). Cargo proteins facilitate the formation of transport vesicles in the cytoplasm to vacuole targeting pathway. J Biol Chem 279:29889-29894.
    Shintani, T. and Reggiori, F. (2008). Fluorescence microscopy-based assays for monitoring yeast Atg protein trafficking. Methods Enzymol 451:43-56.
    Shorter, J., Beard, M. B., Seemann, J., et al. (2002). Sequential tethering of Golgins and catalysis of SNAREpin assembly by the vesicle-tethering protein p115. J Cell Biol 157:45-62.
    Sikorski, R. S. and Hieter, P. (1989). A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19-27.
    Soldati, T., Shapiro, A. D., Svejstrup, A. B., et al. (1994). Membrane targeting of the small GTPase Rab9 is accompanied by nucleotide exchange. Nature 369:76-78.
    Sollner, T., Whiteheart, S. W., Brunner, M., et al. (1993). SNAP receptors implicated in vesicle targeting and fusion. Nature 362:318-324.
    Springer, S., Spang, A. and Schekman, R. (1999). A primer on vesicle budding. Cell 97:145-148.
    Stenmark, H. (2009). Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10: 513-525.
    Suzuki, K. (2012). Selective autophagy in budding yeast. Cell Death Differ.
    Suzuki, K., Kamada, Y. and Ohsumi, Y. (2002). Studies of cargo delivery to the vacuole mediated by autophagosomes in Saccharomyces cerevisiae. Dev Cell 3:815-824.
    Suzuki, K., Kirisako, T., Kamada, Y., et al. (2001). The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J 20: 5971-5981.
    Suzuki, K., Kubota, Y, Sekito, T., et al. (2007). Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells 12:209-218.
    Suzuki, K. and Ohsumi, Y (2007). Molecular machinery of autophagosome formation in yeast, Saccharomyces cerevisiae. FEBS Lett 581:2156-2161.
    Sztul, E. and Lupashin, V. (2006). Role of tethering factors in secretory membrane traffic. Am J Physiol Cell Physiol 290:C11-26.
    Takahashi, Y, Meyerkord, C. L., Hori, T., et al. (2011). Bif-1 regulates Atg9 trafficking by mediating the fission of Golgi membranes during autophagy. Autophagy 7:61-73.
    Takai, Y, Sasaki, T. and Matozaki, T. (2001). Small GTP-binding proteins. Physiol Rev 81:153-208.
    Tanida, I. (2011). Autophagosome formation and molecular mechanism of autophagy. Antioxid Redox Signal 14:2201-2214.
    Tokarev, A. A., Taussig, D., Sundaram, G., et al. (2009). TRAPP Ⅱ complex assembly requires Trs33 or Trs65. Traffic 10:1831-1844.
    Tsui, M. M. and Banfield, D. K. (2000). Yeast Golgi SNARE interactions are promiscuous. J Cell Sci 113 (Pt1):145-152.
    van der Vaart, A., Griffith, J. and Reggiori, F. (2010). Exit from the Golgi is required for the expansion of the autophagosomal phagophore in yeast Saccharomyces cerevisiae. Mol Biol Cell 21: 2270-2284.
    van der Vaart, A. and Reggiori, F. (2010). The Golgi complex as a source for yeast autophagosomal membranes. Autophagy 6:800-801.
    von Mollard, G. F., Nothwehr, S. F. and Stevens, T. H. (1997). The yeast v-SNARE Vtilp mediates two vesicle transport pathways through interactions with the t-SNAREs Sed5p and Pep12p. J Cell Biol 137:1511-1524.
    Wach, A. (1996). PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae. Yeast 12:259-265.
    Wang, C.-W. and Klionsky, D. J. (2004). Microautophagy in:Autophagy (Klionsky, D.J., Ed.). Landes Biosciencepp.107-114,.
    Wang, C. W., Hamamoto, S., Orci, L., et al. (2006). Exomer:A coat complex for transport of select membrane proteins from the trans-Golgi network to the plasma membrane in yeast. J Cell Biol 174: 973-983.
    Wang, W., Sacher, M. and Ferro-Novick, S. (2000). TRAPP stimulates guanine nucleotide exchange on Yptlp. J Cell Biol 151:289-296.
    Waters, M. G, Serafini, T. and Rothman, J. E. (1991).'Coatomer':a cytosolic protein complex containing subunits of non-clathrin-coated Golgi transport vesicles. Nature 349:248-251.
    Webber, J. L. and Tooze, S. A. (2010). New insights into the function of Atg9. FEBS Lett 584: 1319-1326.
