串联质谱检测正常儿童干血滤纸片中游离肉碱和酰基肉碱含量
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     建立一种简便、快捷的检测干血滤纸片中肉碱类化合物的方法。通过对0~13岁正常儿童干血滤纸片中游离肉碱和酰基肉碱含量的检测,对我国南方地区儿童体内游离肉碱及酰基肉碱水平进行了统计分析,为脂肪酸代谢障碍性疾病和有机酸血症诊断提供参考范围。
     方法
     取直径5 mm的干血滤纸片,加入含有游离肉碱和酰基肉碱的同位素内标,用甲醇萃取,萃取物过滤后直接上机分析,采用ESI+-MS/MS进行检测,数据采集采用多反应监测模式(MRM)对13种肉碱类化合物进行了检测。以美国CDC提供的质控样品作方法学验证。应用该法对277例0~13岁正常儿童的外周血干血滤纸片酰基肉碱进行检测。分6个年龄段组1(新生儿组):年龄~28天,孕周≥37周;组2:年龄~6月;组3:年龄~12月;组4:年龄~3岁;组5:年龄~6岁;组6:年龄~13岁。应用SPSS 17.0分析软件对数据进行统计分析。
     结果
     本实验建立的方法重复性好,各物质在低、中、高三个浓度级别的批内变异系数和批间变异系数都小于15%。各物质实测浓度与加入浓度之间的相对偏差在0.1%-27.2%。线性范围满足临床检测需要。通过比较各个年龄段儿童干血滤纸片法酰基肉碱类化合物含量发现:1.3-羟基异戊酰肉碱(C5OH)随着年龄的增大,含量下降。2.~28天组(组1);辛酰肉碱(C8)较其它年龄组的低;乙酰肉碱(C2)、十二酰肉碱(C12)、十四酰肉碱(C14)较其它年龄组的高。3.~6月组(组2):游离肉碱(C0)比~28天组(组1)和其它较大年龄组高;乙酰肉碱(C2)比其他较大年龄组高。4.~12月(组3)乙酰肉碱(C2)比其他较大年龄组高。5.~6岁年龄(组5)十四酰肉碱(C14)比其它小年龄组的低。6.~13岁组(组6)癸酰肉碱(C10)比其它较小年龄组高。7.丙酰肉碱(C3)、丁酰肉碱(C4)、异戊酰肉碱(C5)、己酰肉碱(C6)这些中、短酰基肉碱受年龄因素影响不大。用本方法诊断脂肪酸β-氧化代谢障碍1例。
     结论
     同位素稀释-非衍生化串联质谱法对干血滤纸片中游离肉碱和酰基肉碱进行分析,能够达到满意的精确度和准确度,每个样品前处理加上机分析只需要3小时,是一项简便、快捷检测方法,适合应用于临床检测。本研究提供的我国南方地区0~13岁正常儿童干血滤纸片酰基肉碱含量参考值范围,可以为脂肪酸代谢障碍和有机酸血症疾病的诊断、鉴别诊断、治疗提供有意义的参考。
Objective
     To establish a method for carnitine analysis in dry blood filter paper by tandem mass spectrometry for 0~13 years old children. In this study, we evaluated the variations in free carnitine and acylcarnitines concentrations with age, supplied normal reference range for clinic diagnosis.
     Methods
     5 mm diameter of dry blood spots were punched and extracted by methanol solution with stable isotope labeled internal standards , then filtered and analyzed by tandem mass spectrometry.Sensitivity and specificity were evaluated by the quality control samples supplied by CDC of United States.
     Filter-paper blood spots were collected from 277 healthy individuals over a period of 3 months, divided into six age groups to analysis, including:1–28 days(group 1), 1–6 months(group 2),7–12 months(group 3), 13 months–3 years(group 4), 4–6 years(group 5)and 7–13 years(group 6). The concentration of free carnitine and acylcarnitines were made statistic to get normal reference range .
     Results
     The intraassay CVs of this method were 1% -13% ,The interassay CVs were1% -16%. The linearity of free carnitine and acylcarnitines were enough to the requitement of clinic diagnosis .Long chain carnitines was significantly higher in newborns than in older children (P <0.05), but the concentrations of several short chain acylcarnitines(C3、C4、C5、C6) tended to be no significantly difference. By this method,we identified one patient withβ-oxidation disorders deficiency which proved the method is specificity and sensitivity.
     Conclusions
     The precision and linearity of the method are satisfied for free carnitine and acylcarnitines analysis. The age-related reference values are useful in the diagnosis and management of inherited errors of metabolism.
引文
[1] Millington DS , Kodo N , Norwood DL , et al . Tandem mass spectrometry : a new method for acylcarnitine profiling with potential for neonatal screening for inborn errors of metabolism. J Inher Metab Dis ,1990 , 13 :321-324.4 Chace DH , Kalas TA
    [2] Wiley V , Carpenter K, Wilcken. Newborn Screening with tandem mass spectrometry: 12 months experience in NSW Australia. Acta Paediatr Suppl . 1999 , 432 :48251.
    [3] Chen YT. Defects in metabolism of carbobydrates [ A ] . In :Behrman RE , Kliegman RM , Jenson HB , eds. Nelson Textbook of Pediatrics [ M ] . 16th ed. Philadelphia : W. B. Saunders ,2000 , 405 - 420.
    [4] Gulewitsch WI, Krimberg R Zur Kenntnis der Extraktivstoffe der Muskeln. II. Mitteilung.Ueber das Carnitin. Hoppe Seylers Z Physiol Chem (1905)45:326–330
    [5] Tomita M, Sendju Y Uber die Oxyaminverbindungen, welche die Biuretreaktion zeigen.III. Spaltung der gamma-Amino-beta-oxy-buttersaure in die optisch-aktiven Komponenten.Hoppe Seylers Z Physiol Chem (1927)169:263–277
    [6] Carter HE, Bhattacharyya PK, Weidman KR,et al. Chemical studies on vitaminBT isolation and characterization as carnitine. Arch Biochem Biophys ,1952,38:405–416
    [7] Bhattacharyya PK, Carter HE, Fraenkel G,et al. The identity of vitamin BTwith carnitine. Arch Biochem,1952, 35:241–242
    [8] Vaz FM, Wanders RJ. Carnitine biosynthesis in mammals. Biochem J ,2002,361:417–4293.2 Acylcarnitines, Including In 204 Vitro Loading Tests
    [9] Jakobs BS, Wanders RJ .Fatty acid beta-oxidation in peroxisomes and mitochondria:the first, unequivocal evidence for the involvement of carnitine in shuttling propionyl-CoAfrom peroxisomes to mitochondria. Biochem Biophys Res Commun,1995, 213:1035–104
    [10] Roe CR, Bohan TP L-carnitine therapy in propionicacidaemia. Lancet ,1982,1:1411–1412
    [11] Roe CR, Hoppel CL, Stacey TE, et al, Millington DS Metabolic response to carnitine in methylmalonic aciduria. An effective strategy for elimination of propionyl groups. Arch Dis Child,1983, 58:916–920
    [12] Chalmers RA, Roe CR, Stacey TE,et al. Urinary excretion of l-carnitine and acylcarnitines by patients with disorders of organic acid metabolism: evidence for secondary insufficiency of l-carnitine. Pediatr Res ,1988,18:1325–1328
    [13] Millington DS, Roe CR, Maltby DA . Application of high resolution fast atom bombardment and constant B/E ratio linked scanning to the identification and analysis of acylcarnitines in metabolic disease. Biomed Mass Spectrom, 1984,11:236–241
    [14] Roe CR, Millington DS, Maltby DA,et al. Bohan TP L-carnitine therapy in isovaleric acidemia. J Clin Invest ,1984,74:2290–2295
    [15] Millington DS, Terada N, Chace DH, et al .The role of tandem mass spectrometry in the diagnosis of fatty acid oxidation disorders. Prog Clin Biol Res ,1992,375:339–354
    [16] Tortorelli S, Hahn SH, Cowan TM,et al. The urinary excretion of glutarylcarnitine is an informative tool in the biochemical diagnosis of glutaric acidemia type I. Mol Genet Metab ,2005, 84:137–143
    [17] Ensenauer R, Vockley J, Willard JM, et al. A common mutation is associated with a mild, potentially asymptomatic phenotype in patients with isovaleric acidemia diagnosed by newborn screening. Am J Hum Genet ,2004,75:1136–1142
    [18] Oglesbee D, He M, Majumder N, et al Development of a newborn screening follow-up algorithm for the diagnosis of isobutyryl-CoA dehydrogenase deficiency. Genet Med 2007,9:108–116.
    [19] Vockley J., Whiteman D.A.: Defects of mitochondrial beta-oxidation:a growing group of disorders. Neuromuscul. Disord., 2002, 12:235–246
    [20] Glatz J.F., Luiken J.J., van Nieuwenhoven F.A., Van der Vusse G.J.:Molecular mechanism of cellular uptake and intracellular translocationof fatty acids. Prostaglandins Leukot. Essent. Fatty Acids, 1997;57: 3–9
    [21] Haunerland N.H., Spener F.: Fatty acid-binding proteins– insightsfrom genetic manipulations. Prog. Lipid Res, 2004, 43: 328–49
    [22] Vockley J.: The changing face of disorders of fatty acid oxidation.Mayo Clin. Proc, 1994; 69: 249–257
    [23] Vockley J, Whiteman D.A. Defects of mitochondrial beta-oxidation:a growing group of disorders. Neuromuscul. Disord, 2002, 12:235–246
    [24] Bonnefont J.P, Demaugre F, Prip-Buus C, et al .Carnitine palmitoyltransferase deficiencies. Mol. Genet. Metab., 1999, 68: 424–440
    [25] Bonnefont J.P, Djouadi F, Prip-Buus C, Gobin S, Munnich A, Bastin J. Carnitine palmitoyltransferases 1 and 2: biochemical, molecular and medical aspects. Mol. Aspects Med, 2004, 25: 495–520
    [26] Yang B.Z, Ding J.H, Dewese T, et al . Identification of four novel mutations in patients with carnitine palmitoyltransferase II (CPT II) deficiency. Mol. Genet. Metab., 1998, 64: 229–236
    [27] Brivet M,Boutron A,Slama A,et al.Defects in activation and transport of fatty acids[J].J Inherit Metab Dis,1999,22:428-441.