    Webber, J. L., Young, A. R. and Tooze, S. A. (2007). Atg9 trafficking in Mammalian cells. Autophagy 3: 54-56.
    Weidberg, H., Shpilka, T., Shvets, E., et al. (2011). LC3 and GATE-16 N termini mediate membrane fusion processes required for autophagosome biogenesis. Dev Cell 20:444-454.
    Westlake, C. J., Baye, L. M., Nachury, M. V., et al. (2011). Primary cilia membrane assembly is initiated by Rabl1 and transport protein particle Ⅱ (TRAPPII) complex-dependent trafficking of Rabin8 to the centrosome. Proc Natl Acad Sci U S A 108:2759-2764.
    Whyte, J. R. and Munro, S. (2002). Vesicle tethering complexes in membrane traffic. J Cell Sci 115: 2627-2637.
    Xie, Z. and Klionsky, D. J. (2007). Autophagosome formation:core machinery and adaptations. Nat Cell Biol 9:1102-1109.
    Xie, Z., Nair, U. and Klionsky, D. J. (2008). Atg8 controls phagophore expansion during autophagosome formation. Mol Biol Cell 19:3290-3298.
    Yamagata, M., Obara, K. and Kihara, A. (2011). Sphingolipid synthesis is involved in autophagy in Saccharomyces cerevisiae. Biochem Biophys Res Commun 410:786-791.
    Yamamoto, H., Kakuta, S., Watanabe, T. M., et al. (2012). Atg9 vesicles are an important membrane source during early steps of autophagosome formation. J Cell Biol 198:219-233.
    Yamamoto, K. and Jigami, Y. (2002). Mutation of TRS130, which encodes a component of the TRAPP II complex, activates transcription of OCH1 in Saccharomyces cerevisiae. Curr Genet 42:85-93.
    Yamasaki, A., Menon, S., Yu, S., et al. (2009). mTrs130 is a component of a mammalian TRAPPII complex, a Rabl GEF that binds to COPI-coated vesicles. Mol Biol Cell 20:4205-4215.
    Yang, Z. and Klionsky, D. J. (2010). Eaten alive:a history of macroautophagy. Nat Cell Biol 12: 814-822.
    Yen, W. L. and Klionsky, D. J. (2008). How to live long and prosper:autophagy, mitochondria, and aging. Physiology (Bethesda) 23:248-262.
    Yen, W. L., Shintani, T., Nair, U., et al. (2010). The conserved oligomeric Golgi complex is involved in double-membrane vesicle formation during autophagy. J Cell Biol 188:101-114.
    Yip, C. K., Berscheminski, J. and Walz, T. (2010). Molecular architecture of the TRAPPII complex and implications for vesicle tethering. Nat Struct Mol Biol 17:1298-1304.
    Yorimitsu, T. and Klionsky, D. J. (2005). Autophagy:molecular machinery for self-eating. Cell Death Differ 12 Suppl 2:1542-1552.
    Yu, S. and Liang, Y. (2012). A trapper keeper for TRAPP, its structures and functions. Cell Mol Life Sci.
    Yu, S., Satoh, A., Pypaert, M., et al. (2006). mBet3p is required for homotypic COPII vesicle tethering in mammalian cells. J Cell Biol 174:359-368.
    Yuga, M., Gomi, K., Klionsky, D. J., et al. (2011). Aspartyl aminopeptidase is imported from the cytoplasm to the vacuole by selective autophagy in Saccharomyces cerevisiae. J Biol Chem 286: 13704-13713.
    Zhang, C. J., Bowzard, J. B., Greene, M., et al. (2002). Genetic interactions link ARF1, YPT31/32 and TRS130. Yeast 19:1075-1086.
    Zhu, Q., Dabi, T., Beeche, A., et al. (1995). Cloning and properties of a rice gene encoding phenylalanine ammonia-lyase. Plant Mol Biol 29:535-550.
    Zong, M., Satoh, A., Yu, M. K., et al. (2012). TRAPPC9 mediates the interaction between pi50 and COPII vesicles at the target membrane. PLoS One 7:e29995.
    Zoppino, F. C., Militello, R. D., Slavin, I., et al. (2010). Autophagosome formation depends on the small GTPase Rab1 and functional ER exit sites. Traffic 11:1246-1261.
    Zou, S., Liu, Y, Zhang, X. Q., et al. (2012). Modular TRAPP complexes regulate intracellular protein trafficking through multiple Ypt/Rab GTPases in Saccharomyces cerevisiae. Genetics 191: 451-460.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700