    [28] Hug G,Bove KE,Soukup S.Lethal neonatal multiorgan deficiency of carnitine palmitoyltransferase II[J].N Engl J Med,1991,325:1862-1864.
    [29] Taroni F,Verderio E,Dworzak F,et al.Identification of a common mutation in the carnitine palmitoyltransferase II deficiency[J].Proc Natl Acad Sci USA, 1992 ,89:8429-8433.
    [30] Bartlett K., Eaton S. Mitochondrial b-oxidation. Eur. J. Biochem,2004, 271: 462–469
    [31] Darras B.T, Friedman N.R. Metabolic myopathies: a clinical approach;part I. Pediatr. Neurol., 2000, 22: 87–97
    [32] Darras B.T, Friedman N.R, Metabolic myopathies, a clinical approach,part II. Pediatr. Neurol., 2000, 22: 171–181
    [33] de Lonlay P., Giurgea I., Touati G., Saudubray J.M.: Neonatal hypoglycaemia:aetiologies. Semin. Neonatol., 2004, 9: 49–5
    [34] Arenas J, Rubio J.C, Martin M.A, Campos Y, Biological roles of L-carnitine in perinatal metabolism. Early Hum. Dev, 1998, 53(Suppl.):S43–S50
    [35] Sim K.G., Hammond J., Wilcken B.: Strategies for the diagnosis of mitochondrial fatty acid beta-oxidation disorders, Clin Chim Acta,2002, 323: 37–5
    [36] Andresen B.S, Dobrowolski S.F, O’Reilly L,et al, Medium-chain acyl-CoA dehydrogenase (MCAD) mutations identified by ms/ms-based prospective screening of newborns differ from those observed in patients with clinical symptoms: identification and characterization of a new, prevalent mutation that results in mild MCAD deficiency. Am. J. Hum. Genet, 2001, 68: 1408–1418
    [37] Gregersen N, Andresen B.S, Corydon M.J, Corydon T.J, Olsen R.K,Bolund L, Bross P: Mutationanalysis in mitochondrial fatty acid oxidation defects exemplifi ed by acyl-CoA dehydrogenase defi ciencies,with special focus on genotype-phenotype relationship. Hum. Mutat,2001, 18: 169–189
    [38] Gregersen N, Bross P, Andresen B.S, Genetic defects in fatty acid beta-oxidation and acyl-CoA dehydrogenases: Molecular pathogenesis and genotype-phenotype relationships. Eur. J. Biochem., 2004, 27: 470–482
    [39] Andresen B.S, Bross P, Udvari S,et al. The molecular basis of medium-chain acylCoA dehydrogenase (MCAD) deficiency in compound heterozygous patients: is there correlation between genotype and phenotype? Hum. Mol. Genet, 1997, 6: 95–707
    [40] Mansouri A, Fromenty B, Durand F,et al. Assessment of the prevalence of genetic metabolic defects in acute fatty liver of pregnancy. J. Hepatol, 1996, 25: 781–782
    [41] Yang S.Y, He X.Y, Schulz H.: 3-Hydroxyacyl-CoA dehydrogenase and short chain 3-hydroxyacyl-CoA dehydrogenase in human health and disease. FEBS J., 2005(27) :4874–4883
    [42] Eaton S, Control of mitochondrial beta-oxidation fl ux. Prog. Lipid Res, 2002, 41: 197–239
    [43] Eaton S, Chatziandreou I, Krywawych S, et al.Short-chain 3-hydroxyacyl-CoA dehydrogenase defi ciency associated with hyperinsulinism:a novel glucose–fatty acid cycle? Biochem.Soc. Trans., 2003, 31: 1137–1139
    [44] Frerman F.E., Goodman S.I.: Defects of electron transfer fl avoprotein and electron transfer fl–avoprotein ubiquinone oxidoreductase:glutaric aciduria type II. In: Metabolic and Molecular Basis of Inherited Disease. Eds: C.R.Scriver, A.L. Beaudet, D. Valle, McGraw-Hill, New York 2000
    [45] Okun J.G, Kolker S, Schulze A,et al. A method for quantitative acylcarnitine profi ling in human skin fi broblasts using unlabelled palmitic acid: diagnosis of fatty acid oxidation disorders and differentiation between biochemical phenotypes of MCAD defi ciency. Biochim. Biophys. Acta, 2002,1584: 91–98
    [46] Schulze A, Schmidt C, Kohlmuller D,et al. Accurate measurement of free carnitine in dried blood spots by isotope-dilution electrospray tandem mass spectrometry without butylation.Clin. Chim. Acta, 2003, 335: 137–145
    [47] Carpenter K.H., Wiley V. Application of tandem mass spectrometry to biochemical genetics and newborn screening. Clin. Chim. Acta,2002, 322: 1–10
    [48] Chakrapani A., Wraith J.E.: Principles of management of the more common metabolic disorders.Current Paediatrics, 2002, 12: 117–124
    [49] Roe C.R.: Inherited disorders of mitochondrial fatty acid oxidation:a new responsibility for the neonatologist. Semin Neonatol, 2002, 7:37–47
    [50] Hoffmann GF, von Kries R, Klose D,et al. Frequencies of inherited organic acidurias and disordersof mitochondrial fatty acid transport and oxidation in Germany. Eur J Pediatr, 2004,163:76–80
    [51] Hori D, Hasegawa Y, Kimura M, et al. Clinical onset andprognosis of Asian children with organic acidemias, as detected by analysis of urinary organicacids using GC/MS, instead of mass screening. Brain Dev, 2005,27:39–45
    [52] Tanaka K ,Isovaleric acidemia: personal history, clinical survey, and study of the molecularbasis. Progr Clin Biol Res 1990,321:273–290
    [53] Wajner M, Raymond K, Barschak A, et al. Detection of organic acidemiasin Brazil. Arch Med Res ,2002, 33:581–585
    [54]钱宁,杨艳玲.有机酸代谢障碍的研究进展.中国优生及遗传杂志, 2003, 11: 628.
    [55] Rinaldo P, Matern D, Bennett MJ Fatty Acid oxidation disorders. Annu Rev Physio,2002,l64:477–502
    [56] Millington DS, Kodo N, Norwood DL, Roe CR. Tandem mass spectrometry: a new method for acylcarnitine profiling with potential for neonatal screening for inborn errors of metabolism. J Inherit Metab Dis ,1990, 13:321–324
    [57] Rinaldo P, Hahn S, Matern D,Clinical biochemical genetics in the twenty-first century. Acta Paediatr 2004 93:22–26
    [58] Rinaldo P, Studinski AL, Matern D Prenatal diagnosis of disorders of fatty acid transport and mitochondrial oxidation. Prenat Diagn,2001,21:52–54
    [59] Morel CF, Watkins D, Scott P, Rinaldo P, Rosenblatt DSPrenatal diagnosis for methylmalonic acidemia and inborn errors of vitamin B12 metabolism and transport. Mol Genet Metab ,2005,86:160–171
    [60] Braida L, Crovella S, Boniotto M, et al. A rapid and quantitative mass spectrometry method for determining the concentration of acylcarnitines and amino acids in amniotic fluid. Prenat Diagn,2001, 21:543–546
    [61] Millington DS, Norwood DL, Kodo N,et al. Application of fast atom bombardment with tandem mass spectrometry and liquid chromatography=mass spectrometry to the analysis of acylcarnitines in human urine, blood and tissue. Anal Biochem ,1989,180:331-339.
    [62] Rashed MS, Bucknall MP, Little D, et al . Screening blood spots for inborn errors of metabolism by electrospray tandem mass spectrometry with microplate batch process and a computer algorithm for automated fagging of abnormal profles. Clin Chem ,1997,43:1129-1141.
    [63] Rashed MS, Ozand PT, Bucknall MP,et al . Diagnosis of inborn errors of metabolism from blood spots by acylcarnitines and amino acid profling using automated electrospray tandem mass spectrometry. Pediatr Res, 1995,38: 324-331.
    [64] Rashed MS, Rahbeeni Z, Ozand PT. Application of electrospray tandem mass spectrometry to neonatal screening. Semin Perinatol ,1999,23: 183-193.
    [65] Newborn Screening Task Force . Serving the family from birth to the medical home, part. Newborn screening: ablueprint for the future. Pediatrics 106(supplement), 2000, 389-397.
    [66] Dennis J.et.National Academy of Clinical Biochemistry Laboratory Medicine Practice Guidelines:Follow-Up Testing for Metabolic Disease Identified byExpanded Newborn Screening Using Tandem MassSpectrometry; Executive Summary. Clinical Chemistry ,2009,55(9):1615–1626
    [67]顾学范,韩连书,高晓岚,等.串联质谱技术在遗传性代谢病高危儿童筛查中的初步应用[ J ].中华儿科杂志, 2004, 42 (6) : 401 - 404.
    [68]江剑辉、曹伟锋等,748例遗传性代谢病高危儿童串联质谱筛查研究。广东医学,2008.29(3),357-359.
    [69] Behaman RE,Idiegrnan Rm.Jenson lIB.Nelson Texlbook of Pediatriets.16th ed Singapore:Harccourt Publishen Limited,2000,413-444
    [70] Ralph F,Regina E,Wulf R, et al. Stability of Acylcarnitines and Free Carnitine in Dried Blood Samples: Implications for Retrospective Diagnosis of Inborn Errors of Metabolism and Neonatal Screening for Carnitine Transporter Deficiency. Anal. Chem. 2009, 81, 3571–3575
    [71] D. W . Johnson ,spectrometry screening method for blood spots.J. Inher. Metab. Dis. 1999,22: 201-202
    [72]Koeberl DD, Young SP, Gregersen NS, et al (2003) Rare disorders of metabolism with elevatedbutyryl- and isobutyryl-carnitine detected by tandem mass spectrometry newbornscreening.Pediatr Res 54:219–223References 205
    [73]Matern D, He M, Berry SA, et al . Prospective diagnosis of 2-methylbutyryl-CoA dehydrogenase deficiency in the Hmong population by newborn screening using tandem mass spectrometry. Pediatrics, 2003,112:74–78
    [74]Holub M.Tuschi K,Ratschman R,et al.Influence of hematocrit and localization of punch in dried blood spots on levels of amino acid and acylcarnitines measured by tandem mass spectrometry.Clin Chim Acta,2006,373:27-31.
    [75]Boneh A,Andrescn BS,Cregersen N,et al.VLCAD deficiency:Pitfalls in newborn screening and confirmation of diagnosis by mutation analysis.Molecular Genetics and Metabolism,2006,88:166-170.
    [76] Millington DS. Tandem mass spectrometry in clinical diagnosis.In: Blau N, Duran D, Blaskovics ME, Gibson KL, eds. Physician’s guide to the laboratory diagnosis of metabolic diseases. Berlin: Springer, 2003:57–75.
    [77]Catia C,Pieree B,Karl M et al.Age-Related Variations in Acylcarnitine and Free Carnitine Concentrations Measured by Tandem Mass Spectrometry. Clinical Chemistry 2005,51:4 745–752 .
    [78]Eskandari GH , Kandemir O , Polat G,et al. Serum L-carnitine levels and lipoprotein compositions in chronic viral hepatitis patients [ J ] . Clin Biochem , 2001 , 34(5) : 431 - 433.
    [79]Tein I , Xie ZW. Reversal of valproic acid associated impairment of carnitine uptake in cultured human skin fibroblasts [ J ] .Biochem Biophy Res Commun , 1996 , 204 (2) : 735 - 738.
    [80]Sakemi K, Takada G. Effect of carnitine on valproic acid concentrations in serum , brain and liver [ J ] . Pediatric Neurol ,1998 , 18 (4) : 331 - 333.
    [81]Raskind J Y, El Chaar GM. The role of carnitine supplementation during valproic acid therapy [J ] . Ann Pharmacother , 2000 ,34 (5) : 630 - 638.
    [82]Olson AL, Rebouche CJ. Renal conservation of carnitine by infants and adults: no evidence of developmental regulation. Early Hum Dev 1989, 19:29-38.
    [83]Amit K ,Rapid measurement of plasma acylcarnitines by liquid chromatography–tandem mass spectrometry without derivatization.. Clinica Chimica Acta 2005,358: 104–112
    [1] Hochaher JB.Carnitine biosynthesis:The formation of glycine from carbons1 and 2 of 6-N-trimethyl-1一lysine[J].Biochem Biophys Res Comman,1976,70(2):364.
    [2] Carter HE, Bhattacharyya PK, Weidman KR,et al. Chemical studies on vitaminBT isolation and characterization as carnitine. Arch Biochem Biophys ,1952,38:405–416
    [3] Bhattacharyya PK, Carter HE, Fraenkel G, et al.The identity of vitamin BTwith carnitine. Arch Biochem,1952, 35:241–242
    [4] Roe CR , Ding J H. Mitochondrial fatty acid oxidation disorders[A] . In : Scriver CR , Beaudet AL , Sly WS , David Valle , eds.The Metabolic and Molecular Bases of Inherited Disease [M] . 8thed. New York : Mc GrawHill Inc , 2003 , 2297 - 2326.
    [5] Olson AL, Rebouche CJ. Renal conservation of carnitine by infants andadults: no evidence of developmental regulation. Early Hum Dev 1989, 19:29-38.
    [6] Melegh B, Szucs I, Kemer J, Sandor A. Changes of plasma free amino acids and renal clearances of carnitines in premature infants during L-carmitinesupplemented human milk feeding. J Pediatr Gastroenterol Nutr 1988,7: 424-9.
    [7] Olson AL, Rebouche CJ. Gamma-butyrobetaine hydroxylase activity is notrate limiting for carnitine biosynthesis in the human infant. Jf Nutr 1987,117: 1024-31.
    [8] Vockley J., Whiteman D.A.: Defects of mitochondrial beta-oxidation:a growing group of disorders. Neuromuscul. Disord., 2002,12:235–246
    [9] Glatz J.F., Luiken J.J., van Nieuwenhoven F.A., et al.Molecular mechanism of cellular uptake and intracellular translocationof fatty acids. Prostaglandins Leukot. Essent. Fatty Acids, 1997;57: 3–9
    [10] Haunerland N.H., Spener F.: Fatty acid-binding proteins insights from genetic manipulations. Prog. Lipid Res., 2004,43: 328–348
    [11] Vockley J. The changing face of disorders of fatty acid oxidation.Mayo Clin. Proc, 1994, 69: 249–257
    [12] Vockley J, Whiteman D.A.Defects of mitochondrial beta-oxidation:a growing group of disorders. Neuromuscul. Disord, 2002, 12:235–246
    [13] Wang Y, Korman SH , Ye J , Phenotype and genotype variation in primary carnitine deficiency [J ] . Genet Med , 2001 , 3 (6) : 387 - 392.
    [14] Di Donato S, Rimoldi M, Garavaglia B, et al. Propionylcarnitine excretionin propionic and methylmalonic acidurias: a cause of carnitine deficiency. Clin Chim Acta 1984, 139: 13-21.
    [15] Stanley CA, Berry GT, Bennett MJ, et al. Renal handling of carnitine in secondary carnitine deficiency disorders. Pediatr Res 1993, 34: 89-97.
    [16] Touma EH, Charpentier C. Medium chain acyl-CoA dehydrogenase deficiency. Arch Dis Child 1992,67: 142-145.
    [17] Lonlay P., Giurgea I., Touati G., et al.Neonatal hypoglycaemia:aetiologies. Semin. Neonatol., 2004, 9: 49–52
    [18] Arenas J., Rubio J.C., Martin M.A., et al. Biological roles of L-carnitine in perinatal metabolism. Early Hum. Dev, 1998, 53(Suppl.):S43–S50
    [19] Sim K.G., Hammond J., Wilcken B. Strategies for the diagnosis of mitochondrial fatty acid beta-oxidation disorders, Clin Chim Acta,2002, 323: 37–5
    [20] Andresen B.S., Dobrowolski S.F., O’Reilly L., et al.Medium-chain acyl-CoA dehydrogenase (MCAD) mutations identified by ms/ms-based prospective screening of newborns differ from those observed in patients with clinical symptoms: identifi cation and characterization of a new, prevalent mutation that results in mild MCAD deficiency. Am. J. Hum. Genet, 2001, 68: 1408–1418
    [21] Coates PM, Hale DE, Finocchiaro G, et al.Genetic deficiencyof short-chain acyl-coenzyme A dehydrogenase in cultured fibroblasts from a patient with muscle carnitine deficiency and severe skeletal muscle weakness. Y Clin Invest 1988, 81: 171-5.
    [22] Mansouri A., Fromenty B., Durand F, et al. PessayreD.: Assessment of the prevalence of genetic metabolic defects in acute fatty liver of pregnancy. J. Hepatol, 1996, 25: 781–782
    [23] Yang S.Y., He X.Y., Schulz H. 3-Hydroxyacyl-CoA dehydrogenase and short chain 3-hydroxyacyl-CoA dehydrogenase in human health and disease. FEBS J, 2005; 272: 4874–4883
    [24]Eaton S. Control of mitochondrial beta-oxidation fl ux. Prog. Lipid Res., 2002, 41: 197–239
    [25]Eaton S, Chatziandreou I., Krywawych S., et al. , Hussain K.: Short-chain 3-hydroxyacyl-CoA dehydrogenase defi ciency associatedwith hyperinsulinism:a novel glucose–fatty acid cycle?Biochem.Soc. Trans., 2003, 31: 1137–1139
    [26]Frerman F.E., Goodman S.I.: Defects of electron transfer fl avoprotein and electron transfer fl avoprotein-ubiquinone oxidoreductase:glutaric aciduria type II. In: Metabolic and Molecular Basis of Inherited Disease. Eds: C.R.Scriver, A.L. Beaudet, D. Valle, McGraw-Hill, New York 2000
    [27]Saudubray JM,Martin D,de Lonlay P,et al.Recognition and management of fatty acid oxidation defects; a series of 107 patients [J].J Inherit Metab Dis.1999,22:488-502.
    [28]Okun J.G., Kolker S., Schulze A., et al. A method for quantitative acylcarnitine profi ling in human skin fi broblasts using unlabelled palmitic acid: diagnosis of fatty acid oxidation disorders and differentiation between biochemical phenotypes of MCAD deficiency. Biochim. Biophys. Acta, 2002;,1584: 91–98
    [29]Schulze A., Schmidt C., Kohlmuller D., et al. Accurate measurement of free carnitine in dried blood spots by isotope-dilution electrospray tandem mass spectrometry without butylation.Clin. Chim. Acta, 2003,335: 137–145
    [30]Carpenter K.H., Wiley V.: Application of tandem mass spectrometry to biochemical genetics and newborn screening. Clin. Chim. Acta,2002,322: 1–10
    [31]Chakrapani A., Wraith J.E.: Principles of management of the morecommon metabolic disorders. Current Paediatrics, 2002,12: 117–124
    [32]Roe C.R.: Inherited disorders of mitochondrial fatty acid oxidation:a new responsibility for the neonatologist. Semin Neonatol, 2002, 7:37–47
    [33]Tanaka K (1990) Isovaleric acidemia: personal history, clinical survey, and study of the molecularbasis. Progr Clin Biol Res 321:273–290
    [34]Wajner M, Raymond K, Barschak A, et al. Detection of organic acidemiasin Brazil. Arch Med Res 2002,33:581–585
    [35] Roe CR, Millington DS, Maltby DA, et al. L-carnitine enhances excretion of propionyl coenzyme A as propionylcarnitine in propionic acidemia. J Clin Invest1984 ,73:1785–1788
    [36]杨艳玲,山口清子,田上泰子,等.生物素酶缺乏的诊断和诊疗6例分析[ J ].中华儿科杂志, 2003, 41 (4) : 249-251.
    [37]Zschocke J, Hoffmann GF. Vademecum metabolicum manual of metabolic pediatrics [M ]. 2nd ed. Heidelberg: Milupa GmbH,2004, 64-69.
    [38] Wolf B. Disorders of biotin metabolism. In: Scriver CR, BeaudetAL, SlyWS, et al. eds. The metabolic and molecular basis of inherited disease [M ]. 8 th ed. New York: McGraw Hill, 2001.3935-3962.
    [39]Morrone A,Malvagia S, DonatiMA, et al. Clinical findings andbiochemical and molecular analysis of four patients with holocar boxylase synthetase deficiency[ J ]. Am J Med Genet, 2002, 111(1) : 10-18.
    [40] Collins JE,Nicholson NS,Dalton N, et al. Biotinidase deficiency:early neurological p resentation[ J ]. DevMed Child Neurol, 1994,36 (3) : 268-270.
    [41] Eskandari GH , Kandemir O , Polat G, Tamer L , Ersoz G, AtikU. Serum L-carnitine levels and lipoprotein compositions in chronic viral hepatitis patients [ J ] . Clin Biochem , 2001 , 34(5) : 431 - 433.
    [42] Tein I , Xie ZW. Reversal of valproic acid associated impairment of carnitine uptake in cultured human skin fibroblasts [ J ] .Biochem Biophy Res Commun , 1996 , 204 (2) : 735 - 738.
    [43] Sakemi K, Takada G. Effect of carnitine on valproic acid concentrations in serum , brain and liver [ J ] . Pediatric Neurol ,1998 , 18 (4) : 331 - 333.
    [44] Raskind J Y, El Chaar GM. The role of carnitine supplementation during valproic acid therapy [J ] . Ann Pharmacother , 2000 ,34 (5) : 630 - 638.
    [45] Roe CR, Bohan TP (1982) L-carnitine therapy in propionicacidaemia. Lancet 1:1411–1412
    [46] Roe CR, Hoppel CL, Stacey TE, Chalmers RA, Tracey BM, Millington DS (1983) Metabolic response to carnitine in methylmalonic aciduria. An effective strategy for elimination of propionyl groups. Arch Dis Child 58:916–920
    [47] Chalmers RA, Roe CR, Stacey TE, et al. Urinary excretion of l-carnitine and acylcarnitines by patients with disorders of organic acid metabolism: evidence for secondary insufficiency of l-carnitine. Pediatr Res 1988,18:1325–1328
    [48] Millington DS, Roe CR, Maltby DA . Application of high resolution fast atom bombardment and constant B/E ratio linked scanning to the identification and analysis of acylcarnitines in metabolic disease. Biomed Mass Spectrom 1984,11:236–241
    [49] Roe CR, Millington DS, Maltby DA, et al. L-carnitine therapy in isovaleric acidemia. J Clin Invest1984 74:2290–2295
    [50] Yergey AL, Liberato DJ, Millington DS Thermospray liquid chromatography/massspectrometry for the analysis of L-carnitine and its short-chain acyl derivatives. Anal Biochem11984,39:278–283
    [51] Millington DS, Bohan TP, Roe CR, et al. Valproylcarnitine: a noveldrug metabolite identified by fast atom bombardment and thermospray liquid chromatography-mass spectrometry. Clin Chim Acta 1985,145:69–76
    [52] Millington DS, Maltby DA, Roe CR .Rapid detection of argininosuccinic aciduria and citrullinuria by fast atom bombardment and tandem mass spectrometry. Clin Chim Acta 1986,155:173–178
    [53]Heinig K, Henion J . Determination of carnitine and acylcarnitines in biological samples by capillary electrophoresis-mass spectrometry. J Chromatogr B Biomed Sci Appl 1999,735:171–188
    [54]Ghoshal AK, Guo T, Soukhova N, et al. . Rapid measurement of plasma acylcarnitinesby liquid chromatography-tandem mass spectrometry without derivatization. ClinChim Acta 2005,358:104–112
    [55]Millington DS, Norwood DL, Kodo N, et al. Application of fast atom bombardment with tandem mass spectrometry and liquid chromatography=mass spectrometry to the analysis of acylcarnitines in human urine, blood and tissue. Anal Biochem 1989,180:331-339.
    [56]Rashed MS, Bucknall MP, Little D, et al . Screening blood spots for inborn errors of metabolism by electrospray tandem mass spectrometry with microplate batch process and a computer algorithm for automated tagging of abnormal profles. Clin Chem,1997, 43:1129-1141.
    [57]Rashed MS, Ozand PT, Bucknall MP, et al . Diagnosis of inborn errors of metabolism from blood spots by acylcarnitines and amino acid profling using automated electrospray tandem mass spectrometry. Pediatr Res ,1995,38: 324-331.
    [58]Rashed MS, Rahbeeni Z, Ozand PT . Application of electrospray tandem mass spectrometry to neonatal screening. Semin Perinatol,1999, 23: 183-193.
    [59]Newborn Screening Task Force Serving the family from birth to the medical home, part. Newborn screening: ablueprint for the future. Pediatrics 106(supplement): 2000,389-397.
    [60]Dennis J.et.National Academy of Clinical Biochemistry LaboratoryMedicine Practice Guidelines:Follow-Up Testing for Metabolic Disease Identified byExpanded Newborn Screening Using Tandem MassSpectrometry; Executive Summary. Clinical Chemistry 2009,55(9)1615–1626
    [61]顾学范,韩连书,高晓岚,等.串联质谱技术在遗传性代谢病高危儿童筛查中的初步应用[ J ].中华儿科杂志, 2004, 42 (6) : 401 - 404.
    [62]江剑辉、曹伟锋等,748例遗传性代谢病高危儿童串联质谱筛查研究。广东医学,2008.29(3),357-359.
    [63]D. W . Johnson ,spectrometry screening method for blood spots。J. Inher. Metab. Dis. 1999,22 : 201-202
    [64]Oglesbee D, He M, Majumder N, et al. Development of a newborn screening follow-up algorithm for the diagnosis of isobutyryl-CoA dehydrogenase deficiency. Genet Med,2007 9:108–116.
    [65]Ensenauer R, Vockley J, Willard JM, et al . A common mutation is associated with a mild, potentially asymptomatic phenotype in patients with isovaleric acidemia diagnosed by newborn screening. Am J Hum Genet 2004,75:1136–1142
    [66]Koeberl DD, Young SP, Gregersen NS, et al . Rare disorders of metabolism with elevatedbutyryl- and isobutyryl-carnitine detected by tandem mass spectrometry newborn screening.Pediatr Res 2003,54:219–223References 205
    [67]Matern D, He M, Berry SA, et al . Prospective diagnosis of 2-methylbutyryl-CoA dehydrogenase deficiency in the Hmong population by newborn screening using tandem mass spectrometry. Pediatrics 2003,112:74–78
    [68]Amit K ,Rapid measurement of plasma acylcarnitines by liquid chromatography–tandem mass spectrometry without derivatization.. Clinica Chimica Acta 2005,358: 104–112
    [69]Giannacopoulou C, Evangeliou A, Matalliotakis I, et al. Effects of gestation age and birth weight in the concentration of carnitine in the umbilical plasma.Clin Exp Obstet Gynecol 1998;25:42–5.
    [70]Vreken P, Van Lint AE, Bootsma AH,. Rapid diagnosis of organic acidemias and fatty-acid oxidation defects by quantitative electrospray tandem-MS acylcarnitine analysis in plasma. Adv Exp Med Biol 1999,466:327–37.
    [71]Takiyama N, Matsumoto K. Age-and sex-related differences of serum carnitine in a Japanese population. J Am Coll Nutr 1998,17:71–4. [15]
    [70] Ralph F,Regina E,Wulf R, et al. Stability of Acylcarnitines and Free Carnitine in Dried Blood Samples: Implications for Retrospective Diagnosis of Inborn Errors of Metabolism and Neonatal Screening for Carnitine Transporter Deficiency. Anal. Chem. 2009, 81, 3571–3575
    [73]Holub M.Tuschi K,Ratschman R,et al.Influence of hematocrit and localization of punch in driedblood spots on levels of amino acid and acylcarnitines measured by tandem mass spectrometry.Clin Chim Acta,2006,373:27-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